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Abstract 
 

The keys of modern cryptographic algorithms have an enormous size, so the testing 

of the algorithm performance for all key combinations, will take practically an 

infinite time. To avoid this, the sampling method is used, where a much smaller 

number of keys is tested and then the estimation of the algorithm performance for 

all the keys is calculated with a predetermined sampling error. For each sampling 

key, an output sample of the algorithm must be generated and tested. Therefore, in 

order to have sampling results as close as possible to the real performance of the 

algorithm, the key question is whether the selection of the keys should be random 

or it must follow some rules. If the selection of the keys is completely random, there 

is a high probability that the tests will not find some "weak" or "equivalent" keys, 

which give non-random or similar outputs and therefore reduce the total number of 

active keys. But if the sampling keys are selected with some specific criteria, there 

is a much greater probability of detecting any weak or equivalent key. In this study 

an optimal key selection methodology is proposed, which combines the random and 

the non-random key selection. 
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1. Introduction  

When there is a need to evaluate the cryptanalytic strength of a cryptographic 

algorithm, some specific tests must be performed on its output sequences of bits 

(keystreams) as well as on selected encrypted texts. These tests investigate the 

complexity and the non-linearity of the algorithms and are based on specific 

statistical and cryptanalytic methods, which test the randomness and the uniform 

distribution in the bits of the keystreams, as well as unwanted similarities between 

the different keystreams. The tests also check the independence between the clear 

text and the encrypted text and they generally search for security weaknesses which 

can be used for cryptanalytic attacks.  

It is obvious that due to the very large size of cryptographic keys (usually between 

128 to 256 bits), it is practically impossible to test the algorithm for all the possible 

combinations of its keys (which is 2128 to 2256 respectively). Therefore, it is 

necessary to use the sampling method, in which from the total number of the N  

key values (combinations), a much smaller number of n key values are selected for 

the testing. Using a software simulation of the algorithm, for each of the n sampling 

keys, a sample output of the algorithm is generated and subsequently these n 

samples are submitted to the relevant tests. Finally, the results of the tests are 

processed for the calculation of the total performance of the algorithm for all the 

keys, using a predetermined sampling error. 

The final decision on the cryptographic power of the algorithm (randomness, 

independence, unpredictability of outputs, etc.) is made based on the overall success 

rate of the tests in the samples. These tests are extremely time consuming, therefore 

if we want to have a reliable sampling (small sampling error) but also a practically 

feasible time to perform the checks, the main problems that arise are the following: 
 

a. How many output samples should we check? 

b. What should be the size of each sample? 

c. How can we reduce the time of the tests? 

d. What criteria should we use in order to select the sampling keys? 

e. How do we rate the strength of the algorithm based on the test results of its 

samples? 
 

The problems (a), (b), (c) were addressed in our previous study (Marinakis, 2021) 

[1] , in which we proposed documented and practical solutions. In the present study 

we will propose solutions to problem (d). The problem (e) will be addressed in a 

future study. 

The methods which will be proposed are focused on symmetric cryptographic 

algorithms (block ciphers and stream ciphers), but similar methods can be applied 

for asymmetric cryptographic algorithms.    

 

1.1 Weak and Equivalent keys 

Before we proceed in the description of the study, it is necessary to define the terms       

weak key and equivalent key, which will be used in the following paragraphs. 
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In general, weak key is a key, which, used with a specific cipher, makes the cipher 

behave in an undesirable way. Weak keys usually represent a very small fraction of 

the overall keyspace, but it is desirable for a cipher to have no weak keys. A cipher 

with no weak keys is said to have a flat or linear key space , which means that all 

the keys are equally strong. In the case of the DES block cipher, according to 

(Menezes et al., 1997) [2] , (Schneier, 1996) [3] , weak keys are those for which the 

encryption of the encrypted text X with the same key K gives the open text: 

 
 

Weak key K  →  EK [ EK (X) ] = X 

 
 

Also, a semi-weak key pair is a pair of keys for which, if we encrypt with the first 

key K1 the encrypted text which was encrypted with the second key K2, we will 

have the open text: 

 
 

Semi-weak key pair K1 , K2  →  EK1 [ EK2 (X) ] = X 

 
  

We note that the DES cipher has 4 weak keys and 6 semi-weak key pairs, as 

described in (NIST S.P. 800-67 Rev.2, 2017) [4]. 

In the context of the present study, we introduce a different definition for the weak 

keys and also we introduce the new definition of “equivalent keys”, as follows: 

Weak key is any key for which the cryptographic algorithm output is not random.          

Equivalent key is any key that gives the same (or similar) cryptographic algorithm 

output, with the output which is given by another key. 

It is obvious that the presence of weak and equivalent keys reduces the nominal 

number N of the keys in a cryptographic algorithm, which is N = 2L, (where L = the 

key length in bits).  

In this case, the number NA of the active keys is NA = N – NW – NE , where NW is 

the number of weak keys and NE is the number of equivalent keys. 
From what has been stated in this paragraph, it is essential that the randomness tests 

on the algorithmic outputs are intended to reveal the weak keys, while the similarity 

tests between the different algorithmic outputs are intended to reveal the equivalent 

keys. 
 

2. Selection of the sampling keys 

When the output samples of a cryptographic algorithm are tested, an important 

problem is how to select the sampling keys, in order our results will be as close as 

possible to the total performance of the algorithm. The key question is whether the 

selection of the keys should be random or it must follow some rules. If the selection 

is completely random, then we may not detect some "weak" or "equivalent" keys, 

which give non-random or similar results and therefore they will reduce the total 

number of active keys and they will give starting points for cryptanalytic attacks. 

But if we choose the keys with some specific criteria, there is a much greater 

https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/Key_space_(cryptography)
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possibility of detecting any weak or equivalent key. In the following paragraphs we 

will propose an optimal key selection methodology, which combines the random 

and the non-random key selection. 

 

3. Random key sampling   

When the production method of the n sampling keys is completely random, there is 

a significant possibility that inside the total space of the key values from 1 to N 

(where N = 2L the total number of keys and L = key length), some large ranges of 

key values will not be considered. Figure 1 shows one such example, in which with 

the use of a software random function or with a hardware Random Number 

Generator we produced 40 random keys (showed with vertical lines). As is it shown, 

there are two significant ranges of the key values which are not examined (from n1 

to n2  and from n3 to n4). 

 

 

Figure 1: Random key sampling which leaves out two ranges of key values 

(from n1 to n2 and from n3 to n4 ) 

   

4. Stratified random key sampling     

In order to avoid the previous problem, we can perform a different method for the 

production of the random sampling keys. That is, we divide the whole area of the 

possible key values in smaller equal and non-overlapping areas and within each of 

them we perform the random sampling. These equal and non-overlapping areas are 

called strata, that’s why in the sampling bibliography (Wadsworth, 1990) [5], 

(Thompson, 2012) [6], this method is called stratified random sampling. Stratified 

random sampling is used when the population that we want to test is heterogeneous 

(which is common for large-scale data sets like in our case). 

Figure 2 shows such an example, where the 40 random values of the key are 

stratified (divided) into four equal regions (from 1 to N / 4, from N / 4 to N / 2, from 

N / 2 to 3N / 4 and from 3N / 4 to N). Each of the four equal regions contains 10 

random keys. 

 

 

 

 
 

  ||| |  ||| ||  ||||             |  || ||| |  || |  |||| |||  | |             |  |||  ||  ||         
       

 |                               |                   |                                                  |            |                    | 

1                            n1 - - - - -  n2                                                     n3 - - - n4                          Ν 
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Figure 2: Mixed sampling (stratified) into four equal areas of key values 

 

Comparing the previous two figures, we see that in Figure 2 the distribution of the 

keys is more homogeneous than the distribution of the keys in Figure 1. This will 

lead us in a greater probability of detecting any weak or equivalent key. Of course, 

we can divide the total population of the keys into more than four equal areas. Also, 

these key value areas may not be equal in bandwidth. But the basic point is to cover 

as much as possible of the whole key diversity without leaving large empty ranges 

of keys like these in Figure 1. 

   

4.1 Mixed sampling with random keys and continuous keys   

A significant case which combines the stratified random sampling and the non-

random sampling key selection, is when we want to examine the behavior of the 

algorithm output when the keys have continuous values. This is because the outputs 

of cryptographic algorithms must be very unpredictable, and this can be achieved 

only if the algorithms are very "sensitive" to small key changes (avalanche effect). 

This means that for small changes in the value of the key, the algorithm must not 

only maintain the randomness of its output, but also must have no similarities 

between its different outputs. 

Figure 3 shows a mixed selection of keys, where in each of the four equally stratified 

areas, in addition to the random keys (dotted vertical lines) we select a group of 

keys that have continuous values (continuous vertical lines). In this case, except the 

randomness tests to each algorithm output, we must always compare the algorithm 

outputs which are produced from the continuous keys, in order to find any 

similarities between them (search for equivalent keys). 

 
Figure 3: Mixed sampling keys, where n = x + y 

(x random keys and y continuous keys) 

 

 

  || || |||  || |   ||| || | || ||   | || ||||  |||    ||| | | || |  ||  
         

         

1       random         N/4       random      N/2      random      3N/4       random        N  
          sampling                        sampling                 sampling                     sampling         

 

 

 

  ⸽⸽ ⸽ ⸽ ⸽⸽ |||||   ⸽ ⸽⸽ ||||| ⸽⸽ ⸽   ⸽ ⸽ ⸽ ||||| ⸽⸽ ⸽  ⸽ ||||| ⸽ ⸽ ⸽⸽ ⸽ 
 

                                   

 1                               N/4                             N/2                       3N/4                                    N  
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Figure 4 shows an example of selecting four keys which have continuous outputs: 

From an initial key with a value of K1 (which may be random or specified), we 

construct three more keys with values K2 = K1 + 1, K3 = K2 + 1, and K4 = K3 +1. 

The changes are done in the three least significant bits (showed with grey color). 
 

MSB…..........…..………….……………..………………. LSB 
                        

................................... 0 1 1 0 1 0 0 1 

 

................................... 0 1 1 0 1 0 1 0 

 

................................... 0 1 1 0 1 0 1 1 
 

................................... 0 1 1 0 1 1 0 0 

                            

Figure 4: Selection of four continuous keys Κ1, Κ2, Κ3, Κ4 

(only their eight least significant bits are shown) 

 

4.2 Mixed sampling with random keys and keys with one bit difference    

Another significant case of stratified random sampling and non-random sampling              

key selection, is to include cryptographic keys that differ by only one bit from each 

other. This option can reveal the existence of equivalent keys in the algorithm and 

is based on three theoretical properties that all cryptographic algorithms must meet, 

which according to (Menezes et al., 1997) [2], are: 

 

a. Completeness property: 

Each bit of the encrypted text must be depended from all the bits of the key. This 

property was first formulated by Claude Shannon in 1949 as confusion property. 

b. Avalanche effect: 

Changing one bit of the algorithm input should affect as many as possible bits of its 

output. This property was formulated by Claude Shannon as diffusion property, in 

the sense that the statistical peculiarities of the open text should be "multiplied" 

within the encrypted text. 

c. Strict Avalanche Criterion (SAC): 

When one bit of the plain text changes, each bit of the encrypted text must change 

with probability of 1/2 (i.e. half of its bits must be changed). 

 

We must note that property (a) is valid when we consider the key as the input of the 

cryptographic algorithm, while the (b) and (c) properties are valid when we consider 

the plain text as the input of the algorithm. However, the properties (b) and (c) must 

also apply when we consider the key as input, because the key must equally (if not 

K2 

K3 

K4 

K1 
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more) affect the output of the cryptographic algorithm (and therefore the encrypted 

text). 

Figure 5 shows an example of selecting three keys which have one bit difference 

from an initial key. That is, from the key K1 (which may be selected randomly or 

specifically), we construct the three keys K2, K3, K4, changing each time the first, 

the second and the third bit of the initial K1 key (changes are shown with gray color). 

The changes are done to the least significant bits, so that the new key values are 

within the same stratified area of the original K1 key. The same process can be 

repeated many times, in order to produce more keys which will have one bit 

difference between them (starting every time from an initially selected key). 

 
MSB…..............…..……….…………...………………….LSB 

 

................................... 0 1 1 0 0 1 0 1 
 

................................... 0 1 1 0 0 1 0 0 
 

................................... 0 1 1 0 0 1 1 1 

 

................................... 0 1 1 0 0 0 0 1 
                        

   Figure 5: Selection of  three keys Κ2, Κ3, Κ4 which have one bit 

difference from Κ1 (only their eight least significant bits are shown) 

         

4.3 Mixed sampling with random keys and complementary keys    

Another significant case of stratified random sampling and non-random sampling 

key selection, is to include cryptographic keys that have complementary bits. This 

is because the bitwise complementary keys have some special cryptographic 

properties. For example, the DES block cipher has an undesirable property with 

complementary keys, because according to (Menezes et al., 1997) [2]: 

 

c = DES (p, k) =>  c  = DES (  p ,  k ) 
 

 

where c is the encrypted data , p is the plain data , k is the key and  c ,  p ,  k , are 

their bitwise complementation. 

The complementation property of DES normally does not help a cryptanalyst in 

known plain-text exhaustive key search, because it rules out only two keys (the key 

variations are decreased from 255 to 254 ). However, in our study the undesirable 

property of complementary keys is relevant with the term of equivalent keys which 

K2 

K3 

K4 

K1 
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we introduced in paragraph 1.1 (that is, we are searching for complementary keys 

which give the same or similar cipher outputs). 
 

In Figure 6 we give an example with two couples of complementary keys Κ1 , Κ1  

and  Κ2 , Κ2. 

 

MSB…..............…..……….…………...………………….LSB 
 

................................... 0 1 1 0 1 1 0 1 
 

.................................. 1 0 0 1 0 0 1 0 
 

................................... 0 1 1 0 0 1 1 1 

 

................................... 1 0 0 1 1 0 0 0 

                        

Figure 6: Selection of two couples of complementary keys Κ1 ,  Κ1 and Κ2 ,  

Κ2 (only their eight least significant bits are shown) 

 

In practice, when we want to produce a number y of complementary keys, the best 

way is to take as starting point an equal number y of random keys (which were 

generated in a previous step) and calculate their complementary keys. It is obvious 

that the values of these complementary keys may not belong to the same stratified 

area with the values of their complementary random keys, but this will not be a 

problem. We can use them independently and include them to the total number of 

the non-random sampling keys. 

 

4.4 Keys with special bit patterns 

Besides the non-random keys which were described in previous paragraphs, there 

are some keys with specific bit patterns, which may give undesirable behavior to 

cryptographic algorithms. For example, as we noted in paragraph 1.1, the DES 

cipher has 4 weak keys and 6 semi-weak key pairs. These keys have repetitive bit 

patterns and according to (NIST S.P. 800-67 Rev.2, 2017) [4], are (in hexadecimal 

format):  

 

• 01010101 01010101  

• FEFEFEFE FEFEFEFE  

• E0E0E0E0 F1F1F1F1  

• 1F1F1F1F 0E0E0E0E  

 

  Weak keys of  DES 

• 011F011F010E010E and 1F011F010E010E01  

• 01E001E001F101F1 and E001E001F101F101  

• 01FE01FE01FE01FE and FE01FE01FE01FE01  

• 1FE01FE00EF10EF1 and E01FE01FF10EF10E  

• 1FFE1FFE0EFE0EFE and FE1FFE1FFE0EFE0E  

• E0FEE0FEF1FEF1FE and FEE0FEE0FEF1FEF1  

      Semi- weak keys of  DES 

K1 

K2 

K2 

K1 



Selection of Sampling Keys for Cryptographic Tests 9  

Obviously, the above keys affect only the behavior of the DES cipher and they do 

not affect the function of other ciphers. But it has been found that there are many 

ciphers which have their own weak keys. The fact is that the weak keys are very 

few compared to the huge number of the active keys, but in general we can say that, 

if there is any indication that there are some keys with specific bit patterns which 

may give undesirable behavior to the under-test algorithm, we must include these 

keys in our tests.  

 

4.5 General remarks for the mixed sampling keys 

From the previous paragraphs, it is concluded that when we want to use stratified 

sampling, we must divide the total number N of the cryptographic keys into S equal 

and non-overlapping stratified areas. This means that each stratified sampling area 

will have the same number of keys, which will be N/S. In each of these areas we 

apply a mixed stratified sampling with x random keys and y non-random sampling 

keys. Therefore, the total number of the mixed sampling keys in all stratified areas 

will be: 

 

n = Sx + Sy 
 

 

Furthermore, the number of the  y  non-random keys can be divided in the special 

categories which were described in the previous paragraphs: 
 

y1 = continuous keys  y3 = complementary keys 

y2 = one bit difference keys y4 = special bit pattern keys ( y = y1 + y2 + y3 + y4 )  

 

5. Production of the stratified mixed sampling keys    

Figure 7 shows a flow chart for the production of x random keys and y non-random 

keys in each of four equally stratified areas. From the previous paragraph we have 

that, if N is the total number of the cryptographic keys, then the number of keys of 

each stratified sampling area will be N/4. Also, the total mixed sampling keys will 

be n = 4x + 4y. 

The flow chart has one main loop which contains two internal loops. The main loop 

concerns the production of the total number of the mixed sampling keys which are 

produced in the four stratified areas. The two internal loops concern the production 

of the x random and y non-random keys respectively in each stratified area.  

The main loop starts with the setup of the first stratified area of key values, where 

A is the beginning and B is the end of each area and S is the counter for the stratified 

areas (from 1 to 4). At the end of the main loop (after the completion of the two 

internal loops), the value of S is increased by 1 , the values of A and B are increased 

by N/4 and the same process runs for the second stratified area. This process is 

repeated until S > 4 , where the whole process ends. 

First internal loop (random keys): The first internal loop concerns the production of 

the x random keys in each stratified area (between A and B). In the beginning of the 
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loop we initialize the counter c for the random keys (c=1). For the production of the 

random keys we must use a Random Number Generator (RNG), which can be 

implemented in hardware (True Random Number Generator -TRNG) or in software 

(Pseudo Random Number Generator -PRNG). 

There are many hardware TRNG in the market in the form of integrated circuits or 

in the form of flexible USB modules. They take their random seed from an internal 

electronic noise source and some of them have integrated randomness tests. More 

information about True and Pseudo Random Number Generators can be found in 

(Marinakis, 2015) [7]. 

Instead of a hardware TRNG, a software PRNG can be used, which can be 

implemented with the random function which is included in every programming 

language. In Figure 8 we give an example of a program in C++ language which uses 

the “random” function in order to create ten random numbers between 1 and 100000 

and prints them to the screen and to the file “random.txt”. These ten random 

numbers are different in every run of the program, with the additional use of the 

“srand” function which sets a different starting point (seed) before the execution of 

the “rand”. The “srand” takes the seed from the computer clock, which gives a 

different value every time the program runs. After the production of each random 

key, it is always checked that the generated random key is not the same with an 

already produced random or non-random key. At the end of the first internal loop, 

the random keys counter c is increased and if it is greater than x, the program goes 

to the second internal loop.\ 

Second internal loop (non-random keys): The second internal loop concerns the 

production of the y non-random keys in each stratified area (between A and B). In 

the beginning of the loop we initialize the counter c for the non-random keys ( c=1). 

The detailed process of this generator depends from the kind of the y non-random 

keys that we want to produce (continuous keys, complementary keys, one bit 

difference keys etc.). In order to have a more exhaustive key sampling, the best is 

to include in the tests all the above kinds of non-random keys. A good practice is to 

select some random keys which were produced in each stratified area during the 

first internal loop, and construct their continuous, complementary and one bit 

difference keys. After the production of each non-random key, it is always checked 

that the generated non-random key is not the same with an already produced random 

or non-random key. At the end of the second internal loop, the non-random keys 

counter c is increased and if it is greater than y, the program goes to the next 

stratified keys area. 
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Figure 7: Production of  n mixed sampling keys (x = random keys and y = 

non-random keys in each of four equally stratified areas, N = total number of 

keys and n = 4x + 4y ) 

STAR 

 END   

Set up the first keys area S between A and B :  S = 1,  A = 0,  B = N / 4 

S>4                              

S = S + 1 (go to next keys area) 

Production of x random keys between A , B  c = 1 (initialize random keys counter) 

 

 

Production of y non-random keys between A , B  c = 1 (initialize non-random keys counter) 

                 

 

    

Next keys area  

         

 A = A + N / 4 

 B = B + N / 4 

c > x 

     Generator of x random keys (RNG)  

 

Store key and make next key ( c = c + 1 ) 

 

 

Generator of y non-random keys 

Store key and make next key ( c = c + 1 ) 

 

 

Key same to previous key? 

Key same to previous key? 

File with 

total 4y non-

random 

keys 

File with        

total 4x 

Random 

keys 

 



12                                           Marinakis   

 

 

1  #include <stdio.h> 

2  #include <stdlib.h> 

3  #include <fstream> 

4  #include <iostream> 

5  #include <time.h> 

6  using namespace std; 
 

7  int main( ) 

8  { int c, n; 
 

9  // open the file in write mode 

10   ofstream outfile ("random.txt" , ios::out ); 
 

11 // write the header to the file 

12   outfile << "Generate ten random numbers in [1-100000]:\n"; 

13   outfile << endl; // new line 
 

14 // print the header to the screen 

15    printf ("Generate ten random numbers in [1-100000]:\n\n"); 
 

16 // create ten different random numbers in every run 

17    srand (time(0)); // change the seed using current time 

18    for (c = 1; c <= 10; c++) 

19    { n = rand( ) % 100000 + 1; 
 

20 // write the random numbers to the screen 

21     printf ("%d\n", n); 
 

22 // write the random numbers to the file 

23    ofstream outfile ("random.txt" , ios::app ); 

24    outfile << n << endl; } 
 

25 // Close the file 

26    outfile.close( ); 
 

27  return 0; } 
 
 

Figure 8: C++ code which creates ten random numbers between 1 and 100000 

(which are different in every program run) and prints them in the screen and 

to file “random.txt”. 

 

We must note that after the production of the n sampling keys, it may be needed to 

convert their values to the appropriate format in order to feed the software 

simulation for the production of the algorithm output samples, as we described in 

paragraph 1 (e.g. conversion from decimal format to binary format or to 

hexadecimal format).  

We close this paragraph with a practical implication. According to (Marinakis, 
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2021) [1], if we want to achieve a sampling error of 3% we must test 1067 keys, for 

sampling error of 2% we will need 2401 keys, while for sampling error of 1% we 

will need 9604 keys. Therefore, if in the example of Figure 7 we will choose a 

sampling error of 1% and an equal number of random and non-random sampling 

keys in each stratified area, we will have n = 9604 and x = y.  

And since n = 4x + 4y, this means that we will need x = 1200 random sampling keys 

and y = 1200 non-random sampling keys in each of the four equally stratified areas. 

Furthermore, the 1200 non-random keys can be divided in 400 continuous keys, 400 

one-bit difference keys and 400 complementary keys. 

 

6. Conclusions 

When the sampling method is used during the cryptographic algorithms tests, an 

important problem is how to select the cryptographic keys, in order to have reliable 

sampling results. The key question is whether the choice of the sampling keys 

should be random or it must follow some rules. If the choice is completely random, 

then we may not detect some "weak" or "equivalent" keys, which will give non-

random or similar algorithm outputs and therefore they will reduce the total number 

of active keys and they will give starting points for cryptanalytic attacks. But if the 

keys are chosen with some specific criteria, there is a much greater chance of 

detecting any weak or equivalent key.  

In this study, we proposed a mixed sampling method, which uses the combination 

of random and non-random stratified sampling for the production of the 

cryptographic keys. Initially, in each stratified area we generate an equal number of 

random keys. In addition to the random keys, in each stratified area we select a 

number of continuous keys, complementary keys and keys with one bit difference. 

With this method, which combines the stratified random sampling and the stratified 

non-random sampling for the production of the test keys, there is a greater 

probability to find any anomalies and weaknesses of the cryptographic algorithm 

which is under test.  
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