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Modeling heteroscedastic, skewed

and leptokurtic returns in discrete time

Ivivi Joseph Mwaniki1

Abstract

Popular models of finance, fall short of accounting for most empirically
found stylized features of financial time series data, such as volatility cluster-
ing, skewness and leptokurtic nature of log returns. In this study we propose a
general framework for modeling asset returns which account for serial depen-
dencies in higher moments and leptokurtic nature of scaled GARCH filtered
residuals. Such residuals are calibrated to normal inverse Gaussian and hyper-
bolic distribution. Dynamics of risky assets assumed in Black Scholes model,
Duans GARCH model and other benchmark models for contract valuation,
are shown to be nested in the the proposed framework.

Keywords: Stylized facts; Normal inverse Gaussian; GARCH model; Hyperbolic

distribution; leptokurtic returns

1 Introduction

Uncertainty is central to much of modern finance theory. In option pricing for

example, the uncertainty associated with future return of the underlying asset, is
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the most important determinant in the pricing function. Popular models such as

the Black and Scholes [2] model, based on the geometric Brownian motion have very

nice mathematical properties which have been extensively used to value contracts.

Empirical evidence suggest that the dynamics of the underlying process under the

physical measure P follow a more complicated process than the standard geometric

Brownian motion with constant volatility.

Various studies have shown that the normal distribution does not accurately de-

scribe observed stock return data. In literature, for example [8], [1], [5] and references

therein, it is proposed that daily log returns, could be modeled by an exponential

Lévy processes and geometric Lévy process, generating a lot of literature applied

in pricing derivatives. Moreover, other studies suggest that a more improved model

would include both stochastic volatility and a jump component (see [4]). Over the

past several decades, several stylized facts have emerged about the statistical behav-

ior of speculative market daily returns such as aggregational Gaussianity, volatility

clustering, changing variance, Taylor effect, leptokurtic residuals etc, see [17], [6],

[18] and [16] for further documentation.

A typical finding concerning the return characteristic is that one period asset

return, conditional on the most up-to-date information, exhibit a fat tail behaviour

in addition to varying second order moments. The ARCH family of models in-

troduced by [9] and generalized by [3] has in the recent years gained prominence

for modeling such dynamics. In the last few years, much interest has been given

to the discrete-time GARCH option pricing models for instance see [15], [10], and

[1]. Option pricing in GARCH models has been typically done using the local risk

neutral valuation relationship (LRNVR) pioneered by [7]. The crucial assumptions

in his GARCH model construction, are the conditional normal distribution of the

asset returns under the physical probability measure P and the invariance of the

conditional volatility to the change of measure. The main objective of this study

is to propose a general framework for modeling the underlying uncertainty driving

heteroscedastic and leptokurtic daily stock market returns.

This article is organized as follows, the next section presents ACH type model and

class of generalized hyperbolic distribution for modeling some of the basic stylized

facts of returns. In section three, we state the proposed general framework followed

by several examples of popular benchmark models nested within the framework.

Empirical analysis and parameter estimation are stated in section four, and section

five concludes the study.
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2 Preliminary considerations

Stock returns tend to exhibit a significant serial dependency in second moments.

ARCH class models and several class of statistical distributions say NIG etc are

known to models skewness and excess kurtosis of log returns.

2.1 ARCH models: Changing variance

ARCH model models have become popular for modeling financial time series be-

cause they are able to account for several empirical features like volatility clustering

and leptokurtic in the distribution of returns. Most ARCH-type models involve a

sequence of innovations whose variance is random. Conditioned on the past the

variance depends only on the previous innovations and the previous conditional

variances, and standard Wiener process generate the filtration. Most studies of

daily stock returns using GARCH models and conditioned on normal distribution

for the innovations; the re-scaled residuals showed excess kurtosis which violates the

normality assumption. We investigate AR(1)-GARCH(1,1) model conditioned on

normal distribution. Thus

Xt = loge St − loge St−1

= µ̂ + φXt−1 + σt(Zt + Lt), Zt ∼ N(0, 1) (2.1)

σ2
t = ω + aσ2

t−1Z
2
t−1 + bσ2

t−1

Parameter estimates µ̂, φ, ω, a, b are presented in Table 1 and Table 2.

A typical finding concerning the return characteristic is that one period asset

return conditional on the most up to date information, continues to exhibit a fat

tailed behaviour. This fat tailed behaviour is also known as conditionally leptokurtic,

and can be modeled by a limiting class of generalized hyperbolic distribution.

2.2 Generalized hyperbolic distribution

The probability density function of the one-dimensional Generalized Hyperbolic

distribution is given by the following:

fGH(x; α, β, δ, µ, λ) =
(γ/δ)λ

√
2πKλ(δγ)

.
Kλ− 1

2
(α
√

δ2 + (x− µ)2)

(
√

δ2 + (x− µ)2/α)
1
2
−λ

.eβ(x−µ) (2.2)
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where Kλ is a modified Bessel function of the third kind with the index λ.

Kλ(ω) =
1

2

∫ ∞

0

exp
[
−ω

2
(v−1 + v)

]
vλ−1dv (2.3)

Many distributions are obtained as limiting distributions of the generalized hy-

perbolic distribution and by varying parameter λ to obtain subclasses for example,

hyperbolic distribution and normal inverse Gaussian.

2.2.1 Hyperbolic distributions

When λ = 1, we obtain the subclass of hyperbolic distribution with probability

density function (see [8],)

fhyp(x; α, β, δ, µ) =

√
α2 − β2

2αδK1

(
δ
√

α2 − β2
) exp

[
−α
√

δ2 + (x− µ)2 + β(x− µ)
]
.

(2.4)

The mean and variance of hyperbolic function given respectively by the followings

E(X) = µ +
βδ√

α2 − β2

K2(η)

K1(η)

V ar(X) = δ2

(
K2(η)

ηK1(η)
+

β2

α2 − β2

[
K3(η)

K1(η)
−
(

K2(η)

K1(η)

)2
])

where η = δ
√

α2 − β2. The first two parameters αandβ determine the shape of the

distribution, while the other two δ and µ are scale and location parameters.

2.2.2 NIG distribution

A random variable X ∼ NIG(α, β, δ, µ) if ( see [1])

fNIG(x; α, β, δ, µ) =
α

π
exp

(
δ
[√

α2 − β2 + βζ(x)
]) K1(αδ

√
1 + ζ(x)2)√

1 + ζ(x)2
(2.7)

where ζ(x) = (x− µ)/δ and K1 is the modified Bessel function of third kind,

with the index 1.

K1(ω) =
1

2

∫ ∞

0

exp
[
−ω

2
(v−1 + v)

]
dv
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Log likelihood function for MLE of parameters

LNIG(x|α, β, δ, µ) = −n ln

(
π

µ

)
+ n(δ

√
α2 − β2)− 1

2

n∑
i=1

log(1 + ζ(xi)
2)

+βδ

n∑
i=1

ζ(xi) +
n∑

i=1

log(K1(δα
√

(1 + ζ(xi)2)) (2.8)

3 Modeling underlying process

Most of the notation and model framework in this paper, is a slight modification

of the skewed and leptokurtic generalized GARCH framework proposed by [18] and

references therein. In that study, the dynamics of log returns Xt are specified as

Xt = mt(.; θm) + σtεt

σ2
t = g(σ2

s , εs;−∞ < s ≤ t− 1; θh)

ε|Ft−1 ∼ D(0, 1; θD)

where Ft−1 is the information set containing all information up to and including

time t− 1, mt(.; θm) denote the conditional mean, governed by a set of parameters

θm, D(0, 1; θD) denote a zero mean and a unit variance distribution function, allowed

to depend on a set of parameters θD.

Let (Ω,F , (Ft)t∈[0,T ], P) be a stochastic basis describing the uncertainty of the

economy. We refer to P as the physical probability measure and Ft represent the

information flow driven by Wiener process W = (Wt)t∈[0,T ] and Lévy proces L =

(Lt)t∈[0,T ]. Let St be the price of a stock at time t adapted to the natural filtration

Ft. Define daily log return as Xt = log St + dt− log St−1, t = 1, 2, ... where dt denote

dividends at time t and Xt the continuously

Theorem 3.1. We propose the following model for asset returns under P. Let

Xt = log

(
St + dt

St−1

|Ft−1

)



6 Modeling heteroscedastic, skewed and leptokurtic returns

where dt is one period dividends paid, then

Xt = mt(.; θm) + σt(Wt + Lt), (3.1)

= mt(.; θm) + σt(ϑt + $ξt), ξ ∈ GH

σ2
t = g(σ2

s , ϑs;−∞ < s ≤ t− 1; θσ),

ϑt ∼ i.i.d.(0, 1), ξt ∼ i.i.d.D(0, 1; θD)

where mt(.; θm) denote the mean function, σt(.; θσ) denote the variance process and

θ = (θm, θσ, θD).

3.1 Examples from Benchmark models

Without loss of generality, for all the subsequent examples we assume dt = 0

∀t > 0

Example 3.1. Geometric Brownian motion

Let dSt = µStdt + σStdWt be the stochastic differential equation modeling the un-

certainty of the underlying process, then

St = S0 exp

([
µ− σ2

2

]
t + σ

√
tZ

)
, Z ∼ N(0, 1) (3.2)

⇒ Xt = log(St/St−1) =

[
µ− σ2

2

]
+ σZ

thus Xt =

[
µ− σ2

2

]
+ σ(Z + 0ξ), θm = (µ, σ2),

Xt = mt(.; θm) + σt(Z + $ξ), mt =

[
µ− σ2

2

]
, σt = σ, Z ∼ i.i.d.N(0, 1)

Example 3.2. Jump-diffusion model

Mertons(1976) introduced and analyzed one of the first models with both jump and

diffusion term for pricing of derivative securities. Merton jump-diffusion model can

be specified through the SDE..

dSt

St

= µdt + σdWt + (Jt − 1)dNt

where the jump sizes are Jt are identically distributed and mutually independent.

He also assumed that the three processes (Wt)t≥0, (Nt)t≥0 and (Jt)t≥0 are indepen-

dent. Let
∑N(t)

j=1 (Yj−1) where Y1, Y2, ...,are random variables and N(t) is a counting

process. The following expression solves the SDE.
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S(t) = S(0) exp

[
(µ− σ2

2
)t + σWt

]N(t)∏
j=1

Yj

which implies

loge

(
S(t)

S(0)

)
= (µ− σ2

2
)t + σWt +

Nt∑
j=1

loge Yj

= (µ− σ2

2
)t + σ

(
Wt +

$

σ

Nt∑
j=1

loge Yj

)

Given any date t ≥ 0 and a holding period of length h > 0, the returns Xt(h) over

the period [t, t + h] is a model given by

Xt(h) =

{
x, if K = 0;

x + y1 + ... + yk, if K ≥ 1.
(3.3)

where x ∼ N(αh, σ2h), α = (µ−(σ2/2)), y1, ..., yk is an i.i.d. sequence with common

distribution say G and K is Poisson with parameter λh, λ > 0 for k = 0, 1, 2, ...,

we have Prob(K = k) = exp(−λh)(λh)k/k If Yj have the log normal distribution

LN(a, b) then loge Yj ∼ N(a, b2) and
∑

log Yj ∼ N(an, b2n) which is the same as∑
log Yj ∼ an + b

√
nN(0, 1). Thus

Xt = loge

(
St

St−1

)
= (µ− σ2

2
) + σ

(
Zt +

η

σ

K∑
j=1

loge Yj

)

= m(, θm) + σt(Zt + $ξ) where ξ =
K∑

j=1

loge Yj (3.4)

Example 3.3. Duan(1995) GARCH model

Discrete time economy, one period rate of return assumed to be conditionally log-

normally distributed under P. Let r be constant one period risk free rate of return,
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λ be constant unit risk premium then

Xt = log(St/St−1)

= r + λσt −
σ2

t

2
+ σ2

t Z, where

σ2
t = ω +

q∑
j=1

αjσ
2
t−jZt−j +

p∑
j=1

βjσ
2
t−j, Zt−j ∼ i.i.d.N(0, 1)∀j

= mt(.; θm) + σt(ϑt + $ξ) where σt ∼ GARCH(p, q) (3.5)

Example 3.4. It is well known from empirical studies that Xt can he represented

as Xt = µt + εt + ξt where µt is a mean function and εt, ξt are the two components

of the error term (see for instance [13],[11],[12], [14]). Moreover, define a pth order

autoregressive process {Xt, t ≥ 0} with GARCH(p,q) error as

Xt = µt + εt + ξt,where

µt =

p∑
r=1

φrXt−r + µ, t ∈ Z+

εt + ξt = σt(Zt + σLt), Zt, and Lt ∼ i.i.d(0, 1), Z0 = 0, L0 = 0

σ2
t = GARCH(p, q), p, q ∈ Z+

where Zt and Lt are identically and independently distributed random variables. A

general time series model for log returns would be

Xt = µt + σt(Zt + σLt), Zt ∼ N(0, 1), Lt ∈ GH (3.6)

= m(.; θm) + σt(Zt + $Lt)

4 Empirical Analysis

We investigate the statistical properties under the objective measure P model’s

ability to explain observed market share prices.



Mwaniki, Ivivi Joseph 9

4.1 Data description and parameter estimates

We apply our framework to stock indices sample from two top GDP countries,

i.e. S&P500 from New York Stock exchange and CAC40 of Paris stock exchange.

The financial time series data consist of S&P500 and CAC40 index daily closing

adjusted price from January 2, 2001 through December 31,2014. Daily adjusted

closing prices were used to determine daily log returns Xt, t = 0, 1, 2, .... Let Sj be

the price on day j, j = 0, 1, 2, ..., n − 1. Sample increments of log returns is defined

by Xj = log Sj − log Sj−1, j = 1, 2, ..., n − 1. GARCH models are well known

to be the best performing models to describe evolution of volatility, a satisfactory

statistical fit is provided when the distribution of the filtered historical residuals

is non-Gaussian. We fit AR(1) + GARCH(1, 1) model conditioned on normal dis-

tribution. All models parameters are estimated by numerical maximum likelihood

routine and the significant parameters are reported in Table 1 and Table 2.

Table 1: AR(1)−GARCH(1, 1) model parameter estimates

S&P500 Estimate Std. Error t value Pr(>|t|) AIC BIC LL

µ̄ 0.00054 0.00014 3.78729 0.00015 6.3902 6.3811 11251.68

φ -0.05695 0.01796 -3.17118 0.00152

ω 0.00000 0.00000 5.30935 0.00000

a 0.09202 0.00925 9.94648 0.00000

b 0.89493 0.00992 90.23790 0.00000

Table 2: AR(1)−GARCH(1, 1) model parameter estimates

CAC40 Estimate Std. Error t value Pr(>|t|) AIC BIC LL

µ̄ 0.00050 0.00018 2.81357 0.00490 5.92174 5.9131 10607.87

φ -0.05432 0.01765 -3.07695 0.00209

ω 0.00000 0.00000 4.44794 0.00001

a 0.09129 0.00956 9.55340 0.00000

b 0.89951 0.01012 88.84475 0.00000

The standardized filtered residuals are known to be uncorrelated and weakly

stationary in their first and second moments. To this end we make a simplifying as-

sumption that the resulting sequence is independent and identically distributed from

an unknown distribution. We fit Normal Inverse Gaussian and hyperbolic distribu-
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tion to the residuals, estimated parameters of the two distribution are summarized

in Table 3 and their corresponding kernel densities are compared in in Figure 1.

Table 3: NIG and Hyperbolic parameter estimates

S&P500 — CAC40

NIG HYP NIG HYP

α 1.60743 1.87176 1.99970 2.31156

β -0.35232 -0.31274 -0.36798 -0.36449

δ 1.50306 0.89654 1.89130 1.50307

µ 0.29586 0.26133 0.30532 0.30219

4.2 Goodness of fit

Two sample test called Kolmogorov-Smirnov test (K-S test) was applied. Empir-

ical CDF, an estimate of the underlying data is used to test the following hypothesis.

Ho : Fn(x) = F (x) for all x versus H1 : Fn(x) 6= F (x) for some x

where Fn(x) is the empirical cumulative probability estimated as Fn(xi) = i/n for

the ith smallest data value. F (x) is the theoretical cumulative distribution function

evaluated at x. The test statistic is given by

Dn = sup
x
|Fn(x)− F (x)|

If the null hypothesis is true , then the theoretical distribution fits very well. If

Dn is sufficiently large ; the null hypothesis can be rejected. For the two filtered

residual we computed Dn statistics and got D = 0.0163, pvalue = 1, for both indices

(S&P500 and CAC40). This implies that the two sample sets seems to come from

the same parent distribution. Attempts to test whether the unknown distributions

came from either of the three proposed densities, was reported in Table 4. The

graphical representation of Kernel densities in Figure 1, supports the claim that the

two densities share the same parent distribution.

Judged on the distance between the empirical and theoretical distributions of

the residuals, the picture changes slightly. The Kolmogorov-Smirnov test allows

us to reject all Gaussian models. As the Kolmogorov-Smirnov statistic measures

the uniform distance between two distribution functions, it might be of interest to
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Density Identification

CAC40 filtered residuals
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Figure 1: CAC40 filtered returns and S&P500 filtered returns density estimations

Table 4: Kolmogorov Smirnov distances

KDist NIG HYP NORM

S&500 0.4872 0.4872 0.7136

CAC40 0.5077 0.5077 0.7091

test the models ability to appropriately model leptokutic nature of log returns. If

one suspects the data to be from a family of normal distribution, corresponding

values for the Anderson - Darling distance which has its focus on the tails of the

distribution will be valid. The following discrete version of the Anderson - Derling

statistic AD, measuring the distance between the theoretical distribution function

F and the empirical distribution F̂ :

AD(F, F̂ ) = sup
x∈R

|F (x)− F̂ (x)|√
F (x)(1− F (x))

From our study, it was clear that the data in question was non normal. Models

based on the NIG and hyperbolic distribution which was used to provide a flexible

description for empirically observed conditioned leptokurtic residuals seemed to fit

the data.
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5 Conclusions

Since log-Levy models fall short of explaining the auto correlation of the abso-

lute return, we have observed that that the log return dynamics can be modelled

by assuming three components (the mean function, the volatility function and the

GARCH filtered residuals). Identification of the probability distributions can be

estimated by class of distributions which can capture skewness and kurtosis for ex-

ample normal inverse Gaussian or hyperbolic distributions. It is widely recognized

that the key to developing successful strategies for managing risk and pricing assets

is to parsimoniously describe the stochastic process governing the asset dynamics.

This paper proposes general framework assumed to improve modeling returns of

financial time series data. To this end, the proposed framework combine two major

stylized facts of returns: changing variance and presence of excess kurtosis in filtered

returns. The framework can be studied further by allowing different distributions

under the objective measure P. Empirical investigation indicate that the all the re-

quired model parameters can be estimated form from historical data and the filtered

residual are non-normal. Further refinement of the model is left for future studies.
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