
Journal of Applied Finance & Banking, vol. 9, no. 1, 2019, 181-206 

ISSN: 1792-6580 (print version), 1792-6599 (online) 

Scienpress Ltd, 2019 

 

 

 

GARCH Modelling of Conditional Correlations and 

Volatility of Exchange rates in BRICS Countries
1 

 

 

Smile Dube
2
 

 

 

Abstract 

We examine the nature of BRICS currency returns using a t-DCC model and investigate whether 

multivariate volatility models can characterize and quantify market risk. We initially consider a 

multivariate normal-DCC model and show that it cannot adequately capture the fat tails 

prevalent in financial time series data such as exchange rates. We then consider a multivariate t- 

version of the Gaussian dynamic conditional correlation (DCC) proposed by [1] and successfully 

implemented by [2] and [3]. We find that the t-DCC model (dynamic conditional correlation 

based on the t-distribution) out performs the normal-DCC model. The former passes most 

diagnostic tests although it barely passes the Kolmogorov-Smirnov goodness-of-fit test.  

JEL classification numbers: C51, G10, G11 

Keywords: Correlations and Volatilities; MGARCH (Multivariate General Autoregressive 

Conditional Heteroscedasticity), Multivariate t (t-DCC), Kolmogorov-Smirnov test ( NKS ), 

Value at Risk (VaR) diagnostics, ML – Maximum Likelihood 

 

 

1  Introduction 
 

Although any grouping of countries (such BRICS) involves some degree of arbitrary selection; 

the country and population size coupled with economic growth potential often acts as a common 

framework. There are at least two identifiable strengths to BRICS economies that are worth 

examining. First, BRICS countries produce 25% of global Gross Domestic Product (GDP), an 

increase of 15% from 1990. It is estimated that by 2020, they will account for about 37%-38% of 

global GDP with the current population of 3 billion with income per capita ranging from $7,710 

                                                           

 
1
 The acronym BRIC is shorthand for emerging economies of Brazil, Russia, India and China. Almost a decade later 

in December 2010, South Africa joined the group resulting in the acronym BRICS. A few people have suggested 

that South Africa was added just to represent the African continent. 
2
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to $13,689.  Second, these economies have reasons for creating a club or grouping of their own 

to act as a counterweight in multilateral diplomacy, particularly in dealing with the U.S. and the 

EU.  

 

Since BRICS currency markets are now globally integrated, they are likely to be affected by 

developments in each other’s market.
3
 For investors, less international correlation between 

currency market returns mean that investors may reduce currency portfolio risk more by 

diversifying internationally instead of wholly investing in the domestic currency market. Since 

the level of gains from international diversification to reduce risk depends on the international 

correlation structure, the paper provides empirical estimates. The correlation structure between 

currency returns is widely used in finance and financial management, to establish efficient 

frontiers of portfolio currency holdings. The paper provides time-varying (dynamic) conditional 

correlation estimates of BRICS currency market returns. The fact that currency markets are 

related, there is likely to volatility across such markets.
4
 To account for such effects, the 

multivariate model estimates a measure of conditional volatility. Thus, we employ a multivariate 

t-DCC model for conditional correlations in returns and conditional volatility. 

Table 1 presents summary statistics of standardized daily returns (%) and devolatized daily 

returns (%). For the non-devolatized returns, the results show excessive kurtosis with the real, 

the renminbi, and rand values closer to 3, the value for the Gaussian (normal) distribution. 

However, devolatized returns do not show excess kurtosis of similar magnitude to standardized 

returns. We also note that the means and standard deviations (SD) of devolatized returns lie 

between 0 and 1. It is clear that devolatized returns are successful in achieving near Gaussianity. 

This means that the estimation of correlation and volatilities conditional on devolatized returns 

are likely to be more meaningful when we employ a multivariate t-distribution rather than the 

standard multivariate normal distribution. In the paper, the models used are written as the t-DCC 

and normal-DCC models respectively. For the t-DCC model, we estimate an unrestricted DCC 

(1, 1) model with asset-specific volatility parameters 1 11 15( ,......,    and 2 21 25( ,......,    and 

conditional correlation parameters ( 1  and 2 ) plus the term, v  for the degrees of freedom, 

conditioned by the t-distribution. 

 
Table 1:  Summary Statistics for the Standard Returns (%) and Devolatized Returns (%) from  

01-Jan-2008 to 27- 13 

Currencies Standardized Daily Returns Devolatized Daily Returns 

Mean      SD          Skew              Ex-

Kurt 

Mean     SD           Skew           Ex-Kurt 

Real (RBRA) 

Ruble (RRRU) 

Rupee (RRUP) 

Renminbi(RREM) 

Rand (RZAR) 

0.032      0.521      -0.020           2.942 

0.018     0.644         0.018           1.947 

0.025     0.501        0.012            1.898 

-0.015    0.239       0.010            2.829 

-0.028    0.391      0.030             7.422 

0.035     0.998     -0.062        0.392 

0.006     0.992      -0.039        0.279 

-0.017   1.00          0.160        0.224 

-0.003    0.979       0.260      -0.219 

-0.029    1.00         0.310        0.611 

                                                           
3
 In the paper, terms such as assets, currencies, and exchange rates are used interchangeably. 

4
 Since volatility is a non-observable variable, it is usually proxied for in two ways: (a) using the square of daily 

equity returns (
2

itr  ) or (b) the standard error of intra-daily returns (realized volatilities) (
realized

it ) as in (7) 

below. 
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Table 2 reports the correlation matrix of currency returns. All BRICS currency returns are 

positively related. Returns from the South African rand are highly correlated with Russian ruble 

returns (0. 67030); the Brazilian real with the South African rand (0. 63669) and Brazilian real 

with the Russia ruble (0. 56937). The Chinese renminbi is least correlated with the currencies of 

the other four countries that make up BRICS. The explanation may lie in the fact that during this 

period the Chinese currency was tightly regulated by the government. It remains to be seen 

whether these relationships can be captured by conditional correlations from the t-DCC model. 
 

 

Table 2:  Estimated Correlation Matrix of Exchange Rate Variables 

1041 observations used for estimation from 02-Oct-09 to 27-Sep-13 

      

                      RBRA          RRUP        RREM         RZAR      RRRU                    

 RBRA          1.0000     

   

 RRUP          .42299           1.0000     

  

 RREM          .11391         .27649       1.0000     

  

 RZAR          .63669         .47100       .15725          1.0000     

  

 RRRU          .56937         .46645      .16396          .67030       1.0000 

  
Table 3 reports descriptive statistics for exchange rates for BRICS currencies. During this time, 

the renminbi exhibited the lowest volatility (as measured by the standard deviation) while the 

Brazilian real, the Russian ruble, the South African rand, and the Indian  rupee all exhibit high 

volatility.  

 
Table 3: Sample period: 1023 observations from 02-Oct-09 to 27-Sep-13 

 

 Variable(s)         Brazilian    Indian         Chinese        South African    Russian             

          Real            Rupee         Renminbi          Rand             Ruble 

 
Maximum               4.0257        2.5434           .41498               4.4367             .4933 

Minimum               -3.6077       -2.0291          -.58581             -3.9848            -2.5998 

Mean                     .013508       .0098319       -.0082088         .011137           .0030058 

Std. Deviation       .69426         .44236           .086973            .87826              .58467 

Skewness              .17638          .066769         -.77731            .15934              .17429 

Kurtosis - 3             4.7101         3.8685           6.9512             3.0627              3.0851 

Coef of Variation   51.39          44.99              10.59                78.86                194.51 

 

RBRA = rate of returns for the Brazilian Real; rrup = rate of returns for the Indian Rupee; rrem = rate of 

returns for the Chinese renminbi; rzar = rate of returns for the South African Rand, and RRRU = rate of 

returns for the Russian Ruble. 

 



184                                                                                                                                                           Smile Dube 
 

A few empirical results are noteworthy. First, our results indicate that the t-DCC model is 

preferred over the normal-DCC model in estimating conditional volatilities and correlations of 

exchange rates.  Second, both  ˆ
N  and ẑ (tests of the validation of the t-DCC model) provide 

support for the t-DCC model despite the 2008 financial crisis. However, the model barely passes 

the non-parametric Kolmogorov-Smirnov ( NKS  ) test which tests whether probability transform 

estimates,  ˆ
tU   are uniformly distributed over the range (0, 1). Third, from Figures 1 and 2 it is 

clear that all currency returns correlations are positively related. Fourth, the model shows that 

around April 2010 and March 2012 there were sharp spikes in volatility.   

In Figure 3 and 4, the rand experienced the highest spike. During this period, renminbi had the 

lowest volatility. Fifth, conditional correlations of ruble (in currency returns) fell during the 

financial crisis but picked up from July 2010. Finally, the rand-renminbi conditional correlation 

are positive but very low compared with the rand correlations with other currencies. It suggests 

that South African investors would have been better diversifying in the ruble, the rupee, and the 

real and that renminbi investors would not be investing in South Africa. However, these results 

should be treated with caution since exchange rates are affected by many other variables. 

 
Table 4: Maximized log-likelihood Values of the t-DCC Model Estimated with Daily Returns over 01-

Jan-2008 to 30-Dec-2011 

Currencies Standardized Daily Returns Devolatized Daily Returns 

 Normal        t-distr.                df Normal             t-distr.                       

df 

All five currencies -1200.5       -979.6        4.231  

                                        (0.2716) 

-1073.3         -579.6819        2.7570              

(0.2768) 

The df is the estimated degrees of freedom and standard errors are given in round brackets. 

 

Table 4 presents the statistical significance of the multivariate t-distribution in the analysis of 

return volatilities. For BRICS currencies for standardized returns ( itz  in (6)), the maximized log-

likelihood is -1200.5 (normal distribution) and -979.5 (t-distribution). The maximized log-

likelihood for devolatized returns ( itr in (7)) are -1073.3 and -579.6819 for the normal and t-

distributions respectively. Similarly, the estimated degrees of freedom are 4.2319 and 2.7570 

respectively. These values are way below the value of 30 that would be expected for the 

multivariate normal distribution. The value of -979.5 is lower than -579.6819 for the t-

distribution. Thus, the use of devolatized daily returns under the multivariate t-distribution is 

preferred and used in the paper. 

The process of modeling conditional correlations across currency returns and conditional 

volatilities is a major function of currency portfolio managers and those tasked with reducing 

risks under the Value at Risk (VaR) strategies. If there is more than one currency in a portfolio, 

the use of multivariate models is often suggested. The returns to currencies are of five BRICS 

countries (Brazil, Russia, India, China and South Africa).  This paper employs a t DCC  model 

to estimate conditional volatilities and conditional currency returns. 
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The estimation of conditional volatilities and currency returns is achieved by the DCC (with 

time-varying correlation estimates) model by assuming a normal or Gaussian distribution of 

errors in the variance-covariance matrix 1t . 
5
A major shortcoming of this approach is that the 

Gaussian assumption often fails in financial empirical analysis because of the fat-tailed nature of 

the distribution of returns. The simple dynamic conditional correlation model ( normal DCC  ) 

from [1] and [4] is based on a covariance-based method. This bears the risk of modeling bias but 

the assumed conditional Gaussian marginal distributions are not capable in mimicking the heavy-

tails found in financial time series data observed in markets.  Despite this shortcoming, [5] found 

that the conditional Gaussian distribution fits with VaR models with reasonable estimates.  

The transformation of currency returns to Gaussianity is critical since correlation as a measure of 

dependence can be misleading in the presence of non-Gaussian currency returns as in (6) below.  

[3], [2] and Embrechts et al. [6] point out that for correlation to be useful as a measure of 

dependence, the transformation of currency returns should be made approximately Gaussian. The 

t-DCC model uses devolatized returns that very closely approximate Gaussianity. It is based on 

de-volatized returns as outlined in [3] and [2]. 

The literature on multivariate modelling is quite sizable as reviewed in [7] and [8]; the 

Riskmetrics from J.P. Morgan and others, and the multivariate generalized autoregressive 

conditional heteroscedastic specification (MGARCH) from [9].  

 The major innovation is the decomposition of the conditional covariance matrix to conditional 

volatilities and conditional cross-currency returns correlations ( 1 1 1 1t t t tD R D     , see (1) below) 

where 1tD    is a m xm  diagonal matrix of conditional volatilities while  1tR   is a symmetric 

m xm  correlation matrix. The returns to assets is represented by a vector ( 1)tr m x  at time t  

that have a conditional multivariate t distribution with mean of 1t  , a non-singular variance-

covariance matrix ( 1t ), and 1 2tv     degrees of freedom. The cross-currency returns are 

modelled in terms of a fewer number of unknown parameters which resolves the curse of 

dimensionality. The returns are standardized to achieve Gaussianity. [1] shows that with 

Gaussianity in innovations, the log-likelihood function of the normal-DCC model can be 

maximized in a two-step procedure. In step 1, m  univariate GARCH models are estimated 

separately and step 2 uses the standardized residuals from step 1 to estimate conditional 

correlations ( 1tR   ). 

Under this approach, [1]’s two-step procedure is no longer applicable to a t DCC  specification. 

Following [3] and [2] the obvious approach is to estimate simultaneously all the parameters of 

the model, including v , the degrees of freedom parameter. This approach solves the curse of 

dimensionality [1] and the absence of Gaussianity (by assuming a t  distribution instead). 

There is another strand of literature that focuses on volatility spillovers and correlations within a 

multivariate framework. [11] employed a multivariate stochastic volatility model on high 

frequency data of four USD exchange rates (the euro, the French franc, pound sterling, and the 

                                                           
5
  [10] introduced a Factor ARCH model to model the structure of the conditional variance matrix. The current 

paper employs a t-DCC model to examine the dynamic relationship in exchange rate returns and volatilities. 
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Canadian dollar). They found that the degree of persistence of exchange rates volatility and 

spillovers tends to change over time. McMillan and Speight (2010) [12] employed the realized 

variance method (instead of ARCH) to examine the nature and size of interdependence on the 

pound sterling, the yen and the US dollar. They found that the US dollar dominated the yen and 

the pound in returns and volatility. 

 [13] examined volatility spillovers in the deutsche mark (DM) exchange rates of three EMS and 

three non-EMS exchange rates using a multivariate exponential GARCH model. He found 

significant volatility spillovers among DM rates except for the yen (non-EMS currency) before 

German unification. [14] examined volatility spillovers of the DM/$ and ¥/$ exchange rates 

across regional markets. They found evidence of significant intra- and inter-regional spillovers in 

these rates. [15] show that macroeconomic and political events do affect the local economy and 

also exert spillover effects to other markets and thus impact exchange rates. [16] studied Granger 

causality in-mean and in-variance between the DM and ¥. He found simultaneous causality in-

mean interaction and causality in-variance between these two currencies.  

 [17] used a two-step multivariate GARCH model to examine volatility spillover in various 

exchange rates relative to the Indian rupee. He found that volatilities in the exchange rate of 

leading currencies causes volatility in the exchange rate of the rupee. [18] used daily exchange 

rates of the Canadian dollar, the DM, the French franc, Italian lira, pound sterling and the yen 

relative to the USD ($) to examine the presence of a long-run volatility trend and volatility 

spillovers among exchange rates. They found the existence of a long-run trend and volatility 

spillovers in all European currencies except in the yen.  [19] focused on the dynamic nature of 

returns, volatility, and correlation transmission mechanism among Indian exchange rates relative 

to the dollar, pound sterling, the euro and the yen. He found time-varying conditional 

correlations between exchange rate changes overtime with higher volatilities during times of 

global crises for all USD rates and other exchange rate pairs. 

According to [21], the data on financial series (currencies in this case) share some commonalities 

such as heteroscedasticity; the variation and clustering of volatility over time, and 

autocorrelation. To the extent that financial volatilities tend to move together over time and 

across currency markets (clustering) the relevant model is the multivariate modelling framework 

with estimates that improve decision-making in areas such as portfolio selection, option pricing, 

hedging, risk management, and currency pricing.  

 [20] and [22] modified [1]’s DCC model by basing it on the stochastic process of the conditional 

correlation matrix on devolatized residuals rather than on standardized residuals. Standardized 

residuals are obtained by dividing residuals by the conditional standard deviations from the a 

first-stage GARCH (p, q) model, while devolatized residuals are found by dividing residuals by 

the square root of the k-day moving average of squared residuals. 

The paper is organized as follows. Section 2 presents the t DCC  used to provide estimates of 

conditional volatilities and currency returns using devolatized currency returns. Section 3 offers 

a brief discussion on recursive relations for real time analysis. Section 4 details the maximum 

likelihood (ML) estimation of the normal-DCC and t-DCC model. Section 5 presents VaR 

diagnostics such as tests of serial correlation and uniform distributions. Section 6 is the empirical 

application to devolatilized returns. Section 7 presents ML estimates of the t-DCC models in 

subsections: (a) currency-specific estimates; (b) post-estimation evaluation of the t-DCC model, 
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and (c) recursive estimates and the VaR diagnostics. Section 8 presents the evolution of currency 

return volatilities and correlations.  Section 9 concludes. 

 

2 The t-DCC model 

2.1. t-DCC Model or Modelling dynamic conditional volatilities and correlations of 

currency returns  

We use currency returns which are standardized by realized volatilities (7) rather than GARCH 

(1, 1) volatilities (6). Returns in (7) are more likely to be approximately Gaussian than 

standardized returns [23] and [24].  Since we employ daily data and have no access to intra-daily 

data, we follow [3] and [2] in getting an estimate of it  that uses contemporaneous daily returns 

and their lagged values as in [25]. Earlier [26] presented a generalization of the ARCH 

methodology from [27]. The main contribution was to allow for past conditional variances in a 

current conditional variance equation.  The t DCC estimation is applied to five currencies over 

the period 01-January 2008 to 27-September 2013. The sample is split into an estimation sample 

(2008 to 2011) and an evaluation sample (2012 to 2013). The results show a strong rejection of 

the normal DCC  model in favor of the t DCC model (partly based on the log-likelihood for 

the normal distribution is -1073.3 (Tables 4) while that of the t-DCC model is -579.6819 (Tables 

5)). When subjected to a series of diagnostic tests, it passes a number of VaR tests over the 

evaluation sample. The data comes from the IMF, International Financial Statistics for all the 

years. 

We now offer a t-DCC model as formulated by [3] and [2] and [22] [from the work by [25] and 

[1]. 

1 1 1 1t t t tD R D                                                                                                                                         (1) 

where  

1, 1

2, 1

1
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1 , 1 , 1( ) ( )t ij t ji tR       is the symmetric m xm  correlation matrix and  1tD   is m xm  diagonal 

matrix with 
, 1, i 1,2, ,mi t    representing the conditional volatility of the i -th currency return. 

That is, 
, 1

2

1( | )
i t it tV r
     and conditional pair-wise currency return correlations are 

represented by  

1

, 1

, 1 , 1

( , | )it jt t

ij t

i t j t

Cov r r


 





 


   where 1t  is the information set available at 1t  . Note that when for 

,i j  
, 1 1.ij t     

 [25] considered a correlation matrix where 1tR R   which defines a constant correlation matrix 

(CCC) while [1] allows 1tR  to be time-varying, suggesting a class of multivariate models known 

as the dynamic conditional correlation models (DCC).  [25]’s multivariate GARCH model 

assumes that the one-step ahead conditional correlations are constant. [1] relaxed the assumption 

of constant conditional correlation of the CCC model of [25]. The conditional variances of 

individual currency returns are estimated as univariate GARCH (p, q) specifications, and the 

diagonal matrix is formed with their square roots. [28] generalized the DCC model by allowing 

for the possibility of asymmetric effects on conditional variances and correlations. 
6

 The 

decomposition of the variance-covariance matric 1t is critical to the estimation of conditional 

volatilities and correlation. That is, 1t allows for the separate specification of conditional 

volatilities and conditional cross-currency returns correlations. One uses the GARCH (1, 1) to 

model 2

, 1i t 
 as 

2 2 2 2

1 , 1 1 2 1 , 2 2 , 1( | ) (1 )it t i t i i i i i t i i tV r r                                                                          (2) 

where 2

i  is the unconditional variance of the of the i -th  currency return. In the event that 

1 2 1,i i   the unconditional variance ceases to exist in which case we have an integrated 

                                                           
6
 [29] proposed an alternative model which uses a conditionally heteroscedastic model where unobserved common 

factors are assumed to be heteroskedastic and assumes that the number of common factors are less than the number 

of currencies. 
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GARCH (IGARCH) model that is heavily used by finance practitioners and the model is similar 

to the “exponential smoother” as applied to 2' 2.itr s  That is,  

2 1 2

, 1 ,

1

( ) (1 ) , 0 1,s

i t i i i i t s i

s

r    




 



     Or                                                                 (3) 

In recursive form, 

2 2 2

, 1 , 2 , 1( ) (1 )i t i i i t i i tr                                                                                                 (4) 

 [1] suggested that cross-currency correlations estimates can use the following exponential 

smoother applied to “standardized returns” to obtain Gaussianity. 

1

, ,

1
, 1

1 2 1 2

, j,

1 1

ˆ ( )

s

i t s j t s

s
ij t

s s

i t s t s

s s

z z

z z



 

 




 




 
 

 

 




 

                                                                                 (5) 

The standardized returns are represented by  

, 1( )

it
it

i t i

r
z

 

                                                                                                                          (6)                                                                                                                      

The unknown parameters that must be estimated are given by 1 2, , , ,m    and   which 

have been subject to [1]’s two-step procedure. The first stage involves fitting a GARCH (1, 1) 

model separately to m  assets. The second step estimates the coefficient of conditional 

correlations,    by Maximum Likelihood (ML) methods assuming that currency returns are 

conditionally Gaussian. However, [3] and [2] point to two major disadvantages of the two-step 

procedure. First, the normality assumption never holds in daily or weekly returns and it has a 

tendency to under-estimate portfolio risk.
7
 Second, without Gaussianity, the two-step procedure 

is inefficient. 

2.2. Pair-wise correlations based on realized volatilities 

[3], [2], and [22] base the specification of cross correlation of volatilities on devolatized returns 

defined by (7) below. Suppose the realized volatility ( realized

it )    of the i -th currency return in 

day t  is defined as standard returns ( itr  ) divided by realized volatilities ( realized

it ) to yield 

it
it realized

it

r
r


                                                                                                                        (7)                                                                                                       

In (7), devolatilized returns are itr while in (6), standardized returns are represented by itz . Hence, 

the conditional pair-wise return correlations based on devolatized asset returns is given by 

                                                           
7
 The use of daily data has its cost. For example, there is no accounting for the non-synchronization of daily returns 

across asset markets in different time zones. The use of weekly or monthly data deals with this issue. 
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 

such that 
, 11 ( ) 1ij t      for all values of | | 1.      (8) 

 [3] and [2] offer an alternative formulation of 
, 1ij t 

that makes use of realized volatilities as in 

(8). There is empirical support for this approach that daily returns on foreign exchange assets and 

currency market returns standardized by realized volatility are approximately Gaussian [23] and 

[24]. 

Since we do not have intraday data for the assets examined here, we provide a simple estimate of 

it  based on daily returns that take into account all contemporaneous values of .itr  

1 2

,2 0( )

p

i t ss
it

r
p

p







                                                                                                               (9a) 

where p  is the lag order which should be chosen very carefully. [2], [3] emphasize that the 

choice of p is critical since the chosen value must be such that it transforms itr  into a Gaussian 

process. The non-Gaussian behavior found in daily returns is mainly due to jumps in the return 

process for many markets as reported in [21], [2], and [30]. A choice of p  well above 20 does 

not allow for possible jumps in data to be adequately reflected in 2 ( )it p , while values of p well 

below makes itr  to behave as an indicator-type looking function (Stavroyiannis et al. (2013)).  

[21], [2], [3], and [22] note that 2 ( )it p is not equivalent to the standard rolling historical 

estimate of it given by 

That is, 2 ( )it p  - 2ˆ ( )it p   =   

2 2

,it i t pr r

p


                                                                          (9b) 

when implementing real time analysis, as in recursive formulae augments used in the estimation 

and evaluation process. It seems that the inclusion of current squared returns 2

itr  (in 9a) in the 

estimation of 2

it  is important in transforming non-Gaussian returns itr into Gaussian itr  returns. 

 

3  Recursive relations for real time analysis  

The computation of 
, 1ij t 

 in (5) and (8) as noted by [1] is given by  

, 1

, 1

, 1 , 1

( )
ij t

ij t

ii t jj t

q

q q
  



 

                                                                                                             (10) 

where   
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, 1 , 2 , 1 , 1(1 )ij t ij t i t j tq q r r                                                                                                       (11) 

It is important to note that 
, 1ij t 

 is positive definite as the covariance of a typical element of the 

matrix 
, 1ij tq 

 is a positive definite. The recursive formula for 
, 1( )ij t 

is the same as in (5) except 

that (10) uses devolatized returns while (5) uses standardized returns ( itz ). We note that in the 

above models for pair-wise correlations, 
, 1,ij t 

these are non-mean reverting. The general 

specification for pair-wise correlations is given by  

, 1 1 2 1 , 2 2 , 1 , 1(1 )ij t ij ij t i t j tq q r r                                                                                        (12) 

where 
ij  is the unconditional correlation of itr  and 

jtr with the restriction that 1 2 1    (mean 

reversion). There is an expectation that 1 2  will be very close to one. The non-reverting mean 

case is a special case of 1 2 1.    However, it is not possible to be certain that 1 2 1    or 

not.  On the other hand, it is possible to estimate unconditional correlations,
ij  by using an 

expanding window. In the empirical part of the paper, we consider both; the mean reverting and 

non-mean reverting cases and compare two specifications of conditional correlations using 

standardized and devolatized returns.  

With m  daily currency returns in the 1m x vector, tr   over period  1, 2, , ,t T  1, ,T T N  , 

we use the first 0T  observations to calculate (9a) to start the initialization recursive in (12) and 

obtain estimates of 2

i and 
ij  in (2) and (12) respectively. Suppose s  is the starting point of 

the recent sample of observations for estimation within the estimation sample (2008 to 

2011)[Evaluation sample]. Then it follows that 0T s T      where   is the size of estimation 

window so that the estimation window is, 1.eT T s    Thus, the remaining observations, N

(2012 to 2013) can be used for evaluating the t-DCC model. Thus, the whole sample equals 

.e evS S  With a rolling window of size w , then 1s T w    so that the whole estimation can be 

moved into the future with an update frequency of .h  

3.1. Mean-Reverting Conditional Correlations 

For the mean-reverting case, we need estimates of the unconditional volatilities and correlation 

coefficients from (13) and (14) below. 

2

2 1
,

r

i

i t

r

t

 


                                                                                                                      (13)                                                                                               

1
,

2 2

j

1 1

,

t

i j

ij t
t t

i

r r

r r

 



 

 

 

 




 

                                                                                                        (14)                                                                                                             

The index t  represents the end of available estimation sample which may be recursively rolling 

or expanding Pesaran and Pesaran [2], [ 3], and [21]. 
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4 Maximum Likelihood Estimation of the normal-DCC and the t-DCC 

Model 

In the non-mean reverting specifications, (2) and (12), the t-DCC model has 2 m  + 3 unknown 

parameters made up of 2 m  coefficients 1 11 12 1( , , , ) 'm      and 2 21 22 2( , , , ) 'm     

that enter the individual currency returns volatilities, and the two coefficients 1  and 2 that enter 

conditional correlations plus the degrees of freedom ( v )  of the multivariate t   distribution. 

Following [20], for testing that one of the currency returns has non-mean reverting volatility, let 

1i  and 2i be parameters for the conditional volatility equation of the i  th  currency, the 

relevant test is 

0 1 2: 1i iH      against 1 2: 1A i iH     

Under 0H , the process is non-mean reverting and the unconditional variance for the currency 

does not exist. In (2) and (12), parameters 2

i  and 2

ij are unconditional volatilities and return 

correlations and could be estimated using the initialization sample (13) and (14). In the non-

mean reverting case, the intercepts in (2) and (12) cease to exist.  

Suppose we denote the unknown coefficients as follows. 

1 2 1 2( , , , , )`v       

Given a sample of observations on returns, 1 2, , , tr r r  available at time t, the t -log-likelihood 

function based on decomposing (1) is given by 

( ) ( ),
t

t

s

l f


 


                                   (15) 

where s t  is beginning date for the estimation window.
8
 With the t DCC  model, ( )f   is 

the density of the multivariate distribution with v  degrees of freedom that can be written in 

terms of  1 1 1 1t t t tD R D      as 

1 1 1 2

1 1 1

1 1 2 1 1 1 2

1
( ) ln( ) ln | R ( ) | ln | D ( , ) | ln[ ( ) / ( )]

2 2 2 2

'D ( , ) ( ) D ( , )
ln( 2) ( ) ln[1 ]

2 2 2

m m v v
f

m m v e R e
v

v

  

    

    

    

 

  

  


     


   



                              (16) 

                                                           
8
 There is no need to write out the log- likelihood function for a normal distribution since it is 

only estimated here to show that the results from t-DCC are preferred to those from the normal-

DCC model. 
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where 1e r       and  

1 1 2 , 1 1 , 2

1

ln | D ( , ) | ln[ ( )]
m

i i i

i

      



                                                                                       (17) 

As pointed out by [2] and [3] and in surveys by [7] and [8], the multivariate t - density is usually 

written in terms of a scale matrix. However, if we assume that 2,v  then it means that 1t  exists 

to permit the scale matrix to be written in terms of 1.t In [1], 1tR   depends on 1  and 2   in 

addition to 1  and 2  (based on standardized returns) but the specification here is based on 

devolatilized returns has 1tR   depending only on 1  and 2  plus the p -the lag order that is used 

in the devolatization process. The ML estimate of   based on sample observations 1 2, , , tr r r  

are computable by maximizing ( )tl  with respect to   represented by ˆ
t  or simply as  

ˆ max{ ( )},t tArg l


   for , , 2 , , ,t T T h T h T N                                                             (18) 

where ,h  the estimation is update frequency and N  is the length of the evaluation sample. Note 

that the standard errors of ML estimates are calculated from the following asymptotic expression. 

2
1( )ˆˆ( ) { [ ] }

' t

t

t

s

f
Cov 

 






 










 
                     

The model is reasonable to estimate in that the number of unknown coefficients of the 

MGARCH model increases as a quadratic function of m  while in the standard DCC model, it 

rises linearly with m  assets. This fact notwithstanding, the simultaneous estimation of all 

parameters  of the DCC model can and do often gives rise to convergence problems or to a local 

maxima of the  likelihood function ( ).tl   However, if the standard returns are conditionally 

Gaussian, it is possible to resort to [1] ’s two-stage   estimation, albeit with some loss in 

estimation efficiency. In the multivariate t -distribution adopted here, the degrees of freedom ( v ) 

is the same across all currency returns whereas under the two-stage estimation procedure, 

separate (1,1)t GARCH  can easily lead to different estimates of v 9
.   

 

5  Diagnostic Tests of the t -DCC Model     

Suppose one has a portfolio with m  assets with tr   as a vector of returns with 1m x  vector of 

predetermined weights 1tw  .  The returns to such a portfolio would be 

                                                           
9
 [3], [2], and [20] note that the marginal distributions found in a multivariate t distribution 

with v  are also t distributed with the same v . 
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1't t tw r                                                                                                                               (19) 

If the interest is calculating the capital Value at Risk (VaR) of a portfolio at t-1 with probability (

1   ) represented by 1( , )tVaR w  , this requires that  

1 1 1Pr[ ' ( , ) | |]t t t tw r VaR w          

Under these assumptions, the conditional on 1,t  then (currency returns) 1't tw r  or   have a 

Student t   distribution with mean of 1 1't tw   and variance 1 1 1't t tw w    with v  degrees of 

freedom. Thus, 

1 1 1

1 1 1

' '
( )

2 '

t t t t
t

t t t

v w r w
z

v w w

  

  




 
  

which is conditional on 1t  and also has a t   distribution with v degrees of freedom with 

mean 1( | ) 0t tE z     and 1( | ) 2.t tVar z v v     With the cumulative distribution function 

(CDF) of a Student t  with v  degrees of freedom represented by ( )vF z , the 1( , )tVaR w   is the 

solution to 

1 1 1

1 1 1

( , ) '
( )

2
( ' )

2

t t t
v

t t t

VaR w w
F

v
w w

 
  

  

 
 




 

However, since ( )vF z  is a continuous and monotonic function of z , then  

11 1 1

1 1 1

( , ) '
( ) ( )

2
( ' )

2

t t t
v

t t t

VaR w w
F c

v
w w



 
  

  

 
  




 

where c  is a %  critical value from the Student t -distribution with v  degrees of freedom. The 

out-of-sample VaR forecast puts 0.99.    Thus, 

1 1 1 1 1 1( , ) ' 't t t t t tVaR w c w w w                                                                                    (20) 

where 
2v

c c
v

 


   

Following [21], [2], [22], [31], and [32], the test of the validity of the t DCC  is calculated 

recursively by using the VaR indicators denoted by ( td ) 

1 1( ' ( , ))t t t td I w r VaR w                                                                                                   (21) 
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where ( )I B an indicator function that is equal to 1 if 0B   and zero otherwise. The indicator 

statistics can be computed in-sample or preferably based on recursive out-of-sample one-step 

ahead forecasts of 1t  and 1t   for pre-determined preferred set of portfolio weights 1tw   . In an 

out-of-sample exercise, the parameters of the mean returns variables ( ) and volatility variables 

(  ) can be fixed at the start of the evaluation exercise or changed with an update frequency of 

h  periods. Suppose we an evaluation sample, { , 1, 2, , }eval tS r t T T T N      then the 

mean hit rate [MHR] is 

1

1
ˆ

T N

N t

t T

d
N




 

                                                                                                                        (22) 

With a  t DCC  model, the estimated mean hit rate, ˆ ,N  has a mean of (1   ) and variance (

(1 )

N

 
 ) and the resulting standardized statistic is  

ˆ[ (1 )]

(1 )

N
z

 

 

 



                                                                                                          (23) 

This expression has a standard normal distribution if the evaluation sample size N  (in our case, 

455 observations) is very large. According to [33], [30], [3], and [2], the z  statistic provides 

evidence of the performance of 1t  and 1t  in an average unconditional setting. On the other 

hand, [34] has suggested an alternative conditional evaluation procedure based on probability 

integral transforms. 

1 1 1

1 1 1

ˆ' 'ˆ ( ), 1, 2, ,
2 ˆ'

t t t t
t v

t t t

w r w
U F t T T T N

v
w w

v

  

  


    




                                             (24) 

If the t DCC  model is correctly specified, under the null hypothesis the probability integral 

transforms estimates (PIT), ˆ
tU  should be not be serially correlated and should have a uniform 

distribution over the range (0,1) and it is testable. The serial correlation property of ˆ
tU  can be 

tested by Lagrange multiplier tests by running OLS of ˆ
tU  on an intercept and lagged values of 

1 2
ˆ ˆ ˆ, , ,t t t sU U U  

[see Table 8]. In this case, the maximum lag length, s  can be determined by 

the AIC information criteria. The uniform distribution of ˆ
tU  over t  can be tested using the 

Kolmogorov-Smirnov ( NKS ) statistic defined as ˆsup | ( ) ( ) |N x U
KS F x U x   where ˆ ( )

U
F x  is the 

empirical cumulative distribution function (CDF) of ˆ
tU  for 1, 2, ,t T T T N    and ( )U x x  

is the CDF of the iid U (0, 1). If the value of the NKS statistic is large, it would show that the 

CDF is not similar to the uniform distribution assumed in the t DCC .
10

 However, if the 

                                                           
10

 For more details on the Kolmogorov-Smirnov test and critical values, see [35] and [36]. 
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estimated value of NKS  is below the critical value (say 5%), then it does support the validity of 

the t DCC .  

 

 

6  Empirical Application to devolatized currency returns 

The rate of return is calculated as follows. If the price of currency is tS then the returns are 

defined as 
1

ln( )x100.t
t

t

S
S

S 

    

The calculated rates of returns (standardized and devolatized) are presented in Tables 1. The 

estimation of the t-DCC model uses devolatized returns. 

 

 

7  ML estimates of the t-DCC models 

 [22] and [2] point out that weekly or daily return approximately have mean zero serially 

uncorrelated processes which make it possible to assume that 1 0t   . The t-DCC model is 

estimated for 5 five BRICS currency returns over the period 01-Jan-2008 to 27-Sept-2013.  The 

estimation period is 30-Jan-2008 to 30-Dec-2011 (1023 observations) and we use 455 

observations (02-Jan-2012 to 27-Sept-2013) for the evaluation of estimated volatilities and 

correlations model.  The VaR and distribution diagnostics are used to assess the results from the 

model. We estimated the unrestricted version of the DCC (1, 1) assuming a normal distribution 

(normal-DCC) with asset-specific volatility parameters 1 11 12 1( , , , ) 'm     and 

2 21 22 2( , , , ) 'm    with common conditional correlations, 1  and 2 . In the paper, 5m 

and there are no restrictions on decay factors (different volatility for each variable and same for 

the correlation decay factor). Table 5 presents the maximum likelihood estimates of 1i 2, i for 

five currency returns and 1  and 2 . We note that all the currency-specific returns are highly 

significant with their sum all close to unity. The log-likelihood value is -1073.3. This value is 

important since we will compare it to the log-likelihood value from the t-DCC model. 

 

Table 5: Multivariate GARCH with underlying multivariate Normal distribution 

(Normal DCC-GARCH)      

                        Converged after 42 iterations                          

Based on 1023 observations from 30-Jan-08 to 30-Dec-11. 

The variables (asset returns) in the multivariate GARCH model are: 

 rbra rrup rrem rzar rrru 

Volatility decay factors unrestricted, different for each variable. 

Correlation decay factors are unrestricted to allow for mean-reverting conditional 

correlations. 

 

 ML Estimates  

Currencies 1   2   

Real (rbra) 0.92581(0.12987) 

{71.2851}[0.000] 

0.067332(0.0111) 

{6.0180}[.000] 
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Ruble (rrru) 0.84929(0.032591)            

{26.0590}[.000] 

0.12884(0.02605)        

{4.9459}[.000] 

Rupee(rrup) 0.88330(0.033083)            

{26.6996}[.000] 

0.098394(0.0251)             

{3.9114}[.000] 

China(rrem) 0.89265(0.012149)            

{73.4741}[.000] 

0.085836(0.0095)           

{8.9797}[.000] 

Rand(rzar) 0.92845(0.018059)            

{51.4123}[.000] 

0.062874(0.0144)            

{4.3468}[.000] 

Correlation parameters
1
ˆ 0.96340(0.002170)  and

2
ˆ 0.024602(0.001013)   are such that 

1
ˆ1   2̂ = 0.01020(0.001281) 

The maximized log-likelihood = -1073.3; the standard errors are given in 

round brackets (.); the t-ratio is given in {.} brackets and probability value 

is given in square brackets [.]. 
 

 

Table 6:  Multivariate GARCH with underlying multivariate t-distribution (t-DCC 

GARCH Model)        

                        Converged after 39 iterations                          

Based on 1023 observations from 30-Jan-08 to 30-Dec-11. 

The variables (asset returns) in the multivariate GARCH model are: 

 rbra rrup rrem rzar rrru 

Volatility decay factors unrestricted, different for each variable. 

Correlation decay factors are unrestricted to allow for mean-reverting 

conditional correlations. 

  

ML Estimates 

Currenci

es 
1   2   

Real 

(rbra) 

0.94828 (0.012427)            

{76.3066}[.000] 

0.048880(0.011003)            

{4.4422}[.000] 

Ruble 

(rrru) 

0.88197(0.028565)             

{30.8763}[.000] 

0.10076(0.022324)               

{4.5135}[.000] 

Rupee(rr

up) 

0.98423(0.0089048)          

{110.5276}[.000] 

0.01688(0.0072402)            

{2.3215}[.021] 

China(rre

m) 

0.8027(0.029628)            

{27.0929}[.000] 

0.15359(0.023038)              

{6.6666}[.000] 

Rand(rza

r) 

0.98365(0.0080896)          

{121.5935}[.000] 

0.015922(0.006420

2)            

{2.4800}[.013] 

1 2
ˆ ˆˆ 2.7570(0.4414), 0.97896(0.0014), 0.01104(0.0001)v       

The maximized log-likelihood = -579.6819; the standard errors are given in round brackets 

(.); the t-ratio is given in {.} brackets and probability value is given in square brackets [.]. 

Note that 1  and 2  are common conditional correlation parameters. Correlation 

parameters
1
ˆ 0.9789(0.0014)  an

2
ˆ 0.0110(0.0001)   are such that 

1
ˆ1  

2̂ = 0.0101(0.0007) 
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Table 6 presents all the maximum likelihood estimates of 1i 2, i  for five currency returns and 

1  and 2 . We note that all the currency-specific returns are highly significant with their sum all 

close to unity. The log-likelihood value from the t-DCC model is -579.6819 and it is larger than 

the value from Table 5. The degrees of freedom are 2.7570, well below the value of 30 that is 

expected for a multivariate normal distribution. As a check on the results in Table 6, similar 

results were obtained when we estimated a t-DCC model on residuals obtained when a regression 

of currency returns is on returns on their past values (as in Table 8). As the in Table 5, specific-

currency returns estimates of the volatility and correlation decay parameters are highly 

significant and close to 1. 

 
Table 7: Testing for Mean Reversion of Volatility of BRICS currencies 

Asset 
1 2
ˆ ˆ1     Standard Errors t-ratio [Prob] 

Brazilian Real 

Russian Ruble 

Indian Rupee 

South African Rand 

China renminbi 

0.0027112 

0.0146990 

-0.0014998 

-0.00001051 

  0.0000425 

0.0026958 

0.0060821 

0.0012022 

0.0010886 

0.0000112 

1.0057[0.315] 

2.4167[0.016] 

-1.2475[0.213] 

-0.0096571[0.992] 

2.1847280[0.0115] 

 

Table 7 presents tests for non-mean reversion. The sum of estimates of 1i  and 2i  are almost 

unit.  The hypothesis that 0 1 2: 1i iH     (Integrated GARCH) against mean reversion (

0 1 2: 1i iH    ) is rejected for all five currencies. This means that BRICS currencies returns 

show significant mean-reverting volatility for all assets in these economies.  

The evaluation sample from 02-Jan-2012 to 27-Sept-2013 tests is based on the probability 

integrals transform (PIT), ˆ
tU  as defined by (24). If the t-DCC model is correctly specified, then 

under the null hypothesis, ˆ
tU   has no serial correlation and it is uniformly distributed over (0, 1). 

ˆ
tU  is obtained by considering an equal-weighted portfolio of all five BRICS currency returns as 

defined by (19) with a risk tolerance of 0.1  . To test the null hypothesis that ˆ
tU s are not serial 

correlated, we use the Lagrange Multiplier test. The value of the CHSQ (12) = 7.9685[.788] and 

the F Statistic = F (12,442) =   0.65657[.793] are reported in Table 8. Given these values, it is 

clear the t-DCC model specification passes the test. 
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            Table 8:  Test of Serial Correlation of Residuals (OLS case)               

************************************************************* 

 Dependent variable is U-Hat ( ˆ
tU )  

 List of variables in OLS regression: 

 Intercept                                                                      

 455 observations used for estimation from 02-Jan-12 to 27-Sep-13 

************************************************************* 

 Regressor      Coefficient       Standard Error         T-Ratio [Prob] 

 OLS RES(-1)    .060893            .047528                1.2812[.201] 

 OLS RES(-2)    .022931            .047618                .48156[.630] 

 OLS RES(-3)    .0041046            .047593              .08624[.931] 

 OLS RES(-4)    .7783E-3            .047545              .01637[.987] 

 OLS RES(-5)    -.023368            .047539              -.4915 [.623] 

 OLS RES(-6)    -.040307            .047519             -.84822[.397] 

 OLS RES(-7)    -.038443            .047648             -.80681[.420] 

 OLS RES(-8)    -.032218            .047670             -.67586[.499] 

 OLS RES(-9)    .073504              .047695              1.5411[.124] 

 OLS RES(-10)   -.045262            .047909            -.94474[.345] 

 OLS RES(-11)   .0023313            .048028           .048542[.961] 

 OLS RES(-12)   -.040469            .047950            -.84398[.399] 

*************************************************************

Lagrange Multiplier Statistic    CHSQ (12) =   7.9685[.788] 

 F Statistic                      F (12,442) =   .65657[.793] 

U-Hat denotes the probability integral transform. 

************************************************************* 

 

 

 
Figure 1: The Kolmogorov-Smirnov goodness-of-fit test for the full t-DCC model [Evaluation Period] 

 

Under the null hypothesis, U-Hat ( ˆ
tU ) should not display any serial correlation. 

In Figure 1, the Kolmogorov-Smirnov test ( NKS ) is applied to ˆ
tU  to determine whether the 

probability integrals transform (PIT) are from a uniform distribution. The value of the NKS
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statistic is 0.0663753 which is barely within the 5% critical value of 0.063758. This means that 

the null hypothesis that the sample’s cumulative density function (CDF) is similar to the uniform 

distribution cannot be rejected, although barely. Figure 2 shows the histograms of the probability 

integral transform variable ˆ
tU  with minor violations of a uniform distribution. 

 

 
 

Figure 2: Histogram over the Estimation Period 

 

In Figure 3, we test whether there is any violation of the Value at Risk (VaR) constraint as this 

test focuses on the tail properties of currency returns. With a tolerance probability of 0.01  , 

Figure 3 shows the risks in these emerging markets shows spikes around June - July 2012, April-

May 2013, and September 2013 when the U.S. Federal Reserve Bank indicated that it might 

begin reducing liquidity (quantitative easing). This announcement sent shock waves in the 

emerging markets (BRICS) as the U.S. dollar market looked better for investors. 

 

 

Figure 3: Value at Risk over the Evaluation Period 
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Table 9:  Mean VaR Exceptions and the Associated Diagnostic Test Statistics 
 

Mean Hit Rate ( ˆ
N  statistic) =.98462 with expected value of .99000 

Standard Normal Test Statistic ( ẑ ) = -1.1544[.248] 

 

Note: Value at Risk for a given probability (0.01) using a 1-step ahead of forecasts of variances 

and covariance = 7.21 (=asset returns in %s) but 7.47 (using estimated variances and covariance) 

 

In Table 9 there is an additional test of VaR violations under a tolerance probability of 0.01  .  

The ̂  statistic has a value equal to 0.998 which is very close to its expected value of 0.990. 

Similarly, the F statistic is 1.1544 with a p-value of 0.248. These results provide support for the 

validity of t-DCC model. The ẑ  statistic is not significant at p = 0.248. 

 

8  Evolution of Currency Return Volatilities and Correlations 

The choice was made to present conditional correlations of the South African rand with other 

currencies to limit the excessive figures that would have been necessary for all currencies. In 

case of volatilities, the figures presented in the paper show volatilities for all currencies. In order 

to minimize the impact of initialization on the plots of conditional correlations, initial estimates 

for 2009 are not shown (Figure 4) and those for 2011 (Figure 5). The same precaution holds for 

volatilities in Figures 6 and 7.  The conditional correlations for the Brazil real, Indian rupee, 

Russia ruble and South African rand in both the estimation and evaluation periods show high 

conditional correlation. There is a noticeable dip around 2011 followed by an upward trend. The 

exception is the rand-renminbi correlation which is lower than all others. It falls below 0.1 in 

April 2010. Thereafter, it also shows a noticeable upward trend until it coincides with other 

conditional correlations around September 2011. For the evaluation period, conditional 

correlations of the rand with the rupee, real, and ruble remain stable between 0.5 and 0.6. 

Meanwhile, the rand-renminbi correlation remains around 0.1 until October 2012 when it rises to 

about 0.2.  The correlation matrix in Table 2 confirms the low conditional correlation of the rand 

and renminbi since it is only 0.15725. 
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Figure 4: Conditional Correlations of the Rand with other Currencies [Estimation Period] 

 

 

 

Figure 5: Conditional Correlations of the Rand with other Currencies [Evaluation Period] 
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Figure 6: Volatility of the Rand with other Currencies [Estimation Period], 08-Oct-09 to 30-Dec-11 

 

 

 

Figure 7: Volatility of the Rand with other Currencies [Evaluation Period], 01-Feb-12 to 31-Dec-11 

 

In case of volatilities over the estimation period, Figure 6 shows the ruble to have a high spike 

around March 2010 when other currencies exhibit a downward trend. Over the whole estimation 

period, the rand had the highest volatility (again this is confirmed by Table 2) in contrast with the 

renminbi that exhibit the least volatility.  All currencies show a huge spike around April 2010 at 

the height of the global financial crisis.  After this spike, all currencies exhibit a declining trend 

(except the renminbi in 2011) until December 2011.  For the evaluation period (Figure 7), all 

currencies exhibit a huge spike around March 2012 followed by a declining trend in volatilities 

until December 2012. Again, the exception is the renminbi whose volatility is practical zero 

except for a very small spike in in 2012 as China adjusted its exchange rate albeit by a very small 

margin.  
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The declining trends during both the estimation and evaluation periods in Figures 6 and 7 reflect 

a closer integration of the rand with the real, rupee, and ruble and less so with the renminbi. This 

result is surprising given public announcements by the South African when it acceded to the 

BRIC economies at the invitation of China.  From the latest export figures, China is now the 

number one trading partner for South Africa.  Fitting a t-DCC model on devolatized returns for 

five BRICS currencies yields estimates of volatilities  s that are very close to 1 in Table 6 

except for the renminbi.  In contrast, Table 5, the normal-DCC model has the renminbi showing 

higher volatility for the renminbi ( =0.89265) versus ( =0.80271) in the t-DCC model. In other 

words, the normal distribution would mask the low volatility of the renminbi. The use of the t-

DCC model produces a low value for the renminbi that is consistent with all results obtained in 

this paper from tables, estimates and figures. 

 

9  Concluding Remarks 

The paper tested the idea that devolatized returns are a better approach to understanding the 

volatility of asset markets than standardized returns so widely used in portfolio decision making 

and risk management (Pesaran and Pesaran, 2010, 2007a, 2007b). Given that the modelling of 

conditional volatilities and correlations across currency market returns is a critical function of 

investing and portfolio management in a global economy, Pesaran and Pesaran (2010, 2007a, 

2007b) suggest that devolatilized returns within a multivariate t-DCC model capture the fat tail 

properties of currency time series since transforming returns by realized volatility makes the 

innovations Gaussian. This is a key concept in the application of the t-DCC model. The paper 

applied this approach to the estimation of conditional correlations and volatilities for BRICS 

currency returns. Our results indicate that the t-DCC model is preferred over the normal-DCC 

model in estimating conditional volatilities and correlations.  Second, both  ˆ
N  and ẑ [tests for 

serial correlation and a uniform distribution] provide support for the t-DCC model despite the 

2008-2009 financial crisis. However, the model barely passes the non-parametric Kolmogorov-

Smirnov ( NKS  ) test that test whether probability transform estimates,  ˆ
tU   are uniformly 

distributed over the range (0, 1). Overall, the results track well correlations and volatilities in 

BRICS currency returns. 
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