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Systematic Correlation is Priced as Risk Factor

Xiangying Meng1, Xianhua Wei2

Abstract

In this study, we first measure the systematic correlation level risk
and systematic correlation shock risk based on mixed vine copula method
and investigate their relationship with stock return. The empirical re-
sult shows that correlation is significantly and negatively priced as risk
factor in China which is dynamic through different regimes. We find
out that transformation mechanism between idiosyncratic correlation
and systematic correlation is supported at stock-level and index-level.
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1 Introduction

Correlation is critical for asset allocation of investment portfolio as it re-

flects the level of diversification. The systematic correlation between asset and
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market is also important for several applications. For example, low market-

correlated portfolio is better immune to dramatic fall of net asset value in the

downside market, nevertheless, portfolio consisting of those assets with high

correlation to market perform better in the upside trending market. Previous

researches on correlation have revealed the significant impact of correlation risk

in financial market. Literatures such as Bollerslev (1988)[1] and Longin and

Solnic (1995)[2] have shown that correlation in financial market is time variant

and there is considerable evidence on the negative relation between correlation

and market return. Researchers like Gravelle (2006)[3] and Acharya(2008)[4]

studied the influence of correlation risk event to market, and in their studies,

correlation risk event is indicated by market shock such as financial crisis. The

former concluded on the abnormally high correlation in currency and bonds

during financial crisis while the latter found out correlation increases in bearish

market. It is natural to ask whether the correlation is priced in asset returns

and whether the price varies in bearish market and bullish market.

Based on the intertemporal capital asset pricing model, in the frictionless

market with transparent information, the price change follows It’s lemma and

the price of asset is irrelevant to the utility preference, which apparently is

not practical in real financial world. The Intertemporal Capital Asset Pricing

Model, proposed by Robert Merton(1973)[5], forecasts changes in the distribu-

tion of future returns or income when investors are faced with more than one

uncertainty. Within the framework of ICAPM model, the asset with return

which is co-varying with correlation provides a hedge against correlation. The

demand of assets that pay off where in highly-correlated condition would drive

up the asset price and it leads to narrowing down of correlation premium,

which is one of two competing theories about correlation price. The other

theory regards correlation risk as one component of systematic risk. When the

market consists of large number of assets, correlation risk partly contributes to

integrate risk. Other related studies by Pollet and Wilson(2010)[6] explained

the deterioration on return by correlation increase as the result of increased

volatility and decreased benefits of diversification. Consequently, investors

prefer securities with positively correlated return with market trend as a pro-

tection for welfare loss.

Driessen (2005)[7] investigated S&P 100 and the options on component

stocks and concluded on the negative risk price of market correlation. Krishnan
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(2008)[8] applied cross-sectional regression approach to test price of security

in United States and found out negative price as well. ZHANG Zhenglong

(2007)[9] identified the conditional correlation in Chinese stock market is a

negative risk price. But the research on correlation risk is represented by

simple average of pair-wise linear correlation coefficients without distinguishing

different market conditions.

In this paper, we first use mixed vine copula and general Pareto distribution

to measure systematic correlation in the first section. The mixed vine copula

method considers the asymmetry of correlation in downside and upside trends.

In section 2 we examine price of correlation level risk and correlation shock risk

of Chinese A share market for short term and long term respectively. Using

both daily return and monthly return of listing stocks, the empirical results

reflect that short-term systematic correlation level risk is more significantly

priced than long term, and the correlation shock risk is negatively priced in

spite of examination window. By including markov switching regimes in the

model, the significance of negative price of short-term correlation is well sup-

ported and further shows the asymmetry of correlation risk in different regimes.

Finally, we propose a transformation mechanism between systematic cor-

relation and idiosyncratic correlation. We examine this transformation proce-

dure at individual stock level and index level, which both produce sufficient

evidence that during the market thrill the increasing systematic correlation

risk would release idiosyncratic correlation risk with the constant market-wide

volatility.

The following sections are organized as Section 2 introduces the mixed vine

copula-based measurement of correlation level risk and correlation shock risk.

Section 3 demonstrates the significance of negative price of correlation risk and

shows the result in markov regime-switching copula model. We investigate how

idiosyncratic correlation transfers into systematic correlation in Section 4 and

conclude in Section 5.

2 Measurements of Correlation Risk

In this section, we demonstrate the measurement and estimation of corre-

lation risk using mixed-vine copula and extreme theory.
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2.1 Mixed Vine Copula and GPD

The copula method is gathering more attention among academics and prac-

titioners in the field of finance as it is sensitive to features in tails, which is an

effective answer to fat-tail problem since most financial data do not follow nor-

mal distribution. Sklar(1959)[10] firstly defined copula as a connection function

illustrating the dependence relationship. Copula functions in Archimedean

class are often used as the correlation measurement, Kendall or Pearson corre-

lation are computed based on consistent copula parameter. Although copula-

based correlation can illustrate other kinds of correlation changes other than

linear changes,it is difficult to estimate the parameters when the number of

assets increased due to ”dimension explosion”.Kjersti and Claudia(2009)[11]

used pair-copula decomposition to exhibit complex pattern of dependence in

the tails, which is named Canonical Vine Copula. This method is a flexi-

ble methodology to construct higher-dimensional copulas when approximating

pair-wise copula to be connected by vines. In this paper, we use C-vine copula

to model the dependence for n assets as follows:

c(x1, ..., xn) =
n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1(F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1)) (1)

Equation 1 is the C-vine copula function and its likelihood function is

Equation 2

L(c) =
n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
[
cj,j+i|1,...,j−1,t(F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1))

]
(2)

In Equation 2,cj,j+i|1,...,j−1 is the copula function of xi and xj, and F (xj|·)
is the conditional marginal function of xj. Normal distribution is biased when

sample data is skewed. In this article, we use Generalized Pareto distribu-

tion(GPD) to estimate marginal distribution. R = (R1, R2, ..., Rn) is the set

of asset returns and θ = (θ1, θ2, ..., θn) is the threshold set that models tail

data with marginal distribution Gθ
R. In spite of location θ, scale σ > 0 and

shape k ∈ R of GPD, dependence function D(u1, u2, ..., un) is also needed to

approximate multi-variant joint distribution of tails.

According to the maximum likelihood method to estimate the joint tail

distribution by Ledford(1997)[12], we firstly hypothesize that time-series data
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of asset returns R1 and R2 with thresholds θ1 and θ2 are time-independent.

{Ajk : j = I(R1 > θ1), k = I(R2 > θ2))} differentiates sample data into four

zones . The dependence function Dθ
R of asset return R beyond threshold

θ represents the asymmetry of upside correlation and downside correlation,

where comprising Gumbel CopulaFrank Copula and Clayton Copula. Gumbel

Copula is sensitive to positive co-movements and Clayton Copula is better ex-

plaining the downside correlation. Correlation derived from Frank Copula is

symmetrical and we include Frank Copula in mixed-copula aiming at calibrat-

ing the relative upside-sensitive weight and downside-sensitive weight.

Suppose bivariate asymmetric dependence relationship between asset re-

turn as:

Dθ
R =

3∑
i=1

wiCi(F
θ1
R1

(x1), F
θ2
R2

(x2)) (3)

Denoting F θi
Ri

(xi) as the joint tail distribution of asset i return beyond

threshold θi:

F θi
Ri

(xi) = 1− pi(1 + ki
xi − θi
σi

)
− 1

ki (4)

where pi is the probability of Ri beyond θi and generalized perato distribution

Gθi
Ri

(xi) is the approximation of tail distribution of over-threshold Ri. For

bivariate dependence at time t,Ljk(R1,t, R2,t) is the likelihood contribution of

R1 and R2 in Ajk zone.

The likelihood function of asset return series R1 and R2 within time window

T is:

L({R1,t, R2,t}t∈[1,T ] , φ) =
T∏
t=1

L(R1,t, R2,t, φ) (5)

where:

L(R1,t, R2,t, φ) =
∑

j,k∈{0,1}

Ljk(R1,t, R2,t) · Ijk(R1,t, R2,t)

φ = (p1, p2, σ1, σ2, k1, k2, w1, w2, w3, α1, α2, α3)

2.2 Systematic Level Risk and Shock Risk

Systematic correlation risk measures the co-movement between asset and

aggregate market, and its asymmetry is revealed by previous empirical evi-

dence. Asset’s different responses to good news and bad news on market is
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due to the uncertainty of overall market state. Usually the asset is more sen-

sitive to bad news which causes the assets to fall together. On the other hand,

when the market condition is promising and investors are confident about ex-

pected returns, further good news have little impact on increasing asset price.

Thus, in this section we investigate the impact of correlation shock risk as well

as correlation level risk.

Consistent with the joint distribution function in 2.1, we define the asset-

market joint distribution is as:

F θi,θm

i,m = exp
(
−V (−1/ log

{
F θi
i (Ri)

}
,−1/ log

{
F θm
m (Rm)

}
)
)

(6)

In Equation 6 F θm
m (Rm) and F θi

i (Ri) is the GPD distribution of market

return Rm and asset return Ri respectively. V is the dependence function

between asset i and market. The threshold here is θm,T = Rm,T ± n × σm,T

where n ∈ {0.2, 0.4, 0.6, 0.8, 1.0}.
During our sample period T , we assume the market contains N assets, thus

there are N + 1 assets including market return as the aggregate market asset

return. The vine copula function beyond threshold of N + 1 assets is with Rm

as the critical vine:

c(R
θi,T

i,T , ..., R
θm,T

m,T ) =
N∏
i=1

ci,m(F θi,T (Ri,T |R1,T , ..., RN−1,T , Rm,T ), F θm,T (Rm,T |R1,T , ..., RN,T )))

(7)

Parameters φ = (p1, p2, σ1, σ2, k1, k2, w1, w2, w3, α1, α2, α3) are calculated

using EM algorithm. The equal weighted Kendall correlation τ of different

thresholds is the indicator of systematic correlation. For instance, we have five

joint downside distribution for θm,T = Rm,T − n× σm,T , θi,T = Ri,T − n× σi,T

where n ∈ {0.2, 0.4, 0.6, 0.8, 1.0} and the weight of Clayton copula is deci-

sive for the relevant significance of asymmetry. We then standardize τdown as

the downside systematic correlation level risk. The calculation of upside and

middle systematic correlation are calculated similarly. As investors care most

about their asset price decreasing with the whole market, the systematic cor-

relation level risk MC in this paper specifically refers to downside correlation

τdown.

Systematic correlation level risk MC reveals the absolute level of correla-

tion risk of overall market. MC sustains high when the correlation between

assets and market tend to be high. As we examine the relationship between
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asset return and MC respectively for short-term and long-term, the value of

MC mirrors the average correlation during rolling period instead of unexpected

correlation change. In order to recognize the correlation shock risk, we also

examines the temporal correlation change using autoregressive model.

The simple representation of AR model of MC with lag 1 has the form as:

MCdown,t = c+ ϕMCdown,t−1 + εMC,t (8)

εMC,t in Equation 8 is defined as the correlation shock risk MCS. It is

necessary to study correlation shock risk in the market decline in order to

protect asset price from further falling.

3 Pricing of Correlation as a Risk Factor

When the high-correlated assets are added into portfolio, the benefit of

diversification is weakened, thus causing negative impact on portfolio wealth.

Under the assumption from studies of Merton(1973)[5], the asset return is

related to observable risk exposures.In certain circumstances, the correlation

between assets better reveal the aggregate systematic risk rather than market

variance. If some assets provide higher returns as a hedge tool for higher cor-

relation, it can avoid the portfolio loss from correlation event. In this section,

we start by examining the price of MC and MCS and consequently model the

pricing of correlation using regime-switching models.

3.1 MacBeth Pricing Model

To abstract the effect of correlation risk on asset returns from impacts of

other risk factors, we include SMB,HML,Mom,Rev,V ol,Liq,Skew,Kurt,Co−
Skew,

Sentiment and PIM as control variables. SMB and HML are typical risk

factors from Fama-French model and Mom,Rev,V ol,Liq represent momen-

tum, reversal, volatility and liquidity. Since real financial data is not normal-

distributed and usually leptokurtosis and fat-tail, higher-momentum risk fac-

tors like Skew,Kurt and Co − Skew are denoted as well. The pricing pro-

cess of risk factor is corresponding to price-related information flow,Wang
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(1993) [14] presented a dynamic asset-pricing model under asymmetric in-

formation.Furthermore, recent works by [15][16] have shown that the relation-

ship between market return and market correlation is more significant when

investor confidence is shrinking, because bad news would be magnified by neg-

ative investor’s sentiment leading to sell pressure. Thus we derive that extent

of correlation risk affects asset return via influencing investor sentiment.

Fama and MacBeth expanded capital asset pricing model noted as Fama-

MacBeth method in 1973 [?] for multi-factor pricing. Given n risk factors, Ri,t

the asset i return from time t− 1 to time t is:

Ri,t = γ1,t + γ2,tβ1,i,t + γ3,tβ
2
1,i,t + γ2,tβ2,i,t + γ3,tβ

2
2,i,t

+ ...+ γ2,tβn,i,t + γ3,tβ
2
n,i,t + γ4,tsi + ηi,t

(9)

where si is unsystematic risk of asset i while βi,t is the systematic risk. For-

mally, Fama-MacBeth stands for three assumptions:(1)E(γ3,t) = 0;(2)E(γ4,t) =

0;(3)E(γ2,t) = E(Rm,t) − E(rf ) > 0. The second step of Mac-Beth method

is cross-sectional regression when we use the estimation β̂i rather than the

real value, which result in the estimation error. To address EIV problem, we

construct portfolio following rank of β̂i as base asset as well as examining indi-

vidual stock. For portfolio with N stocks, the portfolio beta is β̂p =
∑N

i=1wiβ̂i.

The decrement of error-in-variables is at the cost of information loss. The

portfolio with top β overestimates β̂p and vice versa. We then first construct

portfolio according to beta in period T1 and estimate β̂p in following T2. We

denoteMC as systematic correlation risk and F as other risk factors mentioned

above. The final regression is as Equation 10:

Ri = γMCβi,MC + γFβi,F + εi,t (10)

3.2 Data and Statistics

We use daily log return data of stocks listed on A share market in China

from January 1996 to June 2017. We first remove de-listed stocks and those

special traded stocks during sample period for their abnormal volatility and

high speculation. Then we exclude stocks with less than 15 trading days per

month. Due to lack of trading, their stock price used calculation correlation
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may cause biased result. Finally, we adjust the observations per month for

outliers. After the data cleaning process, our sample include 2571 stocks and

the sample rolling month for computation of correlation risk is 60 months. The

measurement window for short-term correlation risk indicator is 6 months and

36 months for long-term correlation risk.

Table 1: Statistics of Extreme Daily Return from 1996 to 2017

Date Negative Return% Date Positive Return%

2016/9/1 -0.769 2007/3/30 1.908

2017/4/7 -0.766 2010/10/14 0.302

2016/4/29 -0.763 2009/6/10 0.279

2016/5/27 -0.758 2006/3/13 0.226

2016/6/8 -0.748 2009/3/5 0.157

2015/9/24 -0.740 2006/12/15 0.134

2017/5/23 -0.721 2009/4/17 0.120

2016/3/8 -0.719 2006/5/8 0.105

2015/11/11 -0.719 2007/5/21 0.104

2016/7/26 -0.715 2005/7/19 0.102

3.3 Empirical Result

The empirical result of regression result of MacBeth Pricing Model for both

short-term systematic correlation level risk MCshort and long-term systematic

correlation level risk MClong are listed in Panel A and Panel B of table 2.

The first column Model (1) contains risk factors Fama-French three factor

model:Rm,SMB and HML other than MC. The price of MCshort is -1.017,

significant at the 1% level while the insignificant price of MClong -9.602. The

column 2 reports results when including Mom,Rev and Liq as control factors

for momentum, reverse and liquidity. MCshort remains significant with t-value

of -2.01. In Model (3), Model (4) and Model (5), short-term systematic corre-

lation risk MCshort are all significant and negative at the 10% confidence level,

the pricing of MCshort are respectively -1.185, -1.127 and -1.133. However,

long-term systematic correlation risk MClong are negative but insignificant.
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As the increasing control risk factors, the price of MCshort presented in

Panel A is significantly negative indicating that faced with the surge of sys-

tematic correlation, those under-diversified assets may suffer from price decline

due to their high downside correlation with market return, nevertheless, as-

sets with relatively low correlation with market return would provide higher

return as hedging benefit. For the long term period, the changes of MClong is

well-adopted and revealed by asset price, consequently there is no significant

relationship between long-term systematic correlation risk and asset return.

We also examine the relation between correlation shock risk MCS and as-

set return by dividing MCS into short-term correlation shock MCSshort and

long-term correlation shock MCSlong. In Model (1), the short-term correlation

shock risk price is -0.110 and the long-term correlation shock is price as -0.025,

both of which are significant at 1% level. We add MomRev and Liq in Model

(2), the result shows that after controls of other three factors, MCSshort and

MCSlong are negatively priced(-0.156,-0.034) with significance. From column

3 to column 5, we add more risk factors in the capital asset pricing regression

model, MCSshort and MCSlong remain significant indicating that unexpected

correlation change have negative impact on asset return due to their unpre-

dictability. Stocks that are able to defend themselves from correlation shock

have higher implied value. That is, when the asset has negative exposure to

MCS, the negative price leads to higher asset return and vice versa.
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3.4 Pricing of Correlation in Regime-Switching Market

The empirical results so far show that systematic correlation risk generally

has a negative price. In order to find out the price of correlation risk in different

regimes, we follow Rodriguez (2007)[17] to model dependence with switching-

parameter copulas and expand to RS-copula with three regimes. Let (R1,t and

R2,t) denote asset return at t in regime st = j

f(R1,t, R2,t|It−1, st = j) = cj(ut, vt|ψjc)
2∏
i=1

fi(Ri,t|It−1;ψi) , j = 0, 1, 2 (11)

Then we use two-step max likelihood method EM for estimation. As the

marginal distribution of asset return does not switch between regimes, so the

log likelihood function is:L(Rψ, α) =
∑T

t=1 log f(Rt|It−1;ψ, α) where L(Rψ, α)

can be split into log likelihood of marginal distribution Lm and log likelihood

of dependence function Lc.

L(Rψ, α) = Lm(R;ψm) + Lc(R;ψm, ψc)

Lm(R;ψm) =
T∑
t=1

2∑
i=1

log fi(Ri,t|Ii,t−1;ψm,i)

Lc(R;ψm, ψc) =
T∑
t=1

log c(ut,1|ψm,1, ut2|ψm,2;ψc)

(12)

We first estimate ψm in ψ̂m = argψm
maxLm(R;ψm) using maximum likeli-

hood estimation. Then we substitute ψ̂m for ψm in Lc(R;ψm, ψc) to calculate

ψc as ψ̂c = argψc
maxLc(R; ψ̂m, ψc)

In Equation 12,we include regime-switching parameters in mixed vine cop-

ula expression, the calculated τ is used to construct RS correlation level risk

and RS correlation shock risk. Table 6 lists the smoothing switching probabil-

ity and the corresponding risk factor price. As the switching regimes only have

influence on dependence relation which is reflected by the weights and Kendall

correlation correlation of Gumbel CopulaFrank Copula and Clayton Copula,

the measurements of MC and MCS based on mixed copula estimation can

presents prices of correlation risk in different regimes. We summarize the 6

month rolling averaged MC and MCS for short-term and long-term in Table

6.

In regime 1,the average price for MCshort is -0.9134 and in regime 2 the

average price is -0.1546. Both of price for MCshort in regime 1 and regime 2
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Table 6: Averaged Pricing of Correlation Risk based on RS Copula

Factor γ Averaged Pricing Regime Duration(month)

Regime 1 2 3 1 2 3

MCshort -0.9134∗∗∗ -0.1546∗∗∗ 0.0651 5.64 16.57 1.45

(-4.59) (-3.30) (0.69)

MClong -0.1208 -0.1001 0.0942 1.49 1.50 1.52

(-0.13) (-0.11) (0.97)

MCSshort -0.0258∗∗∗ -0.0093∗ -0.0070 16.17 1.09 2.03

(-6.43) (1.71) (-0.89)

MCSlong -0.0081 -0.0153 0.0063∗∗∗ 1.57 1.55 13.42

(-0.03) (-0.38) (2.98)

are significant at 1% level. Rather than negative price, the average price for

MCshort in regime 3 is positive and insignificant(0.0651) which is obviously

distinguished from other two regime. Regime 2 covers the post-financial crisis

period after 2008 and 2015 in China and the mean duration of regime 2 in

16.57 months. The average price for MClong in three regimes are -0.1208,-

0.1001 and 0.0942 respectively and all of them are not significant statistically.

The transition probabilities across regimes are similar which cannot reject that

the prices for MClong in different regimes are indifferent. Figure ?? plots the

smoothing transition probability for short-term and long-term correlation risk

factor.

Table 6 also shows the RS pricing for correlation shock risk MCS. There

are 16.17 months in average that among regime 1 when the short-term averaged

price of -0.0256. In regime 2, the average price for MCSshort is -0.0093 while

the significance drops from 1% level to 10%s level. The duration in regime

1 is longest among three regimes for short-term correlation shock risk factor,

however, for long-term, MCSlong stays in regime 3 for longest time with 13.42

months in average and the price in that period is significant positive (0.0063).

The price for MCSlong in regime 1 and regime 2 are -0.0081 and -0.0153, both

of which are negative and insignificant.
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3.5 Robustness Check

For robustness, we further use portfolio return as base asset returns to

examine the price of correlation risk factor. We first construct 25 portfolios

using beta to MC rank and market value rank; then we construct 25 portfolios

by beta to MC rank and book-to-market ratio rank; we also group stocks by

market value rank and book-to-market ratio rank and finally we use 29 SW

first-level industry classification for 29 industry portfolio. We name the above

four portfolio as correlation-value portfolio, correlation-style portfolio, value-

style portfolio and industry portfolio. The portfolio return and risk factors are

the value-weighted return and risk factor values of member stocks.

Controlling for all the mentioned risk factors as in Model (5) in table 2

and table 4, we investigate the MacBeth pricing of MC: for correlation-value

portfolios, the price of MCshort is -1.62 which is significant at 5% level with t-

value -2.54; for value-style portfolios, the MCshort price is 1% significant with γ

of -9.52. The price of MCshort for value-style portfolios and industry portfolios

are also negative but not as significant as for the other groups, the price γ are -

1.778 and -3.600 and t-value are -1.32 and -1.25. For the long-term correlation

level risk factor MClong, its price is statistically significant and negative for

four portfolios.

In order to check the robustness of correlation shock risk MCS price, we

use the same way to form portfolios, the empirical result represents that price

of MCSshort is -0.15 for correlation-value portfolios, -0.133 for correlation-style

portfolios and -0.983 for industry portfolios. The prices are all significant at 5%

level. The result for long-term correlation shock risk is similar to that for short-

term. The MCSlong price is -0.02 for correlation-value portfolios and -0.11 for

value-style portfolios, both of which are of 1% level of significance, while the

prices of MCSlong for industry portfolios and correlation-style portfolios are

significant at 5% level with -0.11 and -0.047.

In order to further check the robustness of MacBeth regression result, we

reconstruct MC and MCS using factor mimicking portfolios. Theoretically,

portfolio return can be interpreted as the linear regression of risk factor return

as in Equation 13 where risk factor weights are wP = [w1, w2, ..., wn]
T and risk
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factor exposure xmP = wTPxm =
∑
wixi,m.

rP = x1
Pf1 + x2

Pf2 + ...+ xmP fm + wTPµ

= wTPx1f1 + wTPx2f2 + ...+ wTPxmfm + wTPµ
(13)

When xTPµ = 0, the portfolio is only related to one risk factor, with exposure

1 to this factor and exposure 0 to any other risk factor. This is the definition

of pure risk factor portfolio rP = 1 · fm + wTPµ. We first specify the base

assets return RB and compute their exposure to target risk factor. Taking

MC for example, we use the above construction procedure and get MCt =

cB,t(RB,t − rf ) + et where (RB,t − rf ) is the excess return of base asset and

cB,t(RB,t − rf ) is MC in return formality. By summing up
∑
cB,t(RB,t − rf ),

we can get factor-mimicking return MimickMC, so as MimickMCS.

The short-term correlation level risk MimickMCshort has negative price

when investigating portfolio return as sample data. The prices γ for correlation-

value portfolios, correlation-style portfolios and value-style portfolios are -

0.027,-0.017 and -0.024 and all of three are 1% level significant. Consistent

with results of MimickMCshort, the prices of MimickMClong are negative

and significant for all portfolios except value-style portfolios. The price of

MimickMCSshort and MimickMCSlong are all negative and significant. To

sum up, the MacBeth pricing result for both individual asset and portfolios

and result for both original correlation measurement and factor mimicking

portfolio show that the negative price of correlation risk in China is robust.

4 Transformation between systematic and id-

iosyncratic correlation

Our main objective in this section is to study the idiosyncratic correla-

tion and try to find out the relationship between systematic correlation and

idiosyncratic correlation.

4.1 Idiosyncratic Correlation Risk

We first give the definition of idiosyncratic correlation. According to capital
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asset pricing model, asset return Ri,t can be separated into Ri,t = αm,i,t + ηi,t,

where αm,i,t denotes passive return and ηi,t denotes active return. Assume

an investment portfolio that constitutes of N assets {R1, R2, ..., RN} with

weights wii ∈ {1, 2, ..., N}. Because αm,i,t and ηi,t are orthogonal, we have

Cov(αm,i,t, ηi,t) = 0, thus the portfolio variance V ARP is given by:

V ARP = V ar(αm,i,t) +
N∑
i=1

wi,tV ar(ηi,t)

= V ARsys + V ARidio

(14)

Equation 14 breaks portfolio variance V ARP into market-related variance

risk V ARsys and idiosyncratic firm-related variance risk V ARidio. As for multi

factor regression model, asset return Ri can be expressed by Ri = β(Rm −
rf ) + εi, and εi is the idiosyncratic return apart from systematic return. For

simplicity, we assume N stocks in the market, so there are N(N − 1)/2 stock

pairs in total. we first model the dependence between idiosyncratic stock

returns as:

c(ε1,T , ..., εN,T ) =
N−1∏
j=1

N−j∏
i=1

cj,j+i|1,...,j−1(F (εj,T |ε1,T , ..., εj−1,T ), F (εj+i,T |ε1,T , ..., εj−1,T ))

(15)

Similar to MC and MCS, we use GPD as the conditional tail distribution

of F θi(εi,T |·) and F θj(εj,T |·). Then we compute their Kendall’s correlation and

relevant weight by estimation Equation 16:

F
θi,θj

i,j = exp
(
−V (−1/ log

(
F θi
i (εi)

)
,−1/ log

(
F
θj

j (εj)
))

(16)

where V is the dependence function which is modelled by c(εθ11,T , ..., ε
θN
N,T ). The

maximum likelihood of dependence during sample window T is:

L =
n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
[
cj,j+i(F (ε

θj

j,T ), F (ε
θj+1

j+i,T ))
]

(17)

Through iteration, the averaged pair-wise Kendall’s correlation derived

from mixed vine copula parameters in Equation 17 is the idiosyncratic risk IC.

The calculation of systematic correlation is the first-layer decomposition copula

with Rm as the key vine. We first calculate φ = (p1, p2, σ1, σ2, k1, k2, w1, w2, w3,

α1, α2, α3) of stock pair {εi, εj} by EM algorithm and compute IC as the id-

iosyncratic correlation risk. The portfolio risk PC and systematic correlation
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SC are calculated in the same way with the raw return Ri and the market-

related return β(Rm − rf ).

4.2 Transformation Mechanism

Campbell[18] found out when overall market risk remains same, increas-

ing averaged idiosyncratic risk would decrease the average market correla-

tion. We referred to the approach by Kearney[19] to define the overall market

risk V ARsys as V ARsys = w
′
tHtwt, where Ht = Dtρsys,tDt and Dt is the

standard deviation matrix. The correlation coefficient matrix of β(Rm −
rf ) is ρsys,t. Consequently, V ARsys can also be interpreted as V ARsys =

Dt
1
n

∑n
i=1

∑n
j=1wi,twj,tρsys,ij,tDt.

If we rewrite ρsys,t as ρsys,t =
∑n

i=1

∑n
j=1wi,twj,tρsys,ij,t, equation ?? is

simplified as V ARsys = ρsys,t(i
′
DtIDti)

n
.

Assuming the portfolio is constructed by simple weighted average method,

ρsys,t is:

ρsys,t = n

(
1

n

i
′
DtDti

i′DtDti
− V ARidio

i′DtDti

)
= 1 − V ARidio

V ARP

(18)

Equation 18 demonstrates negative correlation between average correlation

of market portfolio and the portion of idiosyncratic risk in systematic risk.

When market portfolio consists of enough assets, the negative relationship still

holds in spite of weighting method. In that case, we can decompose V ARidio

and V ARP :

V ARidio =
ρidio,t(i

′
Didio,tIDidio,ti)

n

V ARP =
ρP,t(i

′
DP,tIDP,ti)

n

where ρidio,t =
∑n

i=1

∑n
j=1wi,twj,tρidio,ij,tρP,t =

∑n
i=1

∑n
j=1wi,twj,tρij,t

Let ρidio,t = ρidio,t/nρP,t = ρP,t/nso equation 18 is:

ρsys,t = 1 −
ρidio,t
ρP,t

× (i
′
Didio,tIDidio,ti)(i

′
DP,tIDP,ti) (19)
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¿From equation 19, there exists a transformation mechanism between port-

folio aggregate correlation ρP,t, systematic correlation ρsys,t and idiosyncratic

correlation ρidio,t. We then relax the assumption of normal distribution and

empirically analyse the relationship between the mixed vine copula based corre-

lation risk: idiosyncratic risk IC, systematic correlation risk SC and portfolio

aggregate risk PC.

4.3 Empirical Result

In this section, we firstly use hs300 index member stocks’ return as sample

data to construct idiosyncratic risk IC, systematic correlation risk SC and

portfolio aggregate risk PC. In order to avoid over-fitting problem, we test

the unit root of the above time series. The result is reported in table 7 and the

ADF tests with interception and time-trend show that IC,SC and PC time

series are stationary with lag 1 and lag6 for short-term and long-term. We

also test unit root of indicator time series computed with base asets of hs300

industry index.

Table 7: ADF Test for PC,SC,IC at Index-level and Member stock-Level

Variable hs300 Index Members hs300 Industry Index

DF ADF1 ADF6 DF ADF1 ADF6

short-term 5% tvalue=-3.145 5% tvalue=-3.448

PC -4.319 -4.037 -4.251 -5.878 -5.954 -6.214

SC -3.942 -3.549 -3.703 -6.388 -6.556 -6.427

IC -4.270 -3.724 -3.784 -5.843 -4.765 -6.094

long-term 5% tvalue=-3.4515 5% tvalue=-3.036

PC -5.602 -6.984 -5.417 -5.131 -4.939 -5.027

SC -6.339 -5.587 -7.138 -5.063 -4.998 -4.512

IC -5.863 -4.877 -5.301 -5.047 -4.953 -4.709

The following table 8 shows the OLS result of SC and IC/PC for hs300

index member stocks and hs300 style indexes. For hs300 index member stocks,

we both measure SC and IC/PC by simple weighting method and value

weighting method, and for hs300 we evaluate the result with and without

standard deviation matrix between industry indexes. The empirical result
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confirms our assumption that the idiosyncratic correlation portion in port-

folio correlation(IC/PC) is negatively related to systematic correlation SC.

When the idiosyncratic correlation increases, the systematic correlation would

decrease at 1% confidence no matter the indicators are for short-term and

long-term and vice versa. The changes of IC/PC explains 91% changes of

short-term SC and 86% changes of long-term SC. For industry index, the

negative relationship is also of 1% significance.

Table 8: OLS Result for PC,SC,IC at Index-level and Member stock-Level

Variable hs300 Index Member Stock hs300 Industry Index

Simple-weighted Value-weighted without std. with std.

short-term

βIC/PC -3.37 -3.46 -4.34 -3.16

t-value -38.38 -15.98 -17.85 -11.59

R2 0.91 0.834 0.724 0.79

long-term

βIC/PC -3.69 -4.78 -6.88 -6.57

t-value -30.55 -23.13 -39.14 -30.27

R2 0.86 0.78 0.93 0.93

The transformation mechanism between idiosyncratic correlation and sys-

tematic correlation supported at stock-level and index-level in Chinese financial

market. It is important for investors to monitor the idiosyncratic correlation

changes during the market downturn for better diversification.

5 Conclusion

Correlation measures the dependence relationship between variables which

is not linear in the real world. In this paper we firstly construct new corre-

lation risk measurement considering the asymmetry of upside correlation and

downside correlation using mixed vine copula and general Pareto distribution.

Systematic correlation level risk and systematic correlation shock risk indicate

the aggregate correlation level in the overall market and the unpredictable

market downside event. We then examine the MacBeth price of these two
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types of correlation risk for short-term and long-term. The empirical result

shows that the short-term correlation level risk is significantly and negatively

priced while the long-term correlation level risk price is not of significance.

This is because for long-term correlation, the negative effect is gradually di-

gested by market participants so there is little effect for highly correlated

stocks. However, the correlation shock risk has negative price in spite of the

measurement window, which is result from the fact that in the market down-

turn with increasing systematic correlation, those stocks with high correlation

with market return cannot efficiently diversify. The regime-switching result

also supported the above empirical result that short-term correlation level de-

serves more attention for risk control through market regimes and there is no

apparent difference for correlation shock risk in different regime. Then we in-

vestigate the transformation mechanism between idiosyncratic correlation and

systematic correlation and find out that when idiosyncratic correlation drops,

the systematic correlation is simultaneously increasing and vice versa. This

empirical result implies that the acceleration of systematic correlation is the

result of weakened idiosyncratic correlation.

The main contribution of this paper is measuring correlation in a more

specific and realistic way, which is important for investors to maximize di-

versification benefit during market downturn. Furthermore, the asymmetric

correlation provides another evaluation method of stocks in different market

conditions so we can leverage the benefit from bull market for the control

of return retracement in bear market. Finally, the idiosyncratic reflects the

changes of systematic correlation and we would further look into its effect as

a forward-looking indicator.
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