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Abstract 

Standard approach to low default portfolio (LDP) probability of default (PD) calibration is 

to add conservative add-on that should cover the gap with scarce default event data. The 

most prominent approaches to add-on calibration are based on an assumption about the 

level of the conservatism (quantile of default event distribution), but there is no transparent 

way to calibrate it or to relate the level of conservatism to a risk profile of the Bank. Over 

conservative assumptions can lead to undue shrinkage in LDP and negative shift in the 

overall risk-profile. Described in the paper PD calibration framework is based on Bayesian 

inference. The main idea is to calibrate conjugate prior using “closest” available portfolio 

(CPP) with reliable default statistics. The form of the prior, criteria for CPP selection, 

application of the approach to real life and artificial portfolios are described in the paper. 

The advantage of the approach is an elimination of the arbitrary “level of conservatism 

assumption”. The level of conservatism is transparently restricted by CPP portfolio, the 

general principle is the more data one have for LDP portfolio, the less weight model puts 

on CPP risk profile. Proposed approach could be also extended for stress-testing purposes.      

 

JEL classification numbers: C01 
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1  Introduction  

Let us assume that there is a low default portfolio (LDP), for which we know for each time 

period t=1..T the number of borrowers at the beginning of each period 𝑛𝑡 and the number 

of defaulted borrowers (𝑑𝑡) during each period. 

The goal is to estimate expected default rate through the credit cycle (TTC 𝑃𝐷̅̅ ̅̅ ) or so-

called Central Tendency (CT) for the portfolio. CT should be non-zero even in case zero 

default events had been observed in the portfolio. 
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Let us also assume that observations are independent between time periods and the number 

of defaults in a portfolio follows binomial distribution: 

𝑃(𝐷 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 𝑝𝑜𝑟𝑓𝑜𝑙𝑖𝑜) = (
𝑁
𝐷

) pd𝐷(1 − pd)N−𝐷                        (1) 

, where probability of default (𝑝𝑑) is the parameter that we should estimate, 

𝐷 = ∑ 𝑑𝑇
𝑡=1 𝑡 

and  𝑁 = ∑ 𝑛𝑇
𝑡=1 𝑡 

 are the total number defaults and borrowers in the 

portfolio respectively.  

 

Maximum likelihood estimator (MLE) gives us the following answer to (1): 

𝑝𝑑𝑀𝐿𝐸 =
𝐷

𝑁
                                                            (2) 

In case of LDP portfolios both 𝐷 and 𝑁 could be very small numbers, D could be even 

equal to zero. As will be later proved by Monte-Carlo simulations, MLE estimator could 

significantly underestimate true default rate. The level of underestimation could be very 

significant in case of high correlation between default events and short observation 

periods. 

 

The most widely used approach to tackle 𝑝𝑑  underestimation problem in LDP was 

proposed by K.Pluto and D.Tasche [1] (further – P&T model). Generalized rule for PD 

calibration under original P&T model could be described as search of default rate estimate 

(PD) under which with the given confidence level (𝛾) one can reject hypotheses that we 

are able to observe less than historical number of defaults 𝐷: 

1 − 𝛾 ≤ 𝑃𝑃𝐷[𝐿𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 ′𝐷′ 𝑑𝑒𝑓𝑎𝑢𝑙𝑡𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑]                           (3) 

In case of assumption of independent default events (1), (3) could be expressed as: 

1 − 𝛾 ≤ ∑ (
𝑁
𝑖

) pd𝑖(1 − pd)N−𝑖  𝐷
𝑖=0                                         (4) 

 

This approach could be extended to correlated defaults case. Following [2], change in the 

company’s assets 𝑉𝑡 in year 𝑡 could be modelled as: 

V𝑡 = √𝜌S𝑡 + √1 − 𝜌ξ𝑡                                                   (5) 

where 𝜌 stands for the so-called asset correlation, 𝑆𝑡 is the realization of the systematic 

factor in year t, and 𝜉𝑡 denotes the idiosyncratic (or borrower-specific) component of the 

change in asset value. The cross-sectional dependence of the default events stems from the 

presence of the systematic factor 𝑆𝑡  . Both systematic and idiosyncratic factors are 

standard normally distributed, idiosyncratic factors are i.i.d., while joint distribution of 𝑆𝑡 

is multivariate normal and therefore is completely determined by the correlation matrix.  

 

Borrower defaults in year t if assets change in year t falls below threshold 𝑐: 

𝑉𝑡 < 𝑐                                                                (6) 

where default threshold 𝑐 could be calibrated from unconditional PD: 

𝑐 = Φ−1(𝑝𝑑)                                                          (7) 

with Φ denoting the standard normal distribution function. 

 

Following [3], probability of a default, given particular realization of systematic factor St 

is: 

G(pd, ϱ, St) = Φ(
Φ−1(pd)− √ρSt

√1−ρ
)                                           (8) 

Under assumption that default events are conditionally independent given particular 



Bayesian Approach to PD Calibration and Stress-testing in Low Default Portfolios     85 

realization of systematic factor, inequality (4) becomes: 

1 − 𝛾 ≤ ∫ ∑ (
𝑁
𝑖

) G(pd, ϱ, 𝑆)𝑖(1 − G(pd, ϱ, 𝑆))
N−𝑖

𝜙(𝑆)𝑑𝑆 𝐷
𝑖=0

+∞

−∞
                 (9) 

, where 𝜙 is a standard normal density function.  

 

Infimum of solutions to the inequality (9) will give us required 𝑝𝑑 estimate of the Central 

Tendency for portfolio. 

According to [1], the approach could be extended to multi-period case, but as shown in [4], 

multi-period case is very sensitive to renewal of the portfolio and therefore could give too 

volatile results. Therefore, further in the article simple multi-period version of the approach 

(so-cooled Pooled approach) is used. According to Pooled approach, observation within the 

time periods are treated as independent and therefore aggregated to one time window 

(omitting St time dependence).        

Another model, proposed in [5], is based on Bayesian inference. The main idea of the 

approach is to apply uninformed or conservative prior in order to add conservatism to PD 

estimates. The author also demonstrates that in the case of independent default events the 

upper confidence bounds (P&T model), can be represented as quantiles of a Bayesian 

posterior distribution based on a prior that is slightly more conservative than the uninformed 

prior.    

Bayesian estimator approach, proposed in [5], has the same drawbacks, - there is no clear 

guidelines how to choose the prior in order to get the reasonable level of conservatism or 

the level of conservatism that is connected to the risk profile of a bank. Due similarity and 

coincidence with the P&T (in case of uniform prior) this approach is not analyzed in the 

article separately.    

Another approach to PD estimation in LDP portfolios could be based on so-called 

«duration» treatment of migration matrixes (see [6] for details). The core of the approach 

is 𝑅×𝑅 generator or intensity matrix Λ. Based on generator matrix, migration probability 

matrix 𝑀(𝑡) for a given term t could be found as: 

𝑀(𝑡) =  𝑒𝛬𝑡                                                            (10) 

where the exponential is a matrix exponential, and the entries of Λ satisfy 𝜆𝑖𝑗 ≥ 0 ∀ 𝑖 ≠

𝑗;  𝜆𝑖𝑖 = −𝜆𝑖 = − ∑ 𝜆𝑖𝑗𝑖≠𝑗 . These entries describe the probabilistic behaviour of the holding 

time in state 𝑖 as exponentially distributed with parameter 𝜆𝑖, where  𝜆𝑖𝑖 = −𝜆𝑖 and the 

probability of jumping from state 𝑖 to 𝑗 is given by 
𝜆𝑖𝑗

𝜆𝑖
 (11). 

Even in case of zero default events in a given rating class, since there are migration to worse 

rating classes, the approach should produce non-zero PD estimates. 

The main disadvantage of the approach is that it lacks any level of conservatism and has 

serious restrictions: 

 It couldn’t be used for standalone portfolios that are covered by a specialized rating 

model - only low default rating classes of «normal» portfolios could be covered by this 

methodology. 

 Long history of a consistent ranking model application should be in place in order to 

estimate (10).  
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2  PD Calibration Framework 

Proposed in the article approach (further – CPP approach) is based on principles of 

Bayesian inference with the following assumptions: 

1) Conjugate prior (beta distribution) to binomial default distribution is used. 

2) Prior distribution is calibrated from the default rate statistics of the «closest possible 

portfolio» (further – CPP), which should have reliable default statistics and from 

economic point of view should be maximally close to LDP portfolio.  

 

The beta prior has the following form: 

𝐵𝑒𝑡𝑎(𝑝𝑑|𝑎, 𝑏) =
1

𝐵(𝑎,𝑏)
𝑝𝑑𝑎−1𝑝𝑑𝑏−1                                       (12) 

where 𝐵(𝑎, 𝑏) is a beta function. 

 

Generally, the posterior distribution of the default rate estimate (𝑝𝑑) is:  

𝑝(𝑝𝑑|𝒟) =  
𝑝(𝑝𝑑|𝒟)𝑝(𝑝𝑑)

𝑝(𝐷)
                                                (13) 

In case of assumptions of binomial default distribution (1), beta distributed prior (12) and 

given defaults statistics for LDP and CPP portfolios (𝒟𝐿𝐷𝑃 𝑎𝑛𝑑  𝒟𝐶𝑃𝑃  respectively), the 

posterior distribution is: 

𝑝(𝑝𝑑|𝒟𝐿𝐷𝑃 , 𝒟𝐶𝑃𝑃 ) ∝ 𝑝(𝒟𝐿𝐷𝑃|𝑝𝑑)𝑝(𝑝𝑑|𝒟𝐶𝑃𝑃 )  ∝ 

𝐵𝑖𝑛(𝐷|𝑝𝑑, 𝑁)𝐵𝑒𝑡𝑎(𝑝𝑑|𝑎, 𝑏)  ∝ 

𝐵𝑒𝑡𝑎(𝑝𝑑|𝑎 + 𝐷, 𝑁 − 𝐷 + 𝑏)                                             (14) 

Following [7], the mean of the posterior distribution (14) could be estimated as: 

𝑝𝑑̅̅̅̅ =
𝑎+𝐷

𝑎+𝑏+𝑁
                                                          (15) 

It also could be shown that posterior mean is convex combination of the prior mean and 

the MLE of LDP portfolio: 

𝔼(𝑝𝑑|𝒟) =
𝛼𝑚+𝐷

𝑁+𝛼
=

𝛼

𝑁+𝛼
𝑚 +

𝑁

𝑁+𝛼

𝐷

𝑁
= 𝜆𝑚 + (1 − 𝜆)

𝐷

𝑁
                        (16) 

where 𝛼 = 𝑎 + 𝑏  is an equivalent sample size of the prior, 𝑚 = 𝑎/𝛼 is the prior mean 

and the “weight” of the prior is: 

𝜆 =
𝛼

𝑁+𝛼
=

𝑎+𝑏

𝑁+𝑎+𝑏
                                                      (17) 

More data about LDP we have, the more important MLE becomes since the “weight” of a 

prior reduces. 

 

The CPP calibration approach, proposed in this article, consists of the following steps: 

1) Find the CPP portfolio, that satisfies the following requirements: 

 Default statistics is enough for PD calibration (according to internal validation or 

regulatory requirements). 

 From the economic point of view, risk drivers for LDP and CPP portfolios should be 

simmilar (e.g. financial sector companies is a bad CPP for large corporate portfolio 

since the risk drivers and   their level/speed of influence could be quite different). 

 From the economic point of view, LDP portfolio should be at least slightly risky (the 

central tendency should be higher) than CPP portfolio (e.g. sub-investment grade 

corporate portfolio could be a good CPP for investment-grade corporate portfolio). 

2) Calibrate the parameters to of the prior (12) to historical default rate of the CPP portfolio 

using MLE o approach. 
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3) Use estimator (15) to get desired 𝑝𝑑 value (mode or quantile of the posterior could be 

also used as an estimators). 

4) Apply variable dispersion beta regression model in order to get dependence between 

prior (12) parameters and macro-variables for stress-testing and point at time 𝑝𝑑 

calibration purposes. 

            

The main challenge of the approach is to find CPP portfolio. The following ideas/examples 

could be used as guidlines: 

1) In case we have to estimate 𝑝𝑑 for a «high» rating grade category, we can extend the 

sample up to the rating grades where default events are enough to pass the validation 

tests for 𝑝𝑑  estimation. For example, 𝑝𝑑  for AAA rated counterparties could be 

estimated using prior calibrated from statistics of counterparties rated from AA up to 

speculative grades. 

2) In case we should estimate Central Tendency for a LDP portfolio, covered by 

specialized ranking model, segmentation criteria could be relaxed. For example, 

portfolio of companies with more than 1 bln. USD annual revenue, default statistics of 

the companies with revenue from 100 mln. USD up to 1 bln. USD could be used as 

prior.  

 

Beta distribution as a prior has the following properties: 

 It is a conjugate prior to (1) and, therefore, allow us effective and simple posterior mean 

estimation.  

 The weight of the prior depends on the level and stability of DR estimates and do not 

depend on the number of observations in CPP (CPP can dramatically over wait the LDP 

by number of observations). 

 Beta prior can be regressed on macro-variables, so the model can be used seamless for 

stress-testing purposes. The advantage of variable dispersion beta regression (VDBR) 

model (see [8] for details) over classical regression model is the ability to predict mean 

and accuracy of estimates simultaneously depending on different covariates. Therefore, 

VDBR allows us to model not only the expected increase in PD level, but also the shift 

of our uncertainty in our estimate given stress situation.     

 

The CPP approach has the following properties: 

 The level of conservatism is quite transparent: by using prior we assume that the LDP 

portfolio is by default not less risky than the closest portfolio for which we have reliable 

𝑝𝑑 estimate. 

 The more data we have for LDP portfolio the more wait we will put to LDP data and 

less to the prior, moreover, as shown below, the wait of the prior could be estimated 

directly. 

 It’s very likely that the LDP and CPP portfolios are influenced by the same systematic 

factors, which contributes the accuracy of estimates. 

 It’s very likely that the LDP and CPP portfolios are influenced by the same bank’s risk 

appetite policy and strategy.         

Further, the results of application of estimators (2), (9) and (15) will be shown on artificial 

and real data sets. 
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3  Application of the Framework for Stress-testing Purposes 

For stress-tested purposes, shifted prior (12) could be used. The shift could be calibrated 

using variable dispersion beta regression (VDBR) model (see [8] for details). 

 

In order to apply VDBR model we have to reparametrize the prior (12) in the following 

way: 

𝐵(𝑦; 𝜇, 𝜙) =
Γ(𝜙)

Γ(𝜇𝜙)Γ((1−𝜇)𝜙)
𝑦𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1                           (18) 

where 𝜇 =
𝑎

𝑎+𝑏
, 𝜙 = 𝑎 + 𝑏. 

𝔼(𝑦) = 𝜇  and 𝑉𝐴𝑅(𝑦) = 𝜇(1 − 𝜇)/(1 + 𝜙) , therefore parameter 𝜙  is known as 

precision parameter, since for fixed 𝜇, the larger 𝜙 the smaller the variance of 𝑦. 

 

The definition of the VDBR model, given the parametrization (18), is: let the observed 

default rate of CPP portfolio 𝑦𝑖 in year i=1…T is distributed as 𝐵(𝜇𝑖 , 𝜙𝑖) independently 

and:  

𝑔1(𝜇𝑖) = 𝑥𝑖
𝑇𝛽                                                        (19.1) 

𝑔2(𝜙𝑖) = 𝑧𝑖
𝑇𝛾                                                       (19.2) 

where 𝛽 and 𝛾 are vectors of regression coefficients in the two equations, 𝑥𝑖  and 𝑦𝑖 

are regressor vectors of macro-variables or other risk drivers, 𝑔1and 𝑔2 are link functions 

(for example, logit). 

 

After we fit model (19.1), (19.2), for example, using MLE approach, in order to apply 

conditional on macro-variables prior (12), we have to invert re-parametrization of beta 

distribution (18): 

 

𝑎𝑠 = 𝑔1
−1(𝑥𝑠

𝑇𝛽)𝑔2
−1(𝑧𝑠

𝑇𝛾)                                              (20.1) 

𝑏𝑠 = 𝑔2
−1(𝑧𝑠

𝑇𝛾)(1 − 𝑔1
−1(𝑥𝑠

𝑇𝛽))                                         (20.2) 

 

where 𝑥𝑠 and 𝑧𝑠 are given by stress macro-variables or other stressed risk drivers 

 

Plugging conditional beta parameters into equation (15) we get stressed 𝑝𝑑 estimate: 

𝑝𝑑𝑠
̅̅ ̅̅ ̅ =

𝑎𝑠+𝐷

𝑎𝑠+𝑏𝑠+𝑁
                                                         (21) 

One of the possible obstacles to the this approach is a variable or even negligible equivalent 

sample size of the conditional prior 𝛼𝑠 = 𝑎𝑠 + 𝑏𝑠. One of the simplest mitigations to the 

problem is a fixation of the prior weight (17) according to thought the cycle calibration. 

Since conservative assumptions are always welcomed in stress-testing models, quantiles 

(e.g. 𝜂 = 99% 𝑜𝑟 99.5%) of the prior instead of mean could be used in equation (16) in 

order to capture uncertainty of our estimates in rare stress situations. Quantiles of the beta 

distribution will be directly influenced by the values of the second part VDBR model (19.2). 

𝑝𝑑𝑠
𝜂

= 𝜆𝑄𝐵(𝜂, 𝑎𝑠, 𝑏𝑠) + (1 − 𝜆)
𝐷

𝑁
                                         (22) 

where 𝑄𝐵 is a quantile function of beta distribution with conditional parameters 𝑎𝑠, 𝑏𝑠. 
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4  Monte-Carlo Study: Comparison of Approaches 

Let us assume that we have two portfolios, the first one is LDP with central tendency 

𝑝𝑑𝐿𝐷𝑃 and the second portfolio with central tendency 𝑝𝑑𝐶𝑃𝑃, for which we reliable default 

statistic. The second portfolio could be treated as CPP to LDP portfolio. 

The number of borrowers in all periods 𝑡 = 1 … 𝑇 is constant and equal to 𝑁𝐿𝐷𝑃  and 

𝑁𝐶𝑃𝑃 respectively. 

The probability of default for each borrower in each period is given by (8), where the 

systematic factor St and asset correlation ρ𝑡 is common for both portfolios in each period.   

The distribution of St is determined by correlation matrix with power 𝜗 time dependence 

structure: 

𝑠𝑖,𝑗 =  𝜗max(𝑖,𝑗)−min (𝑖,𝑗) 

Asset correlation value has random and constant (ρ𝑏𝑎𝑠𝑒) parts. The random part depends 

on the realization of systematic factor in order to capture effect of higher market 

correlations during stress events. As the result, in each period ρ𝑡  is determined by the 

following formula: 

ρ𝑡 = ρ𝑏𝑎𝑠𝑒 + ρ𝑏𝑎𝑠𝑒Φ(St) 

where Φ is the standard normal distribution function. 

  

General schema of Monte-Carlo simulations is the following: 

1) Simulate St and ρ𝑡 for each period 𝑡 = 1 … 𝑇. 

2) Using (8) and 𝑝𝑑𝐶𝑃𝑃 , 𝑝𝑑𝐿𝐷𝑃 values - determine conditional on St probability of 

default (𝑝𝑑) in each period (CPP and LDP portfolios share the same values of and St 

and ρ𝑡). 

3) Simulate using uniformly distributed random variables defaults in each portfolio. 

4) Apply estimators (2), (92) and (15) to simulated dataset. 

5) For each estimator % of underestimated cases (𝑝𝑑𝐿𝐷𝑃 <𝑝𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 )  and mean 

absolute error |
𝑝𝑑𝐿𝐷𝑃−𝑝𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑝𝑑𝐿𝐷𝑃 | (MAE) are computed.    

 

Monte-Carlo simulations were held for 3 different CPP portfolios, for each CPP portfolio 

3 different values of ρ𝑏𝑎𝑠𝑒 were used: 

 Independent assets dynamics assumption: ρ𝑏𝑎𝑠𝑒 = 0. 

 Basel II range of possible correlation values: ρ𝑏𝑎𝑠𝑒 = 12%, therefore ρ𝑡 is within the 

Basel II ( [9]) range 12% ≤ ρ𝑡 ≤ 24%. 

 Ultra-high correlation range: ρ𝑏𝑎𝑠𝑒 = 24%, 24% ≤ ρ𝑡 ≤ 48%. 

   

Number of observed periods and time dependence parameter for systematic factor are 

constant for all portfolios 𝑇 = 8, 𝜗 = 0.3. 

Parameters of LDP portfolio are constant: 𝑝𝑑𝐿𝐷𝑃 = 0.001,  𝑁𝐿𝐷𝑃 = 100, therefore the 

portfolio is low default due to low expected default rate and low number of observations 

simultaneously. 

The first CPP portfolio (CPP №1) has following parameters 𝑁𝐶𝑃𝑃 = 1000, 𝑝𝑑𝐶𝑃𝑃 = 0.01, 

it has proportionally higher number of observations and expected default frequency than 

                                                 

2Confidence level of 0.9 and mean value of asset correlation ρ𝑇𝑎𝑠𝑐ℎ𝑒 = 1.5 ∗  ρ𝑏𝑎𝑠𝑒 were used  
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LDP (10 times higher). Simulation results are provided in the Table 1.    

 

Table 1: Results for CPP №1 

 𝛒𝒕 = 𝟎 𝟏𝟐% ≤ 𝛒𝒕 ≤ 𝟐𝟒% 𝟐𝟒% ≤ 𝛒𝒕 ≤ 𝟒𝟖% 

 MAE, % 

Under - 

estimation, 

% 

MAE, % 

Under - 

estimation, 

% 

MAE, % 

Under - 

estimation, 

% 

Mean (2) 90% 45% 115% 53% 141% 67% 

CPP (15) 544% 0% 129% 26% 118% 63% 

P&T (9) 341% 0% 1965% 0% 5742% 0% 

 

The second CPP portfolio (CPP №2) has 𝑁𝐶𝑃𝑃 = 5000, 𝑝𝑑𝐶𝑃𝑃 = 0.01 , this artificial 

portfolio should provide information regarding sensitivity of the approach to a significant 

shift (5 times) in 𝑁𝐶𝑃𝑃. Simulation results are provided in the Table 2. 

 

Table 2: Results for CPP №2 

 𝛒𝒕 = 𝟎 𝟏𝟐% ≤ 𝛒𝒕 ≤ 𝟐𝟒% 𝟐𝟒% ≤ 𝛒𝒕 ≤ 𝟒𝟖% 

 MAE, % 

Under - 

estimation, 

% 

MAE, % 

Under - 

estimation, 

% 

MAE, % 

Under - 

estimation, 

% 

Mean (2) 90% 47% 111% 50% 140% 65% 

CPP (15) 789% 0% 140% 10% 114% 58% 

P&T (9) 333% 0% 1979% 0% 5770% 0% 

 

The third CPP portfolio (CPP №3) has 𝑁𝐶𝑃𝑃 = 1000, 𝑝𝑑𝐶𝑃𝑃 = 0.05 , this artificial 

portfolio should provide information regarding sensitivity of the approach to a significant 

shift (5 times) in 𝑝𝑑𝐶𝑃𝑃. Simulation results are provided in the Table 3. 

 

Table 3: Results for CPP №3 

 𝛒𝒕 = 𝟎 𝟏𝟐% ≤ 𝛒𝒕 ≤ 𝟐𝟒% 𝟐𝟒% ≤ 𝛒𝒕 ≤ 𝟒𝟖% 

 MAE, % 

Under - 

estimation, 

% 

MAE, % 

Under - 

estimation, 

% 

MAE, % 

Under - 

estimation, 

% 

Mean (2) 88% 43% 114% 51% 161% 66% 

CPP (15) 3009% 0% 260% 1% 158% 29% 

P&T (9) 343% 0% 1982% 0% 5896% 0% 

 

Pictures of smoothed densities of estimators and true central tendency values are provided 

in Appendix 1.  

 

Mean approach (2), for risk management purposes, has the worst results, since it has a clear 

wrong way risk pattern: the higher the level of correlation the stronger is the 

underestimation bias for central tendency. Mean estimator always has wiggly pattern (see 

Appendix 1) since expected number of defaults for all periods is less than one. The other 

disadvantage is frequent zero central tendency estimates.  

One can see that P&T model (9) produces very wiggle (see Appendix 1) estimates since 

each additional observed default provides significant jump estimated 𝑝𝑑 value. Moreover, 
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the «magnitude» has high dependence on a confidence level and correlation value. 

Therefore, the risk profile of the portfolio could be dramatically changed by arbitrary events, 

such as zero or one default occurrence and the choice of confidence interval.   

CPP (or Beta prior) approach (15) is the most conservative for zero correlation case, since 

default rate volatility in CPP portfolio is very low (due to ρ𝑏𝑎𝑠𝑒 = 0) and therefore the 

power of the prior is very high. Because beta prior is fitted to observable default rate in CPP 

portfolio, sensitivity to disproportion in 𝑁𝐶𝑃𝑃 and 𝑁𝐿𝐷𝑃 is low, but the dependence on 

change in 𝑝𝑑𝐶𝑃𝑃 is almost linear. 

Given the more realistic assumption of correlation range 12% ≤ ρ𝑡 ≤ 24%, the results of  

P&T model become very conservative, while CPP approach has reasonable level of 

conservatism for CPP №1 and CPP №2 and slightly over conservative for CPP №3 (due to 

15 times disproportion between LDP and CPP CTs). The level of conservatism is almost 

independent on the number of borrowers in CPP portfolio. On average, CPP approach has 

8 times more accurate estimates than P&T model. Moreover, the level of conservatism 

under Beta estimator is always restricted by the risk of CPP portfolio and therefore is 

measurable, understandable and could not be unreasonably high.  

For extreme correlation range 24% ≤ ρ𝑡 ≤ 48% , P&T model is unreasonable 

conservative, while Beta estimator still has reasonable results for CPP №2, CPP №3 and 

underestimates risks for CPP №1. Given relatively low central tendency, number of 

borrowers and just 8 time observation points, CPP №1 can hardly pass validation tests for 

reliable PD estimates in case of extremely high correlations and therefore, probably, could 

not be used as CPP portfolios.    

As the result, CPP approach could be overly conservative, in case of zero correlation case. 

In case of «real life» level of asset correlation, Beta approach has reasonable level of 

conservatism even with CPP portfolios that are 10-15 times more risky. The level of 

conservatism is significantly lower than in P&T model with 90% confidence level. The 

sensitivity to the population of CPP portfolio is relatively low (by construction), while the 

dependence on the central tendency of CPP is very significant, but restricted.  If CPP 

portfolio has enough observations for reliable PD estimation or significant margin of 

conservatism, CPP approach performs well even in case of extremely high level of 

correlation.       

 

 

5  Real Life Example 

The task is to estimate central tendency for Aaa rating class given default statistics provided 

by Moody’s Investor Service [10]. Number of observations 𝑛𝑡
𝑟 and number of defaults 𝑛𝑡

𝑟 

by rating classes 𝑟 = [𝐴𝑎𝑎, 𝐴𝑎, 𝐴, 𝐵𝑎𝑎, 𝐵𝑎, 𝐵, 𝐶]  is available since 1920. Nevertheless, 

due to economic development and shifts it’s reasonable to restrict the sample to one or two 

most recent credit cycles. Since the definition of global credit cycle is very obscure, let’s 

assume the time frame for our task should be restricted by 𝑡 = 1998 … 2015. 

To be on a conservative side, let’s extend definition of CPP portfolio up to ‘Highly 

speculative’ grade 𝐵 (including). Inclusion of ‘Extremely speculative’ grade 𝐶 could be 

treated as overly conservative. Moreover, ‘Extremely speculative’ grades could be driven 

by different economic forces than Investment and Speculative grade portfolios. Therefore, 

CPP consist of the following rating grades: [𝐴𝑎, 𝐴, 𝐵𝑎𝑎, 𝐵𝑎, 𝐵].     

The results of the application P&T model (9) and Beta (15) estimators are provided on 
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Figure 1 and Table 4. 

 

 
Figure 1: Aaa rating PD calibration results. 

 

Table 4: Aaa rating PD calibration results. 

Parameter Value 

Number of observed defaults in LDP portfolio 0 

Mean default rate in CPP portfolio 0.75% 
𝑵𝑪𝑷𝑷

𝑵𝑳𝑫𝑷
 43.82 

MLE fitted prior parameters (a,b) (0.62, 82) 

The weight of the prior (17) 4% 

P&T model (zero correlation assumption)  0.11% 

P&T model (12% correlation assumption)  0.41% 

CPP estimator  0.03% 

 

One can see that the CPP approach is significantly less conservative than P&T model and 

accidently coincides with Basel II [9] minimum 𝑝𝑑 value threshold. 

Using information from about World (WLD) GDP values3  (GDP (current US$)) and 

inflation adjusted oil prices4, one can try to relate the dynamics of these indicators with the 

default rate of CPP portfolio for stress-testing purposes (22). 

For fitting purposes ‘betareg’ package was used [11]. The goal of the analysis was not to 

find the best statistical model for CPP 𝑝𝑑 prediction, but to demonstrate how the approach 

(22) could work in practice. 

Figure 11 in Appendix 2 provide us information about result of ‘betareg’ fitting procedure 

if we try to fit both (19.1) and (19.2) using GDP and Oil dynamics. Let us exclude Oil from 

(19.2) due to absence of the clear hypnoses about influence of Oil price dynamics on Global 

default rate (individual correlation of Oil price dynamics and default rates is negative, while 

                                                 

3The World Bank database http://databank.worldbank.org/ 
4http://inflationdata.com/inflation/inflation_rate/historical_oil_prices_table.asp 
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in multivariable fitting procedure the sign of the coefficient is positive) and GDP dynamics 

from (19.1) due to non-intuitive sign of the coefficient.  

Figure 12 in Appendix 2 provide us information about model with restricted set of 

predictors. All predictors are significant and have economic intuitive sign. 

As the result, mean value of the stressed 𝑝𝑑 is driven by GDP dynamics scenario, while 

Oil price dynamics has direct influence on the uncertainty of our estimates (and therefore 

on the quantile). 

Using earlier estimated weight of the prior and formulas (21), (22), we could derive 

conditional 𝑝𝑑 for rating class Aaa in a given scenario. Results are summarized in 

Table 55.  

 

Table 5. Stress-testing results. 
Scenario Risk 

GDP Oil Mean Quantile 0.95 

0% 0% 0.06% 0.15% 

-3% -10% 0.09% 0.41% 

-3% +50% 0.09% 0.42% 

 

 

6  Conclusion 

The main assumption of the proposed Beta approach is in similarity of risk characteristics 

between LDP and more statistically stable CPP portfolio, therefore the level of 

conservatism of the approach is economically transparent and restricted by the level of risk 

in CPP portfolio. By construction of the model, the level of conservatism is predominantly 

driven by the riskiness of the CPP portfolio, the influence of disproportion in number of 

observations is less pronounced, especially in case of presence of assets correlation between 

borrowers. The other property of the approach is that the more statistics we get for LDP 

portfolio, the less influence CPP portfolio has. 

Absence of dramatic conservatism increase due to asset correlations between borrowers is 

a very strong property of the approach, especially for highly volatile economies of 

developing countries.  

The approach has very limited requirements for computing power since all steps, except 

beta distribution fitting, has closed form solutions. Moreover, in case of simplified approach 

to betta fitting procedure (methods of moments), all steps could be done in Excel 

spreadsheet.  

The approach could be easily extended for stress-testing purposes and point in time PD 

assessment (for example, for IFRS 9 purposes). 

 

 

 

 

 

                                                 

5The influence in Oil dynamics change is dismal, nevertheless it demonstrates additional flexibility 

of the model.    
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Appendix 
 

Appendix 1: 

 
Figure 2: CPP №1 (ρbase= 0%) 

 

 
Figure 3: CPP №1 (ρbase= 12%) 

 

 
Figure 4: CPP №1 (ρbase= 24%) 
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Figure 5: CPP №2 (ρbase= 0%) 

 

  

 
Figure 6: CPP №2 (ρbase= 12%) 

 

 
Figure 7: CPP №2 (ρbase= 24%) 
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Figure 8: CPP №2 (ρbase= 0%) 

 

 
Figure 9: CPP №2 (ρbase= 12%) 

 

 
Figure 10: CPP №2 (ρbase= 24%) 
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Appendix 2 

 

.  

Figure 11: Output ‘betareg’ package for full set of predictors 

 

.  

Figure 12: Output ‘betareg’ package for restricted set of predictors 

betareg(formula = SpecDR ~ GDP + Oil | GDP + Oil, data = dat) 

 

Standardized weighted residuals 2: 

    Min      1Q  Median      3Q     Max  

-1.8664 -0.8938  0.1481  0.8228  1.6286  

 

Coefficients (mean model with logit link): 

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)   6.1166     4.3737   1.398  0.16197    

GDP         -11.7530     4.4229  -2.657  0.00788 ** 

Oil           1.1835     0.4275   2.768  0.00564 ** 

 

Phi coefficients (precision model with log link): 

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)   19.088      8.019   2.380  0.01730 *  

GDP          -17.667      8.633  -2.046  0.04071 *  

Oil            4.458      1.589   2.805  0.00503 ** 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

betareg(formula = SpecDR ~ GDP | Oil, data = dat) 

 

Standardized weighted residuals 2: 

    Min      1Q  Median      3Q     Max  

-3.0904 -0.6652  0.1464  0.7313  1.4934  

 

Coefficients (mean model with logit link): 

            Estimate Std. Error z value Pr(>|z|)    

(Intercept)    8.379      4.152   2.018  0.04359 *  

GDP          -12.531      3.982  -3.147  0.00165 ** 

 

Phi coefficients (precision model with log link): 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)    2.123      1.270   1.672   0.0946 . 

Oil            2.432      1.167   2.084   0.0372 * 

--- 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

 


