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Funding optimization for a bank

integrating credit and liquidity risk
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Abstract

In this paper we apply two optimization frameworks to determine
the optimal wholesale funding mix of a bank given uncertainty in both
credit and liquidity risk. A stochastic linear programming method is
used to find the optimal strategy to be maintained across all scenar-
ios. A recursive learning method is developed to provide the bank with
a trading signal to dynamically adjust the wholesale funding mix as
the macroeconomic environment changes. The performance of the two
methodologies is compared in the final section.
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1 Introduction

Banks provide loans to both retail and corporate counterparties. These loans

are assets on the balance sheet that yield a certain interest rate. The bank re-

quires funding (a liability on the balance sheet) to support this lending activity.

The main types of funding available to a bank are:
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• Deposits from both retail and wholesale customers.

• Debt instruments of varying term issued directly to the market (wholesale

funding).

This exposes the bank to the risk of counterparties failing to repay the loans,

which is termed credit events. The deposit and debt instruments used to fund

the loans are usually short term in nature creating a mismatch compared to

the long term nature of the asset profile (i.e. a 20 year mortgage loan funded

via 3 month debt instruments). This mismatch exposes the bank to interest

rate risk (assets and liabilities re-price at different durations) and liquidity

risk (the uncertainty of the cost of funding at future dates). The extreme and

novel macroeconomic realities observed over the last couple of years exposed a

number of weaknesses in the risk management methodologies used by banks.

This includes much higher credit losses than expected, higher liquidity pre-

miums on wholesale funding during times of distress and the volatility of the

deposit base during a flight to safety. A major weakness in the current risk

management methodology is the understanding of the relationship of credit,

liquidity and interest rate risk.

To ensure profitability the interest earned on the assets should exceed the cost

of funding. The bank needs to continuously fund the balance sheet as the ex-

isting funding mature and the level of the deposits change with the economic

environment. Wholesale funding is an important funding source for South

African banks. Bank’s issue debt at various durations, ranging from overnight

to 60 month instruments. In a positive interest rate environment short dated

debt is usually cheaper compared to longer dated instruments however funding

with short dated instruments exposes the bank to more roll over risk events,

where the cost of rolling debt is uncertain (i.e. liquidity risk). The optimiza-

tion methodologies attempt to balance the cost of wholesale funding with the

liquidity and interest rate risk.

This paper integrates the sub-components underlying the banks’ balance sheet

to facilitate the projection of the net interest income allowing for both liquid-

ity, interest and credit risk. The sub-components include retail and whole-

sale loans, retail and wholesale deposits and bank issued debt instruments.
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Stochastic linear program (”SLP”) and recursive learning (”RRL”) models are

developed to determine the optimal duration mixes for the wholesale funding.

The calibration of the sub-components is a research topic in its own right.

Only a simplified representation was assumed to empirically test the optimiza-

tion models developed in this paper.

The SLP method is used to determine the optimal duration of the wholesale or

debt funding given the uncertainty. This provides the funding duration that

should be maintained overtime. The RRL is a dynamic model that provides

a trading signal to dynamically adjust the duration of the wholesale funding

portfolio as interest rates and the credit losses change. A comparison of the

returns of the RRL and SLP is used to test the performance of each method.

2 Literature Study

2.1 Stochastic linear process

The uncertainty underlying a bank’s assets and liabilities has prompted banks

to seek greater efficiency in the management of their assets and liabilities. This

has led to studies concerned with the structure of the bank’s assets and liabili-

ties to achieve some optimal trade-off among the various risks. Chambers and

Charnes (1961) wrote one of the first papers based on maximizing profitability

within capital and liquidity constraints. Uncertainty is reflected in the credit,

liquidity and interest rate risk embedded in the performance of both assets

and liabilities. Mathematical programming models that incorporate this un-

certainty are known as stochastic programs.

Available stochastic program methodologies include: change constraint pro-

gramming, dynamic programming, sequential decision theory, stochastic de-

cision trees and linear programming under uncertainty (or stochastic linear

programming (SLP)).

The text book by Zenios and Ziemba (2007) set out the practical application
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of stochastic programming. Kusy and Ziemba (1986) was one of the first prac-

titioners to advocate the used to stochastic linear programming with simple

recourse for an asset liability framework, identifying challenges with available

computer power to solve these large problems. Guven and Persentili (1997)

also put forward the SLP approach to solve the stochastic program presented

by the asset liability problem. The evolution of both computational power

and more refined search algorithms have promoted this methodology. The

method is widely used to support financial decision making, see Kouwenberg

and Zenios (2001), Carino et al. (1994), Edirisinghe and Patterson (2007) ,

Hilli et al. (2007) and Ying-jie and Cheng-iin (2000). This methodology al-

lows for a traceable solution when the problem statement extend over multiple

periods and support the path dependency of the wholesale funding decisions.

The SLP model can be extended to include multiple objectives, such as liq-

uidity constraints and profit maximization. A multi objective approach was

not considered as part of this paper however the current methodology can be

extended to include this, see Aouni, Colapinto and La Torre (2014) and Kos-

midou and Zopounidis (2008).

The solution to solve the stochastic linear programs, including the various

forms of recourse rest on the pioneering work by Benders (1962), Dantzig

(1963) and Dantzig and Wolfe (1960). These authors developed various method-

ologies to decompose a problem using either an inner or outer linearization to

solve a large and complex problem. Benders decomposition breaks a large

problem into a number of smaller problems that can be solved individually

while mining for a global solution through an iterative process. The Dantzig -

Wolfe decomposition focus on the duel of the linear problem.

The properties of the linear problem and in particular the properties of the

recourse function are key to determine the convergence, feasibility and opti-

mality of the various search algorithms proposed. Van Slyke and Wets (1969)

extended Benders decomposition into a solution termed the L-Shape method.

This will be the method used to solve the stochastic linear problem in this

paper. The text books by Brige and Louveaux (1997) and Kall (1976) pro-

vides a good overview of developments in linear programming, including the

L-Shape methodology and the various important theoretical consideration to
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ensure feasibility, optimality and convergence. Murphy (2013), Wets (2000)

and Dempster (1980) provides a good review on the L-Shaped methodology.

There has been a number of enhancement to the original L-Shape method such

as more robust feasibility cuts, using a multi cut approach to speed up conver-

gence and methods such as bunching and realizations, see Brige and Louveaux

(1997) for a discussion on these approaches.

2.2 Recursive learning

Dynamic programming, and in particular reinforcement learning is widely rec-

ognized in financial decision models. This is widely used to develop automated

trading rules or portfolio selection models. The setup of the optimization prob-

lem, in particular the path dependency and dynamic nature of the decision

process aligns well with a dynamic programming methodology. The reward

function underlying the reinforcement learning methodology can be non linear

providing more flexibility as the SLP method. This flexibility allows for the

risk in the form of earnings volatility to be included in the optimization criteria.

The optimization problem share similarities with a Markov decision process

(”MDP”). Formulating the optimization problem in this way opens up the

field of reinforcement learning. As discussed in Marsland (2009), Goldberg

(1989), Busoniu et al. (2009) and Sutton (1992) a MDP is a mathematical for-

mulation partitioned over various statuses or time intervals with a transition

function to measure the movement across the various statuses and a corre-

sponding reward function to measure the impact of the decision. A MDP has

an agent (or multiple agents) that makes policy decisions affecting the transi-

tion function. The aim is to train the agent or policy function to optimize the

reward, usually based on historic data or real time on-line learning.

An important consideration in specifying the MDP is the path dependency

of the reward function. Optimizing the policy decision at time t is dependent

on the output of the reward function from time t = 0 to time t − 1. Dynamic

programming is a method used to find an optimal policy for the MDP. Busoniu

et al. (2009) constructed a Q-function as the cumulative discounted rewards

from time 0 to time t to find the optimal policy. A common methodology used



6 Funding optimization for a bank...

to find the optimal solution is based on the Bellman optimal equations based

on the Q-function. The Q-function requires each possible state and action pair

to be identified to specify an iterative policy search across all these pairs to

optimize the cumulative returns.

The action space underlying the optimization problem in this paper is mul-

tidimensional and continuous, or even if a more simplified discrete option is

constructed consist of a very large number of possible action states. The Q-

function optimization requires the evaluation across all or a large portion of

possible states. This together with curse of dimensionality requires a fairly

large training dataset to support the optimization.

Reinforcement learning differs from supervised learning in that no target out-

come is provided. In supervised learning the MDP is trained to historic or

on-line data by minimizing the difference of the target and model outcome.

For reinforcement learning the system takes actions based on some policy and

receives feedback on the performance based on these actions. The parameters

driving the policy are adjusted to increase the reward function. There is no

target return or outcome for the optimization.

A number of reinforcement learning methodologies have been applied in the

context of automated trading decisions and active portfolio management. Ne-

uneier (1996) developed a Q-learning approach to support a portfolio manage-

ment approach using on-line reinforcement learning.

A recurrent learning algorithm is a recognized methodology applied to train a

MDB that is path dependent. Examples of these algorithms are backpropoga-

tion through time, see Werbos (1990) and an on-line learning algorithm called

real-time recurrent learning (”RTRL”) set out in Rumelhart et al. (1985).

Moody et al. (1998) and Moody and Saffel (2001) developed a recursive learn-

ing algorithm called Recursive Reinforcement Learning (”RRL”) based on the

recursive methodologies from Werbos (1990) and Rumelhart et al. (1985) using

the Shape ratio (defined as the average return divided by the standard devi-

ation of the return) or differential Sharp ratio as the reward function. This
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methodology was developed to optimize the return of the portfolio selection

framework.

The RRL methodology developed has been used in a number of portfolio se-

lection and rule based trading systems. See Dempster and Leemans (2006),

Maringer and Ramtohul (2012), Gorse (2011) and Bertoluzzo and Corazza

(2014) for application in automated trading rules. The papers extended the

RRL to allow for either uncertainty through a stochastic process, an alterna-

tive iterative process compared to the gradient rule or more granularity such

as transaction costs and non-stationary data.

3 Model Setup

The bank will have a funding gap each month as existing funding matures. The

size of the funding gap to be filled by new wholesale funding will change each

month based on the change in the asset and deposit portfolios and the por-

tion of the existing wholesale funding that matures. The size of the wholesale

funding portfolio that mature in a particular month is based on the previous

funding decisions. The size of the funding gap and thus exposure to cost of

funding volatility is impacted by historic funding decisions. The aim of this

section is to parametrize the funding gap and wholesale funding decision avail-

able to the bank.

A representation of the monthly net interest income margin (”NII”) is

shown below:

NII = X1 ∗ (x1 − CL) − X2 ∗ x2 − X3 ∗ x3 − X4 ∗ x4 − X5 ∗ x5 − X6 ∗ x6

(1)

where X1 is an asset portfolio consisting of personal, mortgage and corporate loans.

x1 is the interest rate received on the assets above.

CL is the credit loss on the assets above.

X2 is a portfolio of retail and corporate deposits.

x2 is the interest paid on retail and corporate deposits.

X i, for i = 3, 4, 5, 6 is the size of wholesale funding.
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xi, for i = 3, 4, 5, 6 represents the interest rate paid on each instrument.

For the purposes of this paper we considered duration 6,12,18 and 24 months

for X i, for i = 3, 4, 5, 6. The interest earned on the asset portfolio (x1) is net of

the credit loss (CL) for the remainder of this paper. A mathematical equation

of the bank’s balance sheet at month t is:

At = Lt + Et (2)

where Et is the level of equity, At the assets and Lt the liabilities as at month t.

At the end of each projection period t the asset portfolio reduces due to the

monthly capital repayment, maturing loans and incurred credit losses. New

loans makes up for this natural reduction in the asset portfolio. We assume

the asset portfolio stay constant over the projection period.

The balance sheet extends to the following based on the notation above:

X1
t = X2

t + X3
t + X4

t + X5
t + X6

t + E, t ∈ [1, 60] (3)

where E is fixed over the projection period.

A portion of the wholesale funding base will mature each month based on pre-

vious funding decisions. For example the entire portfolio will mature if only

funded via monthly instruments. Let Xmi
t indicate the portion of the portfolio

that mature in month t for each i = 3, 4, 5, 6. Define Xm3
t , Xm4

t , Xm5
t and

Xm6
t as the wholesale funding instruments maturing in month t.

Assuming the equity level is constant (Et) the funding gap Gt is a function of

the change in the asset portfolio (X1
t −X1

t−1) a change in the deposit portfolio

(X2
t − X2

t−1) and the sum of all the maturing wholesale instruments (Xmi
t),

where i = 3, 4, 5, 6.

Gt = X1
t − X1

t−1 − (X2
t − X2

t−1) + Xm3
t + Xm4

t + Xm5
t + Xm6

t (4)

Each month the bank needs to choose between the various wholesale funding

instruments to fill the funding gap. The optimization problem tries to identify
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the best funding mix by optimizing the NII function.

Let Ft be a vector of the funding decision, Ft = 〈F 3
t , F 4

t , F 5
t , F 6

t 〉 such that

F 3
t represent portion of the funding gap (Gt) to be filled by wholesale instru-

ments X3
t .

3.1 Sub-models

Figure 1 highlights the process followed to apply the two optimization method-

ologies to optimize the NII as set out in equation 1. An economic scenarios

generator (”ESG”) is used to generate a monthly view of prevailing interest

rates for a 60 month projection period. A propriety scenario generator using

the methodology set out by Sheldon and Smith (2004) was used. The start-

ing point for this exercise is December 2014. The ESG outputs a 60 month

projection horizon of prevailing interest rates for each month from December

2014 to December 2019. The ESG model provided 600 unique scenarios, each

projected from December 2014 to December 2019.

The NII per equation 1 is calculated for each of the 600 scenarios, from Decem-

ber 2014 to December 2019. This requires a projection of each of the inputs in

equation 1 based on the simulated ESG scenario. Various sub-models are used

to translate the parameters required per equation 1 based on the ESG scenar-

ios. A 5 to 10 year history of data till December 2014 was used to calibrate the

various sub-models. The credit loss (CLt), deposit portfolio behavior (X2
t , x2

t )

and cost of wholesale funding (x3
t , x

4
t , x

5
t , x

6
t ) are projected over the projection

period for each of the 600 ESG scenarios. The allows us to calculate the NII

per equation 1 from December 2014 to December 2019 for each ESG scenario.

The optimization models are deployed across the 60 month projection period

and scenarios to find the optimal funding decision.

Specifying the sub-models

The sub-models are used to relate the input parameters required to project the

NII per equation 1 to a yield curve scenario produced by the ESG. The detailed

discussion of each sub model is beyond the scope of this paper. The section
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Economic Scenario 
Generator(ESG)

The ESG model is used  to:

t=1 t=2 …. t=60

Dec 2014

Time period of ESG 
simulations

Outcome from the ESG 
model

Dec 2019

• The ESG model output a set of 
yield curve scenarios.

• 600 unique interest rate scenarios 
are produced by the ESG. 

S
u

b
 m

o
d

e
ls

Input:

Output

• 600 unique interest rate scenarios 
are produced by the ESG. 

Portfolio replication model:
• Deposit levels and interest rates.
• Xt

2, xt
2

Credit decomposition and regression 
model:
• Interest on loan portfolio and credit loss.
• xt

1, CLt

Poison jump diffusion process:
• Cost of wholesale funding.
• 20 unique outcomes is calculated for each ESG 

scenario.
• This results in 12000 unique scenarios. 
• xt

3, xt
4 , xt

5 , xt
6

t=1 t=2 …. t=60

Dec 2014 Dec 2019

Scenario 1

Scenario 2

Scenario 3

Scenario 12,000

…..

The Net Interest Income 
(NII) is calculated for 
each scenario and for 
each month

SLP RRL

Optimization:

Determine the optimal funding mix 
from t=1 to t=60 across the 12000 
unique scenarios.

Figure 1: Diagram of the model framework to apply the optimization methods

below provides a brief overview of the models used. The model framework and

optimization formulation set out in this paper is agnostic to the sub-model

calibrations.

The ESG model per Sheldon and Smith (2004) is arbitrage-free, with calibra-

tions based on the observed or quoted market prices of various instruments.

The model satisfies the efficient market hypothesis and for most asset classes

assume some type of Ornstein-Uhlenbeck process that is a mean reverting ran-

dom walk process. See Smith and Speed (1998) for a discussion on the use of

deflators in the ESG model.

A portfolio replication model was used to calibrate both the size and inter-

est rate on the deposit portfolio. This is based on deposit data from January

2000 to December 2014. This model is used to project both the size of the

deposit portfolio (X2
t ) and the interest rate (x2

t ) at time t per the ESG sce-

narios. The portfolio replication approach follows the methodology set out
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by Paraschiv (2011) where the deposit portfolio behavior is represented as a

portfolio of risk free assets at various duration.

A regression model was used to calibrate the relationship between the historic

credit loss CLt from January 2007 to December 2014 to prevailing interest

rates. This model is used to project the CLt underlying the asset portfolio

for each ESG scenario. The methodology is similar to Havrylchyk (2010) who

developed a regression type model to empirically test the impact on the credit

loss due to a change in a set of macro-economic variables on the South African

banking sector.

A two step projection process is used to project the cost of wholesale funding

(x3
t , x

4
t , x

5
t and x6

t ). The first is the credit spread paid by the bank over and

above the risk free rate, and the second is a liquidity premium. The Leland

and Toft (1996) model is used to calculate the credit risk component. The

portion of the observed spread not explained by the credit spread is termed

the liquidity spread. A poison stochastic jump process was calibrated using

historic liquidity spreads from January 2007 to December 2014. This model

is used to introduce the large sudden jumps observed in the cost of whole-

sale funding and thus liquidity risk as part of the funding. The methodology

per Bates (1996) is used for the poison stochastic jump process. The poison

stochastic jump process calculates the liquidity risk premium and the Leland

ad Toft model the credit spread to calculate the cost of funding underlying

each of the ESG scenarios. 20 unique paths are produced for each of the 600

ESG simulations across the 60 month projection period.

Per Figure 1 the SLP and RRL optimization is applied to the 600 scenar-

ios times 20 unique liquidity risk paths. The results in 12000 outcomes pro-

jected for 60 months from December 2014 to December 2019. The optimiza-

tion methodologies are used to determine the optimal mix of wholesale funding

given the uncertainty presented via the 12000 scenarios.
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4 Stochastic Linear Programming

4.1 Eventtree

The computing resources required to solve certain algorithms operating in

higher dimensions grow exponentially causing intractable problems (curse of

dimensionality). Methods to approximate the continuous nature will attempt

to cover only the realizations of the random process that are truly needed to

obtain the near-optimal decision. In the case of the stochastic linear opti-

mization problem this is achieved by breaking down the problem to a finite

approximation. The event tree is a tool to express the continuous distribution

with a simple discrete approximation via a set of nodes and branches see Du-

pacova et al. (2000). It is important to recognize that the event tree is an

approximation of the process only.

There are a number of methods available to construct an event tree. The

approach discussed in Gulpnar et al. (2004) was used in this paper to cali-

brate the event tree. This procedure is based on a simulated and randomized

clustering approach. The event tree consist of decision nodes and branches

originating from the same base. The structure of the event tree supporting this

paper is two event branches originating at each node. The sub set of branches

created under this structure is independent. Thus moving down from node 1

and up from node 2 will not end in the same position.

The projection horizon supporting this paper is 60 months. This results in

1.152 ∗ 1015 unique nodes at t = 60. This dimension exceed the number of

scenarios to calibrate the event tree. To overcome this challenge we partition

the 60 month time period into 12 decision time intervals.

4.2 Methodology

The Stochastic Linear Program (”SLP”) is used to optimize the NII function

per equation 1. The optimization decision is focused on the duration mix of

funding issued to fill the monthly funding gap Gk
t (see equation 4) at time t

for scenario k. The subscript notation for the remainder of this section is t for
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time period and k for the scenario.

The objective is to minimize the funding cost to the bank. The cost im-

pact of the new funding is a function of the current interest rates and the size

of the funding gap, where the previous funding decisions drive the size of the

funding gap. Choosing mostly long term funding will lock in historic interest

rates and reduce the exposure of jumps in funding costs as the funding gap

will be smaller. However longer term funding is generally more expensive.

F k
t is the decision vector representing the funding mix < F 3,k

t , F 4,k
t , F 5,k

t , F 6,k
t >

to fill the gap Gk
t such that Gk

t = F 3,k
t +F 4,k

t +F 5,k
t +F 6,k

t . The setup needs to

be expanded to explicitly allow decisions made in time t − 1 to influence the

optimal decision in time t. To achieve this add F 7,k
t to vector Ft and to the

NII function, where F 7
t is the sum of all the wholesale funding not maturing in

month t. Thus F 7
t is known based on previous funding decisions. F 7,k

t intro-

duce the path dependency of previous decisions. Note F 3,k
t 6= X3,k

t as F 3,k
t is

only the portion of the funding gap filled by the 6 month instruments, where

X3,k
t will also include 6 month instruments issued over the last 5 months. The

interest rate paid on an instrument relates to the rate as at issue date, thus

the rate x3,k
t will only apply to F 3,k

t . The NII function for the SLP is as follows:

NII = X1,k
t ∗x1,k

t −X2,k
t ∗x2,k

t −F 3,k
t ∗x3,k

t −F 4,k
t ∗x4,k

t −F 5,k
t ∗x5,k

t −F 6,k
t ∗x6,k

t −F 7,k
t ∗x7,k

t .

(5)

Let the vector xk
t : < x1,k

t , x2,k
t , x3,k

t , x4,k
t , x5,k

t , x6,k
t , x7,k

t > represent the interest

rate earned or paid on the various instruments under scenario k.

Let dk
t be the outcome at time t for scenario k, where dk

t represent the change

in the deposit funding from month t − 1 to month t. Thus dk
t = X2,k

t−1 − X2,k
t .

If the level of the deposit portfolios reduce then dk
t > 0 and thus the size of

the wholesale funding will increase.

Per above Xmi,k
t is the level of the wholesale funding i = 3, 4, 5, 6 to ma-

ture in month t, for scenario k. A 6 month instrument issued in month t − 6

will mature in month t, thus Xmi,k
t = F i,k

t−Mi, where Mi is the term of the

instrument i. Based on the above definition the gap Gt defined in equation 4
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summarize as follows:

Gk
t =

6∑
i=3

Xmi,k
t + dk

t (6)

Per the model setup the bank needs to fill the funding gap Gt by the funding

choice such that:

Gk
t = F 3,k

t + F 4,k
t + F 5,k

t + F 6,k
t (7)

¿From the path dependency discussion above F 7,k
t is defined as follows:

F 7,k
t =

7∑
i=3

F i,k
t−1 −

6∑
i=3

Xmi,k
t (8)

Let x7,k
t be the interest rate paid on the remaining wholesale liabilities prior

to funding the gap in month t. This interest rate is a function of the pre-

vious funding decisions and corresponding interest rates that applied, thus

is fully computable using information from the previous known outcomes at

t = 1, 2...t − 1.

x7,k
t =

∑6
i=3[F

i,k
t−1x

i,k
t−1] − [

∑6
i=3 Xmi,k

t xi,k
t−Mi]

F 7,k
t

(9)

Define F 1,k
t = X1,k

t to be the size of the asset portfolio and F 2,k
t = X2,k

t to be

the size of the deposit portfolio. This notation is used to support the linear

model formulation in F rather than X. The only change in the size of F 2,k
t is

due to the change in the deposit portfolio, where F 1,k
t is constant over time.

Thus the following equality holds F 2,k
t = F 2,k

t−1 + dk
t .

Formulating the linear model

The NII is formulated in F per equation 7, this is formulated in terms of the

SLP optimization methodology as:

Max(xt)
T Ft. (10)

Equation 10 is the same as minimizing the cost of funding
∑7

i=3 −xi
tF

i
t . The

expanded form of the linear program can be written as per the L-shape method:

Maximize (xt)
T Ft + Eξ[(xt+1)

T Ft+1 + Eξ[(xt+2)
T Ft+2] + ...]. Where the re-

alization of the random event in stage t + 1, t + 2, .. is ξ ∈ Ω. Applying the
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master and sub problem per the L-shape the problem simplify to Maximize

(xt)
T Ft + θt, where θt is iteratively expanded.

The constraints applicable to this linear problem are:

F 1,k
t = F 1,k

t−1 = X1 (11)

F 2,k
t = F 2,k

t−1 − dk
t (12)

F 3,k
t + F 4,k

t + F 5,k
t + F 6,k

t =
6∑

i=3

Xmi,k
t + dk

t (13)

F 7,k
t = F 3,k

t−1 + F 4,k
t−1 + F 5,k

t−1 + F 6,k
t−1 + F 7,k

t−1 −
6∑

i=3

Xmi,k
t (14)

(15)

The constraints can be written in the form of equation Wxk
t = hk

t − T k
t x

a(k)
t−1 .

The multi period nested L-Shape algorithm was used to determine the optimal

strategy, if feasible.

4.3 Results

Table 1 show three trading strategies where F3 represent the 6 month instru-

ments, F4 the 12 month instruments, F5 the 18 month instruments and F6

the 24 month instruments. The % represents the portion of the funding gap

to be filled by the various instruments. Trading strategy 1 is more weighted

towards longer dated instruments (mainly 24 month instruments) where strat-

egy 3 focus on short dated instruments. Trading strategy 2 is a mix of the

above, however still more weighted towards the longer dated funding.

The SLP optimization methodology is used to select the optimal trading

strategy for the bank. The SLP optimization is designed to maximize return

only. Other performance metric such as the Sharp Ratio (average return di-

vided by the standard deviation), Value at Risk and Conditional Value at

Risk is not considered as part of the SLP optimization. Equation 10 can be

extended to target other performance metric however a more complex opti-

mization methodology will apply due to the non-linearity of the optimization
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Table 1: Funding strategies

Trading strategy F3 F4 F5 F6

Strategy 1 0 0 12.5% 87.5%

Strategy 2 0 12.5% 25% 62.5%

Strategy 3 87.5% 12.5% 0 0

criteria.

The SLP optimization method selected trading strategy 1 as optimal in terms

of maximizing the return. The performance of strategy 2 and 3 is shown for

comparison purposes only. Short dated debt was cheaper compared to longer

dated debt per the model setup. Funding the bank with short dated debt ex-

poses the bank to funding at a very high cost during periods to distress. The

SLP optimization methodology selected a longer funding approach to cushion

the bank from these liquidity events.

Strategy 1 maximizes the average return over a 60 month projection period

and across the 12000 scenarios. The preference to fund the bank with longer

dated instruments mitigate the liquidity risk introduced by continuously rolling

funding at shorter durations. Table 2 show the return distribution for each

of the strategies split into 4 buckets for simplicity. Strategy 1 has the biggest

portion in the high return bucket, this is the driving force of the superior re-

turns for Strategy 1. This coincide with periods of higher interest rates where

the return on assets reprice faster than the cost of funding due to the longer

funding duration, confirming the importance of funding at longer durations.

8% of the outcomes under Strategy 1 results in a loss compared to 7% for

strategy 2 and 3. The 95% VAR and CVAR is based on the return of assets

instead of the nominal loss. This return should be multiplied with the size

of the asset portfolio to obtain an absolute level. This confirms the slightly

worst 95% VAR and CVAR for Strategy 1 as shown in Table 3. The positive

skewness in the results distribution results in a higher standard deviation of

the return under Strategy 1 impacting the Sharp ratio per Table 3. A sum-
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Table 2: Strategy 1 has a higher portion in the high return category

Return category Strategy 1 Strategy 2 Strategy 3

Loss 8.1% 7.1% 7.3%

Low return 23.4% 24.4% 24.3%

Medium return 57.9% 66.4% 65.8%

High return 10.6% 2.2% 2.6%

mary of the performance of the three trading strategies across a number of

performance metric are shown in the Table 3.

The optimal solution is a function of both the scenarios considered and the

Table 3: Performance metric across the strategies

Trading strategy Average return Sharp Ratio 95% VAR CVAR

Strategy 1 3.1% 5.65 -0.2% -0.64%

Strategy 2 3.0% 6.56 -0.2% -0.61%

Strategy 3 3.0% 6.77 -0.1% -0.52%

assumptions on the sub-components such as the credit loss, deposit portfolio

behavior and cost of wholesale funding. The impact of choosing a different

starting date for the projection and lower liquidity risk in the cost of funding

was tested. This resulted in a shorter optimal funding compared to Strategy

1 above.

The power of the above methodology is to isolate specific impacts to facili-

tate the bank to determine the optimal wholesale funding mix given specific

outcomes. We investigated the impact of reducing the liquidity risk via the liq-

uidity premium projection using a poison jump process with less jumps. The

optimal strategy approaches the short strategy from Table 1 as the frequency

of the jumps is reduced. This is intuitive as the bank will seek shorter dated

instruments which are cheaper if liquidity risk diminishes. This confirms the

importance of this tool to assist the bank with scenario planning. A further

research topic from this paper is determining the optimal funding strategy

under various scenarios and assumptions, isolating the key drivers of specific
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funding strategies.

5 Recurrent Reinforcement Learning

5.1 Methodology

The optimization methodology per section 2 considered 4 durations for whole-

sale funding. For the purpose of the RRL methodology we simplify this to

two durations, namely a 6 and 12 month instrument only. The same projec-

tion period, ESG scenarios and sub models to project the NII was used as per

the SLP method. As per the SLP optimization the trading decision is made

every 6 months. This setup simplify the complexity of the trading decision,

the return function and the algebra required to support the RRL optimization

methodology. The methodology can be extended to more instruments and

monthly trading rules with an increase in the complexity of the solutions; this

will also require more data to train the trading function.

The funding gap each month was defined as Gt. Let F̄t =< F 3
t , F 4

t > rep-

resent the decision vector at time t, where F 3
t represent the portion of the gap

Gt to be filled by issuing 6 month instruments.

The policy is a function with explicit weights to be trained during the rein-

forcement learning process. For the purposes of this paper the policy function

is a trading function shown below:

F 3
t = tanh(exp(θ ∗ (x4

t − x4
t−1 − 0.005))) (16)

where θ is the parameter to be solved and controls the speed of change in the

trading rule. See Moody and Saffel (2001) for a discussion on the choice of

this trading signal. The choice of the trading function seems fairly arbitrary,

however the properties of this function have intuitive appeal. The month on

month change in the 12 month interest rate is the main driver of credit losses

on the asset portfolio, which in turn drives the probability and the size of the

liquidity jumps in the liquidity premium calibration. Due to this relationship
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we expect the trading strategy to move to a longer duration to protect the

bank from liquidity risk that increase during an interest raising cycle. The

tanh function ensures that F 3
t is bounded between [0, 1], where the exp func-

tion allows for a fairly steep change in the trading strategy as ∆x4
t changes.

The θ parameter controls the speed of this change. Per this setup F 4
t = 1−F 3

t .

The NII (equation 1) present the initial setup of the net interest rate mar-

gin, or return function supporting the RRL system. This equation simplify

for the RRL application as only 2 types of wholesale funding instruments are

used in the RRL method compared to the 4 types in the SLP method:

R∗
t = x1

t ∗ X1
t − x2

t ∗ X2
t − x3

t ∗ X3
t − x4

t ∗ X4
t (17)

Per this construction optimizing R∗
t is the same as minimizing Rt = x3

t ∗X3
t +

x4
t ∗ X4

t . The return in month t is a function of the previous funding decision

X4
t−1 and the current funding decision X4

t and X3
t . This is because X3

t−1 ma-

tures by t where X4
t−1 only mature by t + 1. Based on this Rt follows as:

Rt = F 3
t−1 ∗ [x3

t ∗ F 3
t + x4

t ∗ (1 − F 3
t )] + x4

t−1 ∗ (1 − F 3
t−1) (18)

The Sharpe ratio is used as the optimization function for the purposes of the

RRL optimization. The Sharpe ratio is a well known performance function

used in portfolio management as this use both average returns and the stan-

dard deviation of these returns. The Sharpe ratio as time t is defined below.

St =
Average(Rt)

Std(Rt)
.

St =
At

Kt(Bt − A2
t )

0.5
. (19)

Where At = 1/t
∑

Rt, Bt = 1/t
∑

R2
t and Kt = ( t

t−1
)0.5.

The differential Sharpe ratio is key if an on-line learning algorithm is required.

This paper use the differential Shape ratio as the reward signal for the RRL

problem. For the differential Sharpe ratio At and Bt are defined below.

At = At−1 + η(Rt − At−1).



20 Funding optimization for a bank...

Bt = Bt−1 + η(R2
t − Bt−1). (20)

Where η is the adaption rate.

The recurrent reinforcement leaning algorithm aims to maximize St using an

on-line learning approach via the differential Sharpe ratio. This is done by

adjusting the policy function via the θ from F 3
t with each time step across all

simulations. The weight is updated using the gradient method as discussed in

detail in Williams (1992).

∆θ = α
dSt

θ
(21)

where α is the learning rate of the RRL process. The equation for ∆θ can be

broken down into dST

dθ
= dST

dRT
∗ dRT

dθ
. Consider the components in two steps.

First consider dST

dRT

As St is a function of both Bt and At the derivative above can be written

as dST

dRT
= dST

dAT
∗ dAT

dRT
+ dST

dBT
∗ dBT

dRT
. Using equation 20 to define Bt and At the

derivation follows from algebra.

dST

dRT

= η ∗ BT−1 − AT−1 ∗ RT

(BT−1 − A2
T−1)

3/2
. (22)

Next consider dRT

dθ

The real-time recurrent learning (”RTRL”) set out in Rumelhart et al. (1985)

is used for the derivation of the recursive learning algorithm. As per Moody

and Saffel (2001) the RRL algorithm is given as
∑T

t=1[
dRt

dF 3
t
∗ dF 3

t

dθ
+ dRt

dF 3
t−1

∗ dF 3
t−1

dθ
].

The second term in this equation is required as the return function Rt is a

function of the incremental decision, thus both F 3
t−1 and F 3

t directly affect the

calculation of the Rt.

Note that the quantity
dF 3

t

dθ
is a total derivatives that depend upon the en-

tire sequence of previous trades from time t=0 to t.

The derivation of the first elements is relative straight forward from equa-
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tion 18, dRt

dF 3
t

= F 3
t−1 ∗ x3

t − F 3
t−1 ∗ x4

t and dRt

dF 3
t−1

= F 3
t ∗ x3

t + (1− F 3
t ) ∗ x4

t − x4
t−1.

The derivation of the second element is obtained using the recurrent learning

algorithm RTRL.

dF 3
t

dθ
=

∂F 3
t

∂θ
+

dF 3
t−1

dθ
. (23)

Where
dF i

0

dθ
= 0 and thus the above equation is solved recursively.

The derivative of
∂F 3

t

∂θ
is shown below:

∂F 3
t

∂θ
= sech2(exp(θ∗(x2

t−x2
t−1−0.005)))∗exp(θ∗(x2

t−x2
t−1−0.005))∗(x2

t−x2
t−1−0.005).

(24)

Figure 2 set out the real-time recurrent learning framework. The optimization

framework is initiated with a predefined θ per the trading rule per equation

16 in step 0. This trading rule is applied across the 12000 unique scenarios

to calculate the return at time t = 1. The recurrent learning algorithm per

equation 21 is applied to update θ to obtain the new trading rule updated with

the information up to time t = 1 (Step 2 per Figure 2). The new trading rule is

applied across the 12000 unique scenarios from time t = 0 to obtain the return

at time t = 2. The recurrent learning algorithm per equation 21 is applied to

update θ to obtain the new trading rule updated with the information up to

time t = 2. This process repeats till time t = 60. Important to note that the

new trading rule will be applied from time t = 0 for every step.

5.2 Results

Figure 3 show the trading function, tagged with the ”optimal” data label, cal-

ibrated per the RRL methodology. Per this trading rule the bank would issue

70% short dated and 30% long dated instruments when there is no change in

∆x4
t . The bank would increase the portion short dated instruments if ∆x4

t is

negative, while increasing the long dated instruments if ∆x4
t is positive.
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Trading Rule

t=1 t=2 t=60

Dec 2014 Dec 2019

Scenario 1
Scenario 2
Scenario 3

Scenario 12,000
…..

Step 0 Step 1

Trading Rule Trading Rule
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Trading Rule

Step 60

Apply Trading rule to 
calculate the return:
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Scenario 12,000
…..
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update trading rule

Apply gradient rule to 
update trading rule

Repeat till step 
60 is updated
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Figure 2: Steps in the RRL optimization methodology
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Figure 3: Portion of funding gap filled with short dated debt as credit losses

change

Similar to the SLP methodology we tested the impact on the trading rules if

we reduce the impact of liquidity risk via the probability and size of the jump

parameters in the cost of wholesale funding. This trading rule is shown as
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”Sensitivity 1” in Figure 3. The reduced impact of liquidity risk will results

in the bank continuing to issue short dated instruments as credit losses change.

6 Conclusion

The SLP optimization aims to define the trading strategy to follow over the

entire projection period. The trading strategy is chosen to target the optimal

return. The SLP optimization method selected strategy 1 as optimal in terms

of maximizing the return. Strategy 1 utilize mainly longer dated instruments

to fund the bank. This strategy was selected to minimize the liquidity risk.

This confirmed that the introduction of liquidity risk via jumps in the cost of

funding of the bank requires the bank to switch funding to longer term instru-

ments.

The RRL method dynamically adjust the trading strategy over the projec-

tion period. The credit and liquidity premium paid by banks to issue debt

increase as credit losses increase in the underlying bank portfolios. The RRL

methodology attempts to capture this dynamic by calibrating the trading rule

based on changes in interest rates that drives credit losses. This allows the

bank to maintain cheaper funding via short dated instruments when credit

losses are low, switching to longer dated instruments to protect against liquid-

ity risk as credit losses start to deteriorate. The RRL methodology provides a

higher average return compared to the SLP method.

The trading rule supporting the RRL method was based on a change in inter-

est rates. The calibration of the trading rule resulted in funding with shorter

duration instruments when the month-on-month change in interest rates are

very small. This switch to longer dated instruments when the interest rates

start to increase. The switch is fairly aggressive once beyond a certain point.

Table 4 compares the return distribution for the SLP and RRL methodolo-

gies, split into 4 buckets for simplicity. The RRL method has a higher portion

in the high return bucket with a similar portion in the loss making bucket.

Strategy 1 from the SLP method provides superior returns compared to other
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static funding strategies when liquidity risk are high due to the longer dated

funding. The RRL also benefit from this as the trading rules drive longer

dated funding as liquidity risk builds up, while focusing on shorted dated in-

struments during benign periods.

Table 5 compares the average return, Sharp ratio ,95% value at risk and

Table 4: The RRL method has a higher portion in the high return category

Return category SLP:Strategy 1 RRL

Loss 8.1% 8.3%

Low return 23.4% 18.7%

Medium return 57.9% 31.8%

High return 10.6% 41.2%

CVAR measure for two methods.

The average NII improved significantly when using the RRL method with

Table 5: Metric to compare performance of the two methods

Trading strategy Average return Sharp Ratio 95% VAR CVAR

RL 3.32% 4.33 -0.4% -0.9%

SLP: Strategy 1 3.07% 5.65 -0.2% -0.6%

the dynamic trading rule. Most notable is the shift in the NII distribution

towards higher profits. The positive skewness of the RRL method results in

a higher standard deviation and thus lower Sharp ratio. Although the loss

distribution has a fatter tail indicating a higher level of large losses than under

the SLP optimization (supported by the higher 95% VAR and CVAR).

The scenarios and assumptions supporting the optimization does impact the

optimal strategy under both the RRL and SLP methodologies. Choosing a

different starting position for the projection and a higher liquidity risk assump-

tions did results in a different SLP optimal strategy and a dynamic trading rule

more weighted towards short dated funding due to the lower liquidity risk. A
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further research topic from this paper is the determining the optimal funding

strategy under various scenarios and assumptions, isolating the key drivers of

specific funding strategies.
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