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Abstract 
 

Utilizing forty-five years of daily London gold price fixes, this paper finds the 

presence of dual long-memory processes in the 10:30am fix and the 3:00pm price 

fix utilizing ARFIMA-FIGARCH and ARFIMA-FIEGARCH models, 

respectively. This research proves that the return and volatility of the London 

Gold price fixes have predictable structures and does not conform to the weak-

form efficient assumption of Fama (1970). This study also suggests that the 

London gold price fixes do not exhibit leverage effects and asymmetric volatility 

response properties. This means that gold as an investment is generally immune to 

negative shocks, proving the resilience of gold as financial instrument. This paper 

also reveals the ARFIMA-FIAPARCH models have better fit in modeling the 

morning gold fix, while the ARFIMA-FIEGARCH model is more suitable in 

modeling the afternoon gold fix. 

 

JEL classification numbers: G10, G12 

Keywords: long-memory and asymmetry, fractionally-integrated models, 

London Gold price fix returns and volatilities. 

 

 

1  Introduction 

Historically, gold has been perceived by investors as a safe-haven asset 

expected to retain or even increase its value in periods of stock market declines 

and recession. Gold as an investment is sought to minimize exposure to huge 

losses and hedge against risks.  However, this reputation is being challenged in 

recent history, because gold is experiencing the biggest sell off in the last three 
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decades. The dramatic fall in gold prices is being perceived as a bubble deflation 

caused by more speculative share-dealing bets, which helped in boosting the 

volatility of gold prices.  

The London gold fix mechanism determines gold prices. Value fixing is done 

twice each business day, first at 10:30am or the morning fix; and second at 

3:00pm or the afternoon fix. This determined price is utilized by 1) large gold 

owners like refineries and mining companies and central banks; 2) retailers like 

coin dealers and jewelry manufacturers; and 3) derivatives markets like futures, 

swaps and options. This mechanism fixes a gold price to settle contracts between 

members of the London bullion market, and to provide a recognized rate as a 

benchmark for pricing gold products and derivatives around the world.   Most gold 

producers and refiners sell using the afternoon fix, because it is timelier in their 

business hours and reflects market conditions more due to its liquidity, and 

because Asia and North American markets are closed during the morning fix.  

Comprehending return and volatility characteristics of gold is crucial because 

the persistent changes in their structure as an investment can expose both hedgers 

and speculators to risks. Traders and investors noticed that the London gold 

10:30am fix is generally higher than the 3:00pm fix, thus, a possible difference in 

the long-memory and asymmetric volatility properties of the morning and 

afternoon gold fix prices can be possible. The prediction of gold’s return and 

volatility has attracted greater interest to investors and researchers recently 

because of its longstanding reputation of stability is being rigged. The notion that 

whether or not gold is still a resilient investment and much more predictable have 

been more relevant in the recent times. This study plans to capture these 

tendencies through determining the long-memory process and asymmetric 

volatility property of gold fix prices.  

Long-memory process models the presence of a persistent positive 

dependence among distant observations, which suggests the predictability of gold 

prices’ time-series in returns and volatility. On the other hand, the asymmetric 

volatility property of gold prices describes the negative correlation between 

returns and changes in volatility. This process is connected to the leverage effects 

property, wherein negative shocks often result to future higher volatility rather 

than positive shocks.  These nonlinear processes perfectly test whether gold fix 

prices is still efficient and resilient to shocks. The literature of gold time-series 

was studied by Frank and Stengos (1989), Yang and Brorsen (1993), and Habibnia 

(2010), and all agreed on the existence of nonlinear deterministic process in its 

structure. Cheung and Lai (1993) studied the predictable behavior of gold during 

the post-Bretton Woods period, and found that long-memory property of gold 

returns is unstable, and with few observations used little evidence of long-memory 

can be found. In a more recent set of studies, Wang et al. (2007) proved that the 

prediction of gold prices is possible given the proper modeling to forecast the 

relative error of the utilized GM and Markov chain. This was also proven by 

Ismael et al. (2009) by using the multiple regression method, and suggested 

macroeconomic variables to predict gold prices. On the resilience of gold as 
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investments, Baur and Lucey (2010) find that gold is a good hedge against stocks, 

and a safe haven in extreme stock market conditions. A related study of Baur and 

McDermott (2010) showed a particular example wherein gold has reduced losses 

in the peak of the recent financial crisis. 

The study is motivated by the recent surge in the application of 

fractionally-integrated long-memory and asymmetric volatility models in financial 

time-series. This research is also motivated in adding to the literature of gold 

prices returns and volatility, particularly statistically establishing its predictable 

and resilient properties as an investment. This research contributes to the literature 

by comparing four combinations of fractionally-integrated models, a) ARFIMA, b) 

ARFIMA-FIGARCH, c) ARFIMA-FIAPARCH, and d) ARFIMA-FIEGARCH in 

examining long-term positive dependence, asymmetry and leverage effects in the 

returns and volatility of London gold fix price returns. In relation with the 

motivation and contributions, this paper differs from the previous studies through 

these four main objectives:   

a) identify which type of models are better to characterize future values using 

lagged returns to determine the time-series of morning and afternoon gold fixes;   

b) find out positive long-term dependence in the time-series of gold fix 

prices, and examine the dual long-memory process in their returns and volatilities;  

c) determine differences in the characteristics of the 10:30am and 3:00pm 

price fixes with regards to their short-, intermediate-, and long-memory processes;  

d) challenge the basic assumptions of the EMH of Fama (1970), because the 

presence of high-order positive correlations make predictions on future returns 

possible 

The research is written as follows. Section 2 explains the data and the four 

fractional integration models applied; Section 3 presents the empirical results; 

and Section 4 gives the conclusion. 

 

 

2  Data and Methodology 

This research analyzes daily closing prices of the London Gold fix from the 

Federal Reserve Bank of St. Louis database from April 2, 1968 to May 16, 2013. 

The 10:30 morning fix has a total of 11,387 observations, and the 3:00 afternoon 

fix has a total of 11,256 data points. The difference in the number of observations 

is the absence of gold fix price on certain dates.  The series of returns were 

computed as, ),log(log100 1 ttt ppy where tp represents the price at time .t  The 

financial time-series data were modeled by ARFIMA-FIGARCH, ARFIMA-

FIEGARCH and ARFIMA-FIAPARCH processes and are explained below. 

 

The ARFIMA model as proposed by Granger and Joyeux (1980) and 

Hosking (1981) provides the first testing of the long-memory property of time-

series data.  The model introduces the difference parameter (d) as a non-integer 



26                                                                                             John Francis T. Diaz  

 

and suggests the fractionally integrated process )(dI  in the conditional mean. The 

ARFIMA ),,( qdp  model satisfies both stationary and invariability conditions and 

can be written as: 

 

tt

d LXLL  )()()1)((  ,     (1) 

'ttt z    )1.0(~ Nzt ,       

  

where d represents a fractional integration real number parameter,   denotes the 

conditional mean, L corresponds to the lag operator and t represents a white 

noise residual.   The dL)1(   denotes the fractional differencing lag operator. The 

AR and the MA processes are assumed to have all roots outside the unit circle, and 

can be shown as p

PLLLL   ...1)( 2

21  

and p

PLLLL   ...1)( 2

21 , respectively.  

The ARFIMA model is assumed to be stationary when 5.05.0  d , 

where the effect of shocks to t  decays at a gradual rate to zero.  Also, the model 

has a short memory when d = 0, where the effect of shocks decays geometrically; 

and a unit root process is exhibited when d=1. The model has a long-memory 

process or has positive dependence among distant observations when 0 < d < 0.5; 

and is also consistent to an intermediate memory or has antipersistent property 

when -0.5 < d < 0.  Moreover, the ARFIMA model becomes non-stationary when 

5.0d ; and stationary but a noninvertible process when 5.0d , which makes 

the data time-series impossible to model by any AR process. 

The FIGARCH model as proposed by Baillie et al. (1996) improves the 

traditional GARCH model allows the distinguishing parameter (d) to be a non-

integer, which accounts the fractional integration in the model.  The FIGARCH 

process also offers flexibility by capturing short-, intermediate- and long-memory 

in the volatility of financial time-series. The FIGARCH ),,( qdp  model can be 

expressed as: 

 

  ))]((1[)1)(( 222

ttt

d LLL   ,    (2) 

where d denotes a fractional integration parameter, L corresponds to the lag 

operator and t  denotes a white noise residual process. The FIGARCH model 

assumes a long-memory process when 0   d   1 allowing more flexibility in 

modeling the conditional variance;  dL)1(    represents the fractional differencing 

operator; and  (L) denotes an infinite summation which, has to be truncated.  The 

FIGARCH process is reduced to the GARCH model when 0d . 

The FIEGARCH model as proposed by Baillie et al. (1996) extends the 

EGARCH model, which also determines long-memory in the conditional variance. 
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Similar to the EGARCH, the FIEGARCH model can also capture volatility 

asymmetry found in the financial time-series. The FIEGARCH ),,( qdp  model 

can be expanded as follows: 

 

,ttty   

)()log()1)(1( 1

2

 tt

d gLL  ,    (3) 

where d represents the fractional integration parameter which captures the long-

memory property when 10  d . A significant negative parameter theta ( ) 

measures the leverage effect, which signifies strong volatility persistence, while 

tttg 


  )
2

()( and t is a Gaussian white noise with variance 1. The 

FIEGARCH model can become the short-memory EGARCH model of Nelson 

(1991) when 0d ; and the process is stationary if 1  and .5.0d   

The FIAPARCH model as proposed by Tse (1998) captures volatility 

asymmetry aside from the long memory feature in the conditional variance.  The 

model is seen to be superior than the FIGARCH process through the improvement 

in volatility with the function   tt   and can be expressed as follows: 

 

       )()1)(()(11)(1
11

tt

d

t LLLL 


, (4) 

 

where d represents the fractional integration parameter, and gamma ( ) denotes 

the asymmetry model parameter. The FIAPARCH model has a long-memory 

process when 0 < d < 1. The model shows that negative shocks have more impact 

on volatility than positive shocks when  > 0, and the inverse is also the same. 

The FIAPARCH process can be also reduced to the FIGARCH model if  = 0 and 

 = 2.   

 

 

3  Empirical Results 

Table 1 shows that the London gold fix prices have positive returns with the 

10:30am fix slightly higher with 0.013 than the 3:00pm fix with 0.012. The 

morning fix is also more volatile with 0.562 compared to 0.545 of the afternoon 

fix. The research concludes that the Modern Portfolio Theory of Markowitz 

(1952), stating that a higher risk is compensated with higher returns is consistent 

with the London gold fix time-series.  Both gold fix returns are positively skewed 

and have leptokurtic distributions. The Jarque-Bera statistic for residual normality 

shows that the gold fix returns are under a non-normal distribution assumption. 
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Table 2 illustrates the use of Augmented Dickey-Fuller test to examine the 

stationarity of the London gold morning and afternoon price fixes, and the 

minimum value of the Akaike Information Criterion to identify the orders of the 

models. Both the 10:30am and 3:00pm return samples have no serial correlation, 

based on the results of the Lagrange Multiplier (LM) test. This paper used the 

ARCH-LM process to test the ARCH effect and eliminate heteroscedasticity in the 

volatility of the data, the test also illustrates that the GARCH models can be 

applied in the both the morning and afternoon fixes. 

 

Table 3 shows the results for both ARFIMA and ARFIMA-FIGARCH 

models. The ARFIMA model finds no significant results on the long-memory 

structures of both the morning and afternoon price fixes. However the combined 

ARFIMA-FIGARCH models find long-memory processes in the returns of the 

10:30am fix with 0.029 value significant at the 10% level. This paper also finds 

positive dependence the volatilities of both 10:30am fix with 0.521 value; and the 

3:00pm fix with 0.489 value, both significant at the 1% level. This means that 

return and volatility of the London Gold price fixes have predictable structures 

and not a weak-form efficient financial time-series, which can signify a more 

predictable structure particularly for the morning fix. The 10:30am gold fix is seen 

to be steadier with less volatility caused by lower liquidity. These finding solidify 

the initial observations of Cheung and Lai (1993), Wang et al. (2007) and Ismail et 

al. (2009) in the predictable properties of gold. The log-likelihood value  

consistently points to the combined ARFIMA-FIGARCH models as the best 

fitting model to characterize the London Gold price fix compared to just 

utilizing the ARFIMA model. 

 

The ARFIMA-FIEGARCH and ARFIMA-FIAPARCH models are also 

applied to confirm these initial findings and to add features of leverage effects and 

asymmetric volatility properties, respectively. Table 4 shows that the two 

models agree on the long-memory properties in the volatility of both the 

morning and afternoon fixes. However, only the ARFIMA-FIEGARCH models 

find positive dependence on the return of the 3:00pm price fix, which signifies 

dual long-memory in both returns and volatilities of the afternoon fix. 

This research also discovers that the London Gold price fixes do not exhibit 

leverage effects with the significant positive value of the theta )(  parameter. 

This is clearly supported by the negative gamma )(  coefficients, which means 

that asymmetric volatility response to shocks is not present.  This paper found that 

positive and negative news has the same magnitude and proves the resilience of 

gold as investment instrument. These findings are consistent to the initial claims 

of Baur and Lucey (2010) Baur and McDermott (2010) on the resistance of gold to 

extreme shocks and its safe haven property. This research used the highest log-

likelihood values to identify the best fitting model. This study finds that the 

combination of the ARFIMA-FIAPARCH models are better in characterizing the 
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morning gold fix, while the ARFIMA-FIEGARCH model is more suitable in 

modeling the afternoon gold fix. This paper provides technical evidence on gold’s 

predictable property, and supports the old reputation of gold as a safe haven, 

which suggests that hedgers and speculators can depend on the resilience of gold 

as an investment to external shocks. 

 

 

4  Conclusion 

Identifying the gold price’s predictability through the long-memory 

process, and resilience through the asymmetric volatility and leverage effects 

properties in returns and volatilities have long been a great interest for traders and 

investors. The combined ARFIMA-FIGARCH models find long-memory 

processes in the returns of the 10:30am fix, while the ARFIMA-FIEGARCH 

models find the same results on the return of the 3:00pm price fix. All 

fractionally-integrated models in the conditional variance agree on the long 

memory properties in the volatility of both the morning and afternoon fixes. This 

study also concludes that dual long-memory processes are present on the 10:30am 

fix and the 3:00pm price fix using ARFIMA-FIGARCH and ARFIMA-

FIEGARCH, respectively. These initial results mean that return and volatility of 

the London Gold price fixes have predictable structures and does not conform to 

the weak-form efficient assumption of Fama (1970). Traders expect to experience 

abnormal returns given the right forecast modeling that they will employ. Using 

the highest log-likelihood values, this study finds the ARFIMA-FIAPARCH 

models to better characterize the morning gold fix, while the ARFIMA-

FIEGARCH model is more suitable in modeling the afternoon gold fix.  This 

paper also reveals that the London gold price fixes do not exhibit leverage effects 

and asymmetric volatility response, which means that negative shocks have 

similar effects with positive shocks contrary to most investments. The paper 

proves the resilience of gold as financial instrument, which suggests that investors 

can depend on the long-term viability of gold against external shocks.  
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Table 1:  The Sample Size and Period of the London Gold price fixing  

 
London Gold price fix returns Start of Data Obs. Mean Std. Dev. Skew. Kurt. J-Bera 

Morning London Gold Price Fix (10:30am)  April 2, 1968 11,347 0.013 0.562 0.056 13.471 85,805*** 

Afternoon London Gold Price Fix (3:00pm) April 2, 1968 11,216 0.012 0.545 0.062 10.949 56,028*** 
Source: Yahoo Finance;  http://www.yahoo.com/finance. 

Note: *, ** and *** are significance at 10, 5 and 1% levels. 

 

 

 

Table 2: Summary Statistics of ARMA and GARCH filtering 
 

Gold fixes ADF ARMA AIC  LM test ARCH-LM GARCH AIC ARCH-LM 

10:30am -111.743*** 

(0.000) 

(1,1) 1.684 1.353 

(0.259) 

691.898*** 

(0.000) 

(1,1) 1.164 1.792 

(0.167) 

3:00pm -61.017*** 

(0.000) 

(1,1) 1.625 1.852 

(0.116) 

780.549*** 

(0.000) 

(2,2) 4.669 0.749 

(0.473) 
Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses. 
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Table 3: Summary Statistics of ARFIMA and ARFIMA-FIGARCH models 
 

 

Gold fixes 

ARFIMA ARFIMA-FIGARCH 

d- 

ARFIMA 

ARCH AIC  log- 

likelihood 

d- 

ARFIMA 

ARCH d- 

FIGARCH 

AIC log- 

likelihood 

10:30am 0.011 

(0.359) 

(0,1) 1.683 -9547.085 0.029* 

(0.076) 

(2,1) 0.521*** 

(0.000) 

1.143 -6478.230 

3:00pm 0.018 

(0.170) 

(1,2) 1.625 -9105.365 0.020 

(0.258) 

(1,2) 0.489*** 

(0.000) 

1.109 -6208.670 

Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses. 

 

 

 

Table 4: Summary Statistics of ARFIMA-FIEGARCH and ARFIMA-FIAPARCH models 
 

Note: *, ** and *** are significance at 10, 5 and 1% levels, respectively; p-values are in parentheses. 

 

Gold fix 

ARFIMA-FIEGARCH ARFIMA-FIAPARCH 

d-

ARFIMA 

ARCH d-

FIGARCH 

theta AIC  log-

likelihood 

d-

ARFIMA 

ARCH d-

FIGARCH 

gamma  AIC log- 

likelihood 

10:30am 0.007 

(0.793) 

(1,2) 0.477*** 

(0.000) 

0.041*** 

(0.002) 

1.140 -6457.44 0.007 

(0.725) 

(2,1) 0.467*** 

(0.000) 

-0.127*** 

(0.000) 

1.129 -6394.31 

3:00pm 0.028* 

(0.090) 

(2,2) 0.560*** 

(0.000) 

0.030*** 

(0.000) 

1.099 -6154.205 0.014 

(0.444) 

(2,2) 0.444*** 

(0.000) 

-0.102*** 

(0.000) 

1.103 -6172.329 


