Does China Require an Explicit Deposit Insurance System?

Fu Shuen Shie¹

Abstract

This study indicates that there is no explicit evidence supporting the fact that banks in China lack strength and are exposed to the risk of bankruptcy. That is, the financial industry structure in China is healthy and an increased investment and facilities in this industry should be considered. However, the empirical results of the deposit insurance pricing model show that it is necessary to establish a deposit insurance system for the banks in China as all the estimated deposit insurance premiums are significantly positive. It is suggested, therefore, that an explicit deposit insurance system should be introduced in China. Without establishment, the cost that should be borne by the banks will be shifted to the public and thus lower the operation costs of banks.

JEL classification numbers: G14, G15, G21

Keywords: China, deposit insurance system, financial distress, option pricing model, Z-Score

1 Introduction

According to information from the International Association of Deposit Insurers (IADI)², up to 30 September 2010, there are 106 countries adopting an explicit deposit insurance system (EDIS) and 19 countries, including China, are currently considering establishing an EDIS. An EDIS provides the function of protecting the benefits of depositors with the ultimate goal being to stabilize the financial system. It must be assessed, however, whether or not the financial system in China is unstable and likely to experience financial distress. Also, does China even require an EDIS? These questions are investigated in this study. Since the majority of deposit accounts in Chinese banks belong to small depositors, if a

¹Department of Finance, National Taichung University of Science and Technology No. 129 Sec. 3, Sanmin Road, Taichung City 404, Taiwan, R.O.C.

Article Info: *Received* : January 10, 2015. *Revised* : January 31, 2015. *Published online* : March 1, 2016

²IADI, Deposit Insurance Systems. http://www.iadi.org

bank is on the brink of bankruptcy, it may induce panic amongst these small depositors that may cause a bank run. Such a crisis could affect the confidence of the depositors of other financial institutions and provoke a Domino effect. Such consequences can affect the stability of a banking system and lead to financial crises. This means that, the risk associated with an individual bank can develop into the systematic risk of the industry and, as a result, will not just effect depositors, but can also lead to economical and social fluctuation. Therefore, protecting the benefits of depositors is always a concern to governments of different countries. This issue is especially urgent in China as it is now in the period of transformation. As a result, as it is a crucial topic for China, the motivation of this study is how to fully utilize an EDIS.

Since 2007, the subprime mortgage crisis in the US has provided a good example that has illustrated how a well-developed EDIS has a huge effect on improving public confidence in financial institutes, reducing financial risk, protecting depositors' benefits, establishing efficient exit market mechanisms and maintaining financial safety. The international experience of the US demonstrates that a well-designed EDIS is beneficial to the stability of a financial system. EDIS, however, does also bring with it moral hazard issues (Laeven, 2002) and the core problem is whether or not the pricing of deposit insurance premiums are fair (VanHoose, 2007). A fair and reasonable deposit insurance premium should not only reflect the risk of banks accurately, but also restrain the banks' moral hazard effectively, improve the market and avoid cross subsidization between banks. Therefore, we should discuss the matter in two different parts – the first being the prediction of financial distress and the second being the pricing of deposit insurance.

Since Beaver (1966) and Altman (1968) applied the multiple discriminant analysis to construct the financial distress prediction model, there were many papers that aimed to explore corporate financial distress and construct the distress prediction model. The purpose is to predict the occurrence of financial distress of a company, no matter whether we analyze the crisis factors or use other prediction methods. Altman (1968) developed a corporate bankruptcy prediction model with high accuracy, with the accuracy of this model still being relatively high despite being applied for thirty years.

Afterward, Altman (2000) applied Z-Score model again to test its validity. He took the samples between 1969 and 1999 and used 2.675 as the critical value to test the long-term prediction of corporate distress at one year prior to bankruptcy. The results show that the accuracy of the samples between 1969 - 1975 and 1997 – 1999 are 85% and 94% respectively. It illustrates that, even though the Z-Score model has been applied over 30 years, it still retains its integrity and high accuracy.

Since then, there have been various identifications of the variables and extensions of the model. Altman (1993) computes the Z-score based on working capital, total assets, earnings before interest and taxes, sales, and other financial variables. For the industry of financial intermediation, Edmister and Schlarbaum (1974), Sinkey (1975, 1977), Martin (1977), Santomero and Vinso (1977), Pettway and Sinkey (1980) discussed the issue on the banking industry, while Altman (1977) did on savings and loan institutions

Except for the multiple discriminant analysis, Z-score has also been renovated into Distance-to-default ratio. This ratio measures the market value of a bank's assets in relation to the book value of its liabilities. (Boyd and Runkle, 1993; De Nicoló et al., 2004; Uhde and Heimeshoff, 2009). Gropp, Vesala and Vulpes (2002) show that an unbiased equity-based fragility indicator, a Z-score, can be derived from a Black-Scholes (1973) type of option-pricing model. The larger the Distance-to-default ratio, the lower the probability of bankruptcy. Liu, Papakirykos, and Yuan (2006) used the Canadian banks as example and

found that their distance-to-default ratios are relatively high and, therefore, have a very low insolvency risk. These cases illustrate the widespread usage of Z-score.

This paper, however, is not going to examine the accuracy of Z-Score model on the prediction of banks in China. In fact, this model is treated as a suitable distress prediction model and hence will be applied to investigate if banks in China have any financial.

Moreover, for the pricing of deposit insurance, since Merton (1977) suggested the European put option pricing, other scholars have developed many revised models and new option pricing model (OPM). For example, Ronn and Verma (1986) considered the influence of capital forbearance. Kerfriden and Rochet (1993) proposed the stochastic interest rates model. Duan and Yu (1994) analyzed the multiperiod framework model. Duan and Yu (1999) applied the model of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and, diverging from the European put option pricing, extended the volatility of asset pricing into stochastic volatility. Furthermore, Allen and Saunders (1993) not only analyzed the capital forbearance of the deposit insurance company, but also examined the two factors that may cause early exercise of the option. These included the regulatory closure policy of the FDIC and the self-closure point of insured banks based on the banks' self interest, and suggested the callable perpetual American put option to assess the premium of deposit insurance. On the other hand, Hwang et al. (2009) examined the cost of bankruptcy and re-confirmed the capital forbearance³, proposed that the policy of selfclosure does not exist and suggested the Barrier option for pricing deposit insurance. This study aims to apply the three different option pricing models (OPMs) from Merton (1977), Allen and Saunders (1993) and Hwang et al. (2009) as the empirical models. The other models extended from Merton (1977) would provide similar conclusions under the setting of this study without the loss of generality.

The remainder of this paper is organized as follows: Section 2 – Methodology and Hypothesis. Section 3 – Data and Empirical results. Section 4 – Conclusion and suggestions.

2 Methodology and Hypothesis

Altman (1968) applied multiple discriminant analysis (MDA) to predict if a firm is going to go bankrupt. The variables are classified into five standard ratio categories including liquidity, profitability, leverage, solvency and activity ratios. Among these variables, 5 representative ratios are selected from 22 financial ratios to construct the following discriminant function⁴:

$$Z_{nt} = 0.012X_1 + 0.014X_2 + 0.033X_3 + 0.006X_4 + 0.999X_5$$
(1)

where

 X_1 = working capital / total assets

 X_2 = retained earnings / total assets

³Kane (1986) stated that considering the cost of monitoring, FDIC would further forbear the banks beyond the original condition of capital forbearance. Also, Allen and Saunders (1993) at note 12 explained that capital forbearance is the case where FDIC does not execute the regulatory closure point under the known situation.

⁴The main results are unchanged in Altman (1993) models.

 X_3 = earnings before interest and taxes / total assets

 X_4 = market value equity / book value of total liabilities

 $X_5 = \text{sales} / \text{total assets}$

 Z_{nt} = overall index

Since there is no information on bankruptcy of Chinese banks, the aim of this study is not to examine the accuracy of prediction of Eq. (1). Instead, the equation is treated as a proper distress prediction model and hence applied to assess whether there is any financial risk to the banks in China. In this paper, the Z-Score of each bank in each year will be calculated. $\overline{Z}_n \equiv \sum_{t=1}^{T_n} Z_{nt} / T_n$ is defined as the average Z-Score of bank *n* over time and $\overline{Z}_t \equiv \sum_{n=1}^{N_t} Z_{nt} / N_t$ is defined as the average Z-Score of all the banks in year *t*, where T_n is the number of samples for bank *n*, N_t is the number of samples of the banks in year *t*. The following are the hypotheses according to this setting and the model of Eq. (1):

Hypothesis 1 (H1): at year *t*, the observed samples indicate that the banks in China have potential financial distress, i.e., to test whether \overline{Z}_t is less than 2.675.

Hypothesis 2 (H2): the observed samples indicate that bank *n* has potential financial distress, i.e., to test whether \overline{Z}_n is less than 2.675.

As discussed in the previous section, this study will apply various OPM models to calculate the deposit insurance premium for the banks in China and examine if China requires the establishment of an EDIS. First, to apply OPM on the pricing of deposit insurance premium, Merton (1977) proposed using European put option pricing. The value of the option at maturity is $(0, D-A_T)^+ = \max(0, D-A_T)$ where A_T is the price of the bank's asset at time T, Dis the total deposit which is the face value of the bank debt, that, in the OPM setting, is the strike price. In this paper, we standardize the bank's asset to total deposit ratio, i.e., at time t, under a given bank asset to debt ratio $a_t = A_t/D$, the exercise price of the option is 1. At the same time, A_t should be assumed as stochastic. According to Merton (1977), the price of the bank's asset to debt ratio is assumed to follow the geometric Brownian motion⁵ as shown below:

$$d\ln A_t = \mu dt + \sigma dW_t, \tag{2}$$

where μ is the instantaneous expected return on assets, σ is the instantaneous expected standard deviation of asset returns, and W_t is the standard Brownian motion.

However, risk-neutral transformation should be preformed on Eq. (2) for option pricing. The calibration of density transformation is $dW_t^Q = dW_t + (\mu - r)dt$, and hence, the process of the bank's asset to debt ratio after risk adjustment is:

⁵For simplicity, this paper assume that dividends are zero.

$$d\ln A_t = rdt + \sigma dW_t^Q, \tag{3}$$

For Eq. (3), the pricing of deposit insurance under the structure of the European put option in Merton (1977) is as follows:

$$i^{Merton}(a_0, T; 1) = \Phi(h_1 + \sigma \sqrt{T}) - a_0 \Phi(h_1),$$
 (4)

where

$$h_1 = \frac{\ln(1/a_0) - 0.5\sigma^2 T}{\sigma\sqrt{T}},$$

and $\Phi(\bullet)$ is the cumulative density of a standard normal random variable.

Moreover, Allen and Saunders (1993) believed that the previous papers did not sufficiently consider the characteristics of deposit insurance. After examining the capital forbearance, regulatory closure policy and self-closure point, they proposed using callable perpetual American put option to assess the value of deposit insurance. The intrinsic value of the option for early exercise within the duration is $(0, D-A_i)^+$, and hence, the assessment of the value of deposit insurance can be derived as:

$$i^{AS}(a_0,\infty; 1) = (1-\overline{a})(\frac{a_0}{\overline{a}})^{-\gamma_1},$$
(5)

where \overline{a} is the regulatory closure point, and $\gamma_1 = 2r/\sigma^2$. The resulting premium values, $i^{AS}(a_0,\infty; 1)$, are treated as lump-sum perpetuities and multiplied by a quarterly yield rate to derive an equivalent quarterly payment amount.

Finally, Hwang et al. (2009) applied the structure in Allen and Saunders (1993) to analyze the cost of bankruptcy and derived the value of the deposit insurance premium as:

$$i_{bc}^{AS}(a_0,\infty; 1) = (1 - k_{\bar{a}}\bar{a})(\frac{a_0}{\bar{a}})^{-\gamma_1},$$
(6)

where i_{bc}^{AS} is the deposit insurance premium in Allen and Saunders' model with the consideration of bankruptcy cost, $k_{\bar{a}}$ is the discount factor under regulatory closure point, i.e., the cost of bankruptcy $(1-k_{\bar{a}})\bar{a}$, in which $0 < k_{\bar{a}} \leq 1$, to be taken into account by the FDIC if the FDIC executes its authority. After investigating the regulatory closure policy of FDIC, Hwang et al. (2009) extended the OPM pricing method further and suggested that the regulatory closure policy is just the lower bound of the threshold of the barrier option. Under the setting of Eq. (3), the deposit insurance premium can be derived as:

$$i_{bc}^{MDOP}(a_0, T; 1) = e^{-rT} E^{\mathcal{Q}} \Big[\Big(1 - k_{\bar{a}} \bar{a} \Big) \cdot \mathbf{1}_{\{\tilde{a}_T < \bar{a}\}} \Big], \tag{7}$$

where i_{bc}^{MDOP} is the modified down-and-out put option (MDOP) which is the deposit insurance premium with the consideration of bankruptcy cost and $\tilde{a}_T = \min_{0 \le s \le T} a_s$. With the former assumptions, the closed-form solution is:

$$i_{bc}^{MDOP}(a_0, T; 1) = (1 - k_{\bar{a}}\bar{a})e^{-rT} \left[\Phi(h_2) + (\bar{a}/a_0)^{2\gamma_2} \Phi(h_3) \right],$$
(8)

where

$$h_{2} = \frac{\ln(\overline{a} / a_{0}) - (r - 0.5\sigma^{2})T}{\sigma\sqrt{T}},$$

$$h_{3} = \frac{\ln(\overline{a} / a_{0}) + (r - 0.5\sigma^{2})T}{\sigma\sqrt{T}},$$

$$\gamma_{2} = \frac{r}{\sigma^{2}} - \frac{1}{2}.$$

On the other hand, according to Ronn and Verma (1986), there are two parameters, A_0 and σ , that have to be estimated prior to compiling the deposit insurance premium using Eq. (4), Eq. (5), and Eq. (8). These two parameters can be estimated by the following two non-linear equations:

$$E = A_0 \Phi(h_4 + \sigma \sqrt{T}) - \overline{a} D \Phi(h_4), \tag{9}$$

and

$$\sigma = \frac{\sigma_E E}{A_0 \Phi (h_4 + \sigma \sqrt{T})},\tag{10}$$

where

$$h_4 = \frac{\ln(A_0/\bar{a}D) - 0.5\sigma^2 T}{\sigma\sqrt{T}},$$

E is the equity of the bank and σ_E is the instantaneous standard deviation of the return on *E*.

As discussed in the former session, regardless of whether we use the models of Merton (1977), Allen and Saunders (1993) or Hwang et al. (2009), there exists a closed-form solution of the stochastic process of Eq. (3). This study will determine the deposit insurance premium under different OPMs, i.e., i^{Merton} , i^{AS} , and i^{MDOP} , by applying the empirical method. In this paper, $\bar{i}_n^m \equiv \sum_{t=1}^{T_n} i_{nt}^m / T_n$ is defined as the average deposit insurance premium of bank *n* for each quarter and $\bar{i}_t^m \equiv \sum_{n=1}^{N_t} i_{nt}^m / N_t$ is defined as the average deposit insurance premium of all the banks in quarter *t*, where m = Merton, AS, and MDOP, and bankruptcy cost is not taken into account, i.e., $k_{\bar{a}}$ is assumed to be 1 ($k_{\bar{a}} = 1$). This is because, if the hypothesis is accepted in the latter analysis without considering bankruptcy

cost, then the same conclusion can be drawn even with bankruptcy cost. Therefore, referring to the former empirical findings, we can test each bank or the banks in each year and estimate whether the deposit insurance premium differs from zero. If the estimate is greater than zero, it means costs that should be borne by banks in China have been shifted to the public. On the other hand, it means an EDIS should be established for these banks in order to remove the cost borne by the public. Therefore, the assumption for this paper is as follows:

Hypothesis 3 (H3): The deposit insurance system should be established in quarter *t* in order to transfer the cost back to the banks instead of shifting the cost to the public, i.e., to test whether \bar{l}_{i}^{m} is greater than 0.

Hypothesis 4 (H4): Since the bank *n* has been listed, it did not pay for its payable deposit insurance premium and hence its operation cost is under-estimated, i.e., to test whether \bar{i}_n^m is greater than 0.

In the next part of this paper, we will make use of the information of 14 listed banks in China to test the mentioned hypotheses and hence prove whether China requires an EDIS and if there is any potential financial distress.

3 Data and Empirical Results

This study takes Chinese banks which were listed in the third quarter of 2009 as the research sample and mainly uses the information of each bank after its listing. Since some banks were listed in the early days, information in early periods is unable to be obtained. For example, the IPO date of Shenzhen Development Bank Co. is 1991/4/3 but the earliest quarterly data that can be obtained is from quarter one of 2002. The data sources of this study are the Shanghai Stock Exchange (SSE) and Shenzhen Stock Exchange (SZSE) while the research period is from the listing date of each bank to quarter three of 2009. The listing date and period of research data is shown in Table 1.

Bank	IPO date	Code	Period
China Minsheng Banking Co.	2000/12/19	CMSB	2001q1~2009q3
Shanghai Pudong Development Bank Co. Ltd.	1999/11/10	SPDB	2001q3~2009q3
Shenzhen Development Bank Co.	1991/04/03	SHDB	2002q1~2009q3
China Merchants Bank Co.	2002/04/09	CMCB	2002q3~2009q3
Hua Xia Bank Co. Ltd.	2003/09/12	HXB	2003q4~2009q3
Bank Of China Ltd.	2006/07/05	BC	2007q1~2009q3
Industrial & Commercial Bank Of China Ltd.	2006/10/27	ICB	2007q1~2009q3
Industrial Bank Co. Ltd.	2007/02/05	IB	2007q2~2009q3
Bank of Communications Co. Ltd.	2007/05/15	BCC	2007q3~2009q3
China Citic Bank Corp. Ltd.	2007/04/27	CCTB	2007q3~2009q3
Bank Of Beijing Co. Ltd.	2007/09/19	BBJ	2007q4~2009q3
Bank Of Ningbo Co.	2007/07/19	BNB	2007q4~2009q3
Bank Of Nanjing Co. Ltd.	2007/07/19	BNJ	2007q4~2009q3
China Construction Bank Corp.	2007/09/25	CCSB	2007q4~2009q3

Table 1: The listing schedule of Chinese banks and the research period

Note: 2002q1 represents quarter 1 of 2002 and so on.

Table 1 is ranked by period and from it we can find that amongst all the collected data, the information for 2007 and 2008 is the most integrated. Therefore, testing for H1 and H2 using data from 2007 and 2008 would provide more relevant results.

First, when testing H1 and H2, the sample used is annual data. Then, the Altman Z-Score is calculated for each bank by year and tested against the hypotheses mentioned previously. Since the 5 representative financial ratios proposed by Altman is not the focus of this study, the summary statistics of these 5 variables are not reported. The results of the tests are shown in Table 2.

Table 2: Altman Z-Score of the banks in China

	Voor							Ba	ınk								Test	of H1	
_	Teal	CMSB	SPDB	SHDB	CMCB	HXB	BC	ICB	IB	BCC	CCTB	BBJ	BNB	BNJ	CCSB	Mean	Std	t-value	p-value
-	2001	3.6579	4.3900	3.7495												3.9325	0.3989	5.4599	0.0160
	2002	2.8410	3.6089	3.6574	3.0002											3.2769	0.4169	2.8871	0.0316
	2003	3.1515	3.8481	3.4209	3.0379	3.4141										3.3745	0.3127	5.0026	0.0037
	2004	3.8630	4.2065	4.2277	3.6737	3.5548										3.9052	0.3053	9.0087	0.0004
	2005	4.1275	4.2905	3.9121	3.7357	3.8103										3.9752	0.2298	12.6536	0.0001
	2006	3.8857	4.8016	4.5817	3.8028	4.0436	4.2120									4.2212	0.3965	9.5520	0.0001
	2007	5.0205	4.7533	5.8147	5.0256	4.8165	5.9927	4.9553	5.3980	5.1577	4.9345	4.2069	5.2474	5.1714	5.2661	5.1258	0.4388	20.8968	0.0000
	2008	6.1514	4.6826	6.2749	5.6776	5.6294	5.8547	5.4100	5.9002	5.0717	5.7723	5.2708	5.9599	5.8826	5.6966	5.6596	0.4283	26.0711	0.0000
12	Mean	4.0873	4.3227	4.4549	3.9934	4.2114	5.3531	5.1827	5.6491	5.1147	5.3534	4.7389	5.6037	5.5270	5.4813				
λF	Std	1.0581	0.4306	1.0506	1.0005	0.8524	0.9907	0.3215	0.3551	0.0608	0.5924	0.7523	0.5038	0.5029	0.3044		All sa	mples	
st c	t-value	3.7752	5.4110	4.7916	3.2276	5.0984	7.1525	11.0300	11.8450	56.7301	6.3945	3.8799	8.2214	9.8226	13.0367	Mean	Std	t-value	p-value
Te	p-value	0.0035	0.0582	0.0010	0.0116	0.0007	0.0002	0.0288	0.0268	0.0056	0.0494	0.0803	0.0385	0.0051	0.0244	4.5983	0.9357	15.3814	0.0000

Note: Words in bold indicate significance at least at the 0.1 level.

Table 2 indicates that when testing against H1 or H2, all the results do not support the hypotheses of H1 and H2 and they are significant at the 0.1 level. In other words, financial risk does not exist amongst the banks in China. Table 2 also shows that the average values of Altman Z-Score for all the banks in 2007 and 2008 are 5.1258 and 5.6596 respectively and both of them are significant at the 0.01 level. The average value of Altman Z-Score for 2008 is higher than that for 2007 implying that the banks in China were not affected by the global subprime mortgage crisis and their financial condition became even more stable. The result also indicates that China is now an important field which all foreign banks want to seize. However, due to the deficiency of the institutions and legal system, foreign banks are often earning less profit than the Chinese banks. Therefore, results not supporting H1 and H2 do not mean that China does not require an EDIS. We will then apply the deposit insurance pricing model from Merton (1977), Allen and Saunders (1993) and Hwang et al. (2009) to examine the essentiality of an EDIS in China.

Differing from the characteristics of data for calculating Altman Z-Score, quarterly data is used to calculate deposit insurance premium. The results of deposit insurance premium for i^{Merton} , i^{AS} , and i^{MDOP} are consolidated in Table 3, Table 4 and Table 5. In these tables,

the unit of deposit insurance premium per dollar is the basis points (bps) and $\overline{a} = 0.97$.

Quarter		6112	T .		- F -)						. <u> </u>		poolo ili						
- CMSB SPDB SHDB CMCB HXB BC ICB IB BCC CCTB BBJ BNB BNJ CCSB Mean Std t-value p 2001q1 1.2635 1.2635 N.A. N.A.	<u> </u>	<u>1H3</u>	Test o		~~~~	~~~~			~~~~		nk	Ba	~~~		~ ~ ~				Quarter
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	p-value	t-value	Std	Mean	CCSB	BNJ	BNB	BBJ	CCTB	BCC	IB	ICB	BC	HXB	CMCB	SHDB	SPDB	CMSB	
2001q2 536.2192 N.A. N.A. I 2001q3 182.0651 5.6335 1.0639 0 2001q4 85.7771 7.0068 46.3919 55.690 1.1779 0 2002q1 0.0081 6.9191 25.9717 10.9663 13.4467 1.4126 0 2002q2 450.9241 176.8699 228.3891 285.3944 145.6490 3.3939 0 2002q3 263.2786 154.0938 420.8369 5.1995 210.8522 175.4581 2.4034 0 2003q4 432.2493 183.0514 80.5433 187.4137 220.8144 149.3568 2.9569 0 2003q2 504.5802 241.6953 67.3389 73.2341 221.7121 20.5175 2.1612 0 2003q3 271.3252 67.2977 104.1217 92.0260 133.6927 93.0261 2.8743 0 2003q4 0.0000 184.3888 0.0000 51.3848 120.8072 71.3162 80.3182 1.9855 0	N.A.	N.A.	N.A.	1.2635														1.2635	2001q1
2001q3 182.0651 5.6335 93.8493 124.7560 1.0639 (2001q4 85.7771 7.0068 46.3919 55.6990 1.1779 (2002q1 0.0081 6.9191 25.9717 10.9663 13.4467 1.4126 (2002q2 450.9241 176.8699 228.3891 285.3944 145.6490 3.3939 (2002q3 263.2786 154.0938 420.8369 5.1995 210.8522 175.4581 2.4034 (2002q4 432.2493 183.0514 80.5433 187.4137 220.8144 149.3568 2.9569 (2003q2 504.5802 241.6953 67.3389 73.2341 221.7121 205.1751 2.1612 (2003q3 271.3252 67.2977 104.1217 92.0260 133.6927 93.0261 2.8743 (2003q4 0.0000 184.3888 0.0000 51.3848 120.8072 71.3162 80.3182 1.9855 0	N.A.	N.A.	N.A.	536.2192														536.2192	2001q2
2001q4 85.7771 7.0068 46.3919 55.6990 1.1779 0 2002q1 0.0081 6.9191 25.9717 10.9663 13.4467 1.4126 0 2002q2 450.9241 176.8699 228.3891 285.3944 145.6490 3.3939 0 2002q3 263.2786 154.0938 420.8369 5.1995 240.8142 149.3568 2.4034 0 2002q4 432.2493 183.0514 80.5433 187.4137 220.8144 149.3568 2.9659 0 2003q1 3.0920 0.0000 162.1304 0.0996 41.3305 80.5461 1.0263 0 2003q2 504.5802 241.6953 67.3389 73.2341 221.7121 205.1751 2.1612 0 2003q4 0.0000 184.3888 0.0000 51.3848 120.8072 71.3162 80.3182 1.9855 0	0.2402	1.0639	124.7560	93.8493													5.6335	182.0651	2001q3
2002q10.00816.919125.971710.966313.44671.4126(2002q2450.9241176.8699228.3891285.3944145.64903.3939(2002q3263.2786154.0938420.83695.1995210.8522175.45812.4034(2002q4432.2493183.051480.5433187.4137220.8144149.35682.9569(2003q13.09200.0000162.13040.099641.330580.54611.0263(2003q2504.5802241.695367.338973.2341221.7121205.17512.1612(2003q40.0000184.38880.000051.3848120.807271.316280.31821.9855(0.2241	1.1779	55.6990	46.3919													7.0068	85.7771	2001q4
2002q2450.9241176.8699228.3891285.3944145.64903.3939(2002q3263.2786154.0938420.83695.1995210.8522175.45812.4034(2002q4432.2493183.051480.5433187.4137220.8144149.35682.9569(2003q13.09200.0000162.13040.099641.330580.54611.0263(2003q2504.5802241.695367.338973.2341221.7121205.17512.1612(2003q40.0000184.38880.000051.3848120.807271.316280.31821.9855(0.1467	1.4126	13.4467	10.9663												25.9717	6.9191	0.0081	2002q1
2002q3263.2786154.0938420.83695.1995210.8522175.45812.403402002q4432.2493183.051480.5433187.4137220.8144149.35682.956902003q13.09200.0000162.13040.099641.330580.54611.026302003q2504.5802241.695367.338973.2341221.1121205.17512.161202003q3271.325267.2977104.121792.0260133.692793.02612.874302003q40.0000184.38880.000051.3848120.807271.316280.31821.98550	0.0385	3.3939	145.6490	285.3944												228.3891	176.8699	450.9241	2002q2
2002q4432.2493183.051480.5433187.4137220.8144149.35682.9569(2003q13.09200.0000162.13040.099641.330580.54611.0263(2003q2504.5802241.695367.338973.2341221.7121205.17512.1612(2003q3271.325267.2977104.121792.0260133.692793.02612.8743(2003q40.0000184.38880.000051.3848120.807271.316280.31821.9855(0.0478	2.4034	175.4581	210.8522											5.1995	420.8369	154.0938	263.2786	2002q3
2003q1 3.0920 0.0000 162.1304 0.0996 41.3305 80.5461 1.0263 0 2003q2 504.5802 241.6953 67.3389 73.2341 221.7121 205.1751 2.1612 0 2003q3 271.3252 67.2977 104.1217 92.0260 133.6927 93.0261 2.8743 0 2003q4 0.0000 184.3888 0.0000 51.3848 120.8072 71.3162 80.3182 1.9855 0	0.0298	2.9569	149.3568	220.8144											187.4137	80.5433	183.0514	432.2493	2002q4
2003q2 504.5802 241.6953 67.3389 73.2341 221.7121 205.1751 2.1612 0 2003q3 271.3252 67.2977 104.1217 92.0260 133.6927 93.0261 2.8743 0 2003q4 0.0000 184.3888 0.0000 51.3848 120.8072 71.3162 80.3182 1.9855 0	0.1901	1.0263	80.5461	41.3305											0.0996	162.1304	0.0000	3.0920	2003q1
2003q3 271.3252 67.2977 104.1217 92.0260 133.6927 93.0261 2.8743 0 2003q4 0.0000 184.3888 0.0000 51.3848 120.8072 71.3162 80.3182 1.9855 0	0.0597	2.1612	205.1751	221.7121											73.2341	67.3389	241.6953	504.5802	2003q2
2003q4 0.0000 184.3888 0.0000 51.3848 120.8072 71.3162 80.3182 1.9855 0	0.0319	2.8743	93.0261	133.6927											92.0260	104.1217	67.2977	271.3252	2003q3
	0.0590	1.9855	80.3182	71.3162										120.8072	51.3848	0.0000	184.3888	0.0000	2003q4
2004q1 107.8738 25.4380 34.7464 0.0000 0.0000 33.6116 44.2788 1.6974 (0.0824	1.6974	44.2788	33.6116										0.0000	0.0000	34.7464	25.4380	107.8738	2004q1
2004q2 61.5723 3.8653 301.3223 131.5669 24.8806 104.6415 120.1883 1.9468 (0.0617	1.9468	120.1883	104.6415										24.8806	131.5669	301.3223	3.8653	61.5723	2004q2
2004q3 7.9815 0.0034 0.0000 21.2485 119.8732 29.8213 51.0838 1.3054 0	0.1309	1.3054	51.0838	29.8213										119.8732	21.2485	0.0000	0.0034	7.9815	2004q3
2004q4 170.1002 60.1595 56.3469 55.6407 47.8353 78.0165 51.6707 3.3762 0	0.0139	3.3762	51.6707	78.0165										47.8353	55.6407	56.3469	60.1595	170.1002	2004q4
2005q1 6.4992 0.0000 2.9324 242.4735 0.0006 50.3811 107.4162 1.0488 0	0.1767	1.0488	107.4162	50.3811										0.0006	242.4735	2.9324	0.0000	6.4992	2005q1
2005q2 266.3750 12.0810 126.1947 5.7093 67.0224 95.4765 107.2060 1.9914 0	0.0586	1.9914	107.2060	95.4765										67.0224	5.7093	126.1947	12.0810	266.3750	2005q2
2005q3 0.0000 18.6209 0.4417 0.4076 28.0244 9.4989 13.0510 1.6275 0	0.0895	1.6275	13.0510	9.4989										28.0244	0.4076	0.4417	18.6209	0.0000	2005q3
2005q4 16.6453 93.2440 5.6022 41.5426 5.0570 32.4182 37.0795 1.9550 0	0.0611	1.9550	37.0795	32.4182										5.0570	41.5426	5.6022	93.2440	16.6453	2005q4
2006q1 0.0571 39.9251 4.6632 0.0000 0.0000 8.9291 17.4436 1.1446 0	0.1581	1.1446	17.4436	8.9291										0.0000	0.0000	4.6632	39.9251	0.0571	2006q1
2006q2 104.3584 3.5722 0.0000 108.5620 31.7436 49.6473 53.3211 2.0820 (0.0529	2.0820	53.3211	49.6473										31.7436	108.5620	0.0000	3.5722	104.3584	2006q2
2006q3 74.1410 0.3344 24.0560 78.4910 0.0000 35.4045 38.6301 2.0494 (0.0549	2.0494	38.6301	35.4045										0.0000	78.4910	24.0560	0.3344	74.1410	2006q3
2006q4 363.8278 37.9208 38.2597 11.6140 234.1657 137.1576 155.0644 1.9778 (0.0595	1.9778	155.0644	137.1576										234.1657	11.6140	38.2597	37.9208	363.8278	2006q4
2007a1 0.4392 74.2801 291.8107 1.9168 5.9548 0.8221 4.2579 54.2117 108.1333 1.3264 0	0.1165	1.3264	108.1333	54.2117								4.2579	0.8221	5.9548	1.9168	291.8107	74.2801	0.4392	2007q1
2007a2 224.4635 241.2901 75.2115 19.7151 197.6585 0.0000 2.2126 192.1185 119.0837 105.0075 3.2076 (0.0075	3.2076	105.0075	119.0837							192.1185	2.2126	0.0000	197.6585	19,7151	75.2115	241.2901	224.4635	2007q2
2007a3 170.0993 29.4266 72.6463 105.6656 40.3305 0.0006 0.2644 5.2861 0.4244 0.0302 42.4174 57.6433 2.3270 0	0.0225	2.3270	57.6433	42.4174					0.0302	0.4244	5.2861	0.2644	0.0006	40.3305	105.6656	72.6463	29.4266	170.0993	2007q3
2007a4 10.1036 130.3691 228.9059 22.4116 148.2406 0.0000 0.0000 0.0000 0.4606 17.6216 156.0506 0.0000 0.0114 0.0043 51.0128 78.5464 2.4301 0	0.0152	2.4301	78.5464	51.0128	0.0043	0.0114	0.0000	156.0506	17.6216	0.4606	0.0000	0.0000	0.0000	148.2406	22.4116	228,9059	130.3691	10.1036	2007q4
2008a1 132.5581 4.8972 306.2315 63.9595 254.4484 0.0324 0.0471 0.0277 96.4808 0.2644 0.9202 0.6053 3.6630 22.4660 63.3287 101.4847 2.3349 (0.0181	2.3349	101.4847	63.3287	22.4660	3.6630	0.6053	0.9202	0.2644	96.4808	0.0277	0.0471	0.0324	254.4484	63.9595	306.2315	4.8972	132.5581	2008a1
2008q2 0.5427 232.2513 154.8878 0.0000 144.5940 0.0000 0.0000 5.8769 68.0803 2.0433 0.0000 2.6923 0.0000 0.0039 43.6409 76.8896 2.1237 (0.0267	2.1237	76.8896	43.6409	0.0039	0.0000	2.6923	0.0000	2.0433	68.0803	5.8769	0.0000	0.0000	144.5940	0.0000	154.8878	232.2513	0.5427	2008a2
2008q3 0.0000 199.1732 0.0000 12.6454 144.8078 0.0000 0.0000 26.7642 0.3973 0.0000 26.4473 32.2986 0.0127 0.1152 31.6187 61.5579 1.9219 (0.0384	1.9219	61.5579	31.6187	0.1152	0.0127	32.2986	26.4473	0.0000	0.3973	26.7642	0.0000	0.0000	144.8078	12.6454	0.0000	199.1732	0.0000	2008a3
2008a4 0.0000 303.8577 4.9417 0.0000 66.4059 1.9315 0.0000 89.4316 4.9017 2.4408 0.0000 0.0000 0.0000 0.0003 33.8508 82.6266 1.5329 0	0.0746	1.5329	82.6266	33.8508	0.0003	0.0000	0.0000	0.0000	2.4408	4.9017	89.4316	0.0000	1.9315	66.4059	0.0000	4.9417	303.8577	0.0000	2008a4
2009a1 99.2815 97.5145 61.9872 56.8338 0.0017 110.2009 18.1606 61.6162 92.5839 0.0094 0.2543 50.6555 116.4521 203.0082 69.1829 56.5771 4.5753 (0.0003	4.5753	56.5771	69.1829	203.0082	116.4521	50.6555	0.2543	0.0094	92.5839	61.6162	18.1606	110.2009	0.0017	56.8338	61.9872	97.5145	99.2815	2009q1
2009q2 350.9110 270.1632 28.8667 94.8591 28.0124 0.0006 1.0404 54.2318 192.3084 52.7523 2.9789 5.9033 52.0769 0.1828 81.0205 111.0459 2.7300 (0.0086	2,7300	111.0459	81.0205	0.1828	52.0769	5,9033	2.9789	52,7523	192,3084	54.2318	1.0404	0.0006	28.0124	94.8591	28,8667	270.1632	350.9110	2009a2
200903 0.0000 0.0649 0.0000 32,5354 0.0004 0.0272 0.0000 0.2162 0.0000 0.0000 6.1675 48,8828 10,9729 0.0781 7.0675 14,9545 1.7683 0	0.0502	1.7683	14.9545	7.0675	0.0781	10.9729	48.8828	6.1675	0.0000	0.0000	0.2162	0.0000	0.0272	0.0004	32,5354	0.0000	0.0649	0.0000	2009q3
T Mean 139.9604 88.0427 93.8512 52.3157 71.2444 10.2741 2.3621 43.5569 50.6264 8.3513 24.1023 17.6297 22.8986 628.2333					28.2323	22.8986	17.6297	24.1023	8.3513	50.6264	43.5569	2.3621	10.2741	71.2444	52.3157	93.8512	88.0427	139.9604	4 Mean
E Std 164 9053 96 2393 113 9006 60 1606 79 5964 33 1474 5 4094 60 9663 67 5047 17 5920 54 0525 22 5348 41 7683 71 0539 All samples		nples	All sat		71 0539	41 7683	22 5348	54 0525	17 5920	67 5047	60 9663	5 4094	33 1474	79 5964	60 1606	113 9006	96 2393	164 9053	E Std
6 t-value 4.7255 2.5875 4.7334 4.2602 5.2953 1.6691 1.2351 2.2593 2.1212 1.4242 1.4789 2.2128 1.8183 1.1920 Mean Std t-value p.	n-value	t-value	Std	Mean	1 1920	1 8183	2 2128	1 4789	1 4242	2 1212	2 2593	1 2351	1 6691	5 2953	4 2602	4 7334	2.5875	4 7255	o t-value
E n-value 0.0000 0.0180 0.0000 0.0001 0.0000 0.0531 0.1283 0.0251 0.0358 0.0951 0.0858 0.0313 0.0495 0.1337 67.4731 102.0054 10.1185	0 0000	10 1185	102.0054	67 4731	0 1337	0.0495	0.0313	0.0850	0.0961	0.0358	0.0251	0.1283	0.0531	0.0000	0.0001	0 0000	0.0180	0.0000	e n-value

Table 3: Deposit insurance premium for the banks in China, i^{Merton} (bps)

Note: 2002q1 represents quarter 1 of 2002 and so on. Words in bold indicate significance at least at the 0.1 level.

Fu Shuen Shie

						1	Ra	nk I				,		. /		Test	of H3	
Quarter	CMSB	SPDB	SHDB	CMCB	HXB	BC	ICB	IB	BCC	CCTB	BBJ	BNB	BNJ	CCSB	Mean	Std	t-value	p-value
2001q1	0.7541						-								0.7541	N.A.	N.A.	N.A.
2001q2	1.6761														1.6761	N.A.	N.A.	N.A.
2001q3	1.6452	1.4517													1.5485	0.1368	16.0104	0.0199
2001q4	1.6232	1.4012													1.5122	0.1570	13.6254	0.0233
2002q1	0.4205	0.6760	1.3508												0.8158	0.4806	2.9398	0.0494
2002q2	1.4741	1.4519	1.4605												1.4622	0.0112	226.4623	0.0000
2002q3	1.4588	1.4477	1.4749	1.2511											1.4081	0.1053	26.7541	0.0001
2002q4	1.4793	1.4496	1.2664	1.4444											1.4099	0.0969	29.1025	0.0000
2003q1	0.9699	0.0000	1.2031	1.0306											0.8009	0.5430	2.9499	0.0300
2003q2	1.4764	1.4622	1.3762	1.4128											1.4319	0.0461	62.1827	0.0000
2003q3	1.4601	1.3360	1.4179	0.8200											1.2585	0.2969	8.4786	0.0017
2003q4	0.0000	1.3000	0.0000	1.4118	1.4359										0.8296	0.7590	2.4439	0.0355
2004q1	1.3582	1.2821	1.3800	0.0518	0.4164										0.8977	0.6204	3.2353	0.0159
2004q2	1.3617	1.1991	1.4748	1.3873	1.3714										1.3589	0.0999	30.4043	0.0000
2004q3	1.0930	0.5387	0.3007	1.2417	1.3149										0.8978	0.4516	4.4450	0.0056
2004q4	1.5909	1.5337	1.2294	1.3475	1.5654										1.4534	0.1576	20.6251	0.0000
2005q1	1.3090	0.0000	0.4569	1.6435	0.3189										0.7456	0.6973	2.3911	0.0375
2005q2	1.6541	1.4716	1.5191	1.3963	1.5592										1.5201	0.0964	35.2536	0.0000
2005q3	0.0511	1.3942	1.1434	1.1763	1.1714										0.9873	0.5329	4.1426	0.0072
2005q4	1.4759	1.5987	1.1696	1.3767	1.3917										1.4025	0.1573	19.9424	0.0000
2006q1	0.4228	1.4090	1.2442	0.0000	0.2059										0.6564	0.6325	2.3205	0.0405
2006q2	1.5992	1.2905	0.0327	1.6159	1.5175										1.2112	0.6714	4.0334	0.0078
2006q3	1.7768	0.0995	0.4261	1.6768	0.0935										0.8146	0.8443	2.1573	0.0486
2006q4	1.8669	1.6869	1.5985	1.5809	1.8404										1.7147	0.1334	28.7494	0.0000
2007q1	1.3174	1.1622	2.0517	1.4742	1.5135	1.4278	1.4670								1.4877	0.2763	14.2474	0.0000
2007q2	2.2379	2.2191	2.0858	2.0545	2.2124	0.8573	1.5625	2.2131							1.9303	0.4875	11.1989	0.0000
2007q3	2.7326	2.4753	2.5485	2.6431	2.5350	0.6573	1.1343	1.8648	1.3286	1.7202					1.9640	0.7341	8.4604	0.0000
2007q4	1.2373	2.8102	2.7941	2.4370	2.8997	0.0000	0.0000	0.0000	1.7731	2.5195	2.9333	0.1367	1.5817	0.6200	1.5531	1.2031	4.8301	0.0002
2008q1	2.8330	1.5323	3.0230	2.3304	1.4352	1.6565	1.5542	0.1307	2.6965	1.9015	0.7305	2.2804	2.6137	1.9105	1.9020	0.8149	8.7329	0.0000
2008q2	1.8528	2.9163	2.8392	0.0029	2.6802	0.0313	0.2761	2.1027	2.6205	1.4562	0.0000	2.1274	0.4644	0.5123	1.4202	1.1581	4.5883	0.0003
2008q3	0.0000	2.9437	0.0000	2.5925	2.4950	0.0084	0.0000	0.0119	0.7727	0.3217	2.6713	2.7792	1.4797	1.1687	1.2318	1.2243	3.7645	0.0012
2008q4	0.0003	1.6629	1.4299	0.1071	1.5961	1.2700	0.7965	1.5950	1.4298	1.4483	0.6206	0.0742	0.0045	0.6901	0.9090	0.6565	5.1807	0.0001
2009q1	1.6007	1.6207	1.5742	1.6025	0.8157	1.6230	1.5565	1.5446	1.6149	1.1350	1.2356	1.6048	1.6377	1.6459	1.4865	0.2472	22.5015	0.0000
2009q2	1.6679	1.6547	1.2818	1.5935	1.4351	0.7748	1.1178	1.5790	1.6276	1.5866	1.4357	1.4763	1.6035	1.1569	1.4280	0.2595	20.5928	0.0000
2009q3	0.0000	0.4865	0.3605	0.9716	0.6425	0.2692	0.1897	1.0910	0.0000	0.0662	1.3090	1.5810	1.5539	0.7407	0.6615	0.5599	4.4207	0.0003
H Mean	1.2994	1.4232	1.3392	1.3681	1.4360	0.7796	0.8777	1.2133	1.5404	1.3506	1.3670	1.5075	1.3674	1.0557		4.17	,	
5 Std	0.7179	0.7222	0.7961	0.7012	0.7680	0.6469	0.6512	0.8632	0.8359	0.7614	1.0008	0.9672	0.7972	0.5099		All sa	amples	
t-value	10.0766	5.5740	9.6637	9.5582	11.0621	6.4897	3.8121	4.4445	5.2123	5.3214	4.5303	4.4085	5.6891	6.2107	Mean	Std	t-value	p-value
p-value	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000	0.0033	0.0008	0.0006	0.0004	0.0005	0.0016	0.0001	0.0001	1.3113	0.7564	26.5216	0.0000

Table 4: Deposit insurance premium for the banks in China, i^{AS} (bps)

Note: 2002q1 represents quarter 1 of 2002 and so on. Words in bold indicate significance at least at the 0.1 level.

Onorto							Bar	ık								Test of	i H3	
Quarter	CMSB	SPDB	SHDB	CMCB	HXB	BC	ICB	IB	BCC	CCTB	BBJ	BNB	BNJ	CCSB	Mean	Std	t-value	p-value
2001q1	0.0080														0.0080	N.A.	N.A.	N.A.
2001q2	185.6254														185.6254	N.A.	N.A.	N.A.
2001q3	120.7974	3.3439													62.0706	83.0522	1.0569	0.2412
2001q4	60.4510	3.4415													31.9462	40.3118	1.1207	0.2319
2002q1	0.0000	0.0351	18.6180												6.2177	10.7390	1.0028	0.2108
2002q2	179.5405	116.7076	133.6876												143.3119	32.5033	7.6369	0.0084
2002q3	203.5606	104.9147	232.5008	2.4544											135.8576	104.3671	2.6035	0.0401
2002q4	270.4252	128.5078	41.9919	143.6239											146.1372	94.1822	3.1033	0.0266
2003q1	0.2136	0.0000	70.5752	0.0099											17.6997	35.2505	1.0042	0.1946
2003q2	218.8932	136.6845	51.7018	56.8757											116.0388	78.8349	2.9438	0.0302
2003q3	218.0281	46.2251	82.2525	4.6462											87.7880	92.4359	1.8994	0.0769
2003q4	0.0000	114.4700	0.0000	39.1660	89.1112										48.5494	51.9445	2.0899	0.0524
2004q1	79.7067	14.0443	26.4909	0.0000	0.0000										24.0484	33.0172	1.6287	0.0894
2004q2	45.7206	1.3589	280.4034	104.8915	18.6569										90.2063	113.3388	1.7797	0.0749
2004q3	1.4473	0.0000	0.0000	9.6278	76.5781										17.5307	33.2505	1.1789	0.1519
2004q4	141.5757	44.7819	13.9602	22.5825	36.8599										51.9521	51.5207	2.2548	0.0436
2005q1	2.1116	0.0000	0.0007	203.2964	0.0000										41.0817	90.6853	1.0130	0.1842
2005q2	210.1593	7.6487	91.4722	2.7469	51.9115										72.7877	84.8597	1.9180	0.0638
2005q3	0.0000	8.9238	0.0537	0.0609	4.8829										2.7843	4.0225	1.5477	0.0983
2005q4	10.6793	72.9871	0.8668	18.7510	2.3867										21.1342	29.8578	1.5828	0.0943
2006q1	0.0000	20.3833	1.0826	0.0000	0.0000										4.2932	9.0069	1.0658	0.1733
2006q2	82.4662	1.0503	0.0000	82.1459	22.7385										37.6802	41.7366	2.0187	0.0568
2006q3	56.9782	0.0000	0.0127	56.0176	0.0000										22.6017	30.9447	1.6332	0.0889
2006q4	170.7082	27.4336	22.6266	6.5249	174.6732	0.1741	1.0556								80.3933	84.6223	2.1243	0.0504
200/q1	0.05/4	8.0679	221.50/4	0.4913	1.7868	0.1741	1.0756	101 6615							33.3087	83.0351	1.0613	0.1647
200/q2	126.5339	192.0890	58.2470	14.6214	141.4248	0.0000	0.5576	134.6645	0.0070	0.0070					83.5173	74.4985	3.1708	0.0078
200/q3	129.6162	21.14/1	55.0847	82.0289	29.9609	0.0000	0.0080	1.5257	0.0270	0.0060	100.0020	0.0000	0.0010	0.0000	31.9405	44.3580	2.2770	0.0244
200/q4	0.5448	103.0046	190.2204	13.7244	110.8182	0.0000	0.0000	0.0000	0.0906	11.68/1	108.9939	0.0000	0.0013	0.0000	38.5061	62.3398	2.3112	0.0189
2008q1	0.1077	0.5681	191.6667	34.6354	/8.3039	0.0047	0.0052	0.0000	/3.345/	0.068/	0.0046	0.3059	2.5662	6.2963	35.1370	57.5496	2.2845	0.0199
2008q2	0.12//	149.4489	124.1646	0.0000	04.4691	0.0000	0.0000	2.2617	49.2170	0.1861	0.0000	1.0/6/	0.0000	0.0000	34.7639	03./019	2.0400	0.0311
2008q3	0.0000	148.3030	0.0000	8.8320	94.4081 50.0142	0.0000	0.0000	70.1600	0.0023	1.4210	0.0000	23.0030	0.0011	0.0057	21.0414	44.5022 52.5006	1.7091	0.0502
200844	0.0000	70.0296	49.2716	42,4704	0.0000	0.3000	12 ((10	/0.1099	2.0904	1.4519	0.0000	27,2007	75 4012	140.5228	22.0270	20, 6095	1.0124	0.0054
2009q1 2009~2	102 2676	10.9380	48.2/10	42.4704	0.0000	0.4849	0.1100	40.7523	08.9391	40.5220	0.0539	2 7 9 9 4	13.4913	140.5228	56 0404	39.0083	4.7421	0.0002
200942	195.50/0	221.4038	0.0000	1 0222	0.0000	0.0000	0.1100	41.9052	0.0000	40.3220	2.0022	27 6227	0 1000	0.0258	2 55 47	10.0512	1 2222	0.0078
2009q3	82 6107	60 7081	63 5085	35 4166	46 3070	7 3701	1 4017	20 7356	38.0090	5 0802	16 5027	12 0620	0.1000	18 3550	5.5547	10.0313	1.3233	0.1045
	86 6222	70.0052	03.3083 81.2544	40 2169	51 5092	24 2470	1.4017	44 0226	54 1010	12 4004	27 0474	12.9020	13.0032	10.3339		All com	nlas	
5 Sid	5 2002	10.9932	01.2340 4.4800	49.5108	5 2199	24.2470	4.060/	44.9520	2 0288	1 2 2 1 0	37.94/0	2 1501	1 9794	49.4120	Moon	Std	t voluo	n voluo
o t-value	0.0000	0.0220	4.4099	0.0000	0.0000	0.0563	0.7/13	2.0727	2.0300	0 1000	1.4424	2.1501	0.044	0.1497	14 0649	64 7061	10 4029	p-value
 p-value 	0.0000	0.0430	0.0000	0.0009	0.0000	0.0302	0.1010	0.0529	0.0404	0.1039	0.0099	0.0343	0.0449	0.140/	44.0040	04./201	10.4020	0.0000

Table 5: Deposit insurance premium for the banks in China, i^{MDOP} (bps)

Note: 2002q1 represents quarter 1 of 2002 and so on. Words in bold indicate significance at least at the 0.1 level.

From the above tables, it can be found that the results for i^{Merton} and i^{MDOP} are exactly the same except for quarter 3 of 2009. In the tests against H3, the results support the hypothesis since quarter 4 of 2007 meaning that DSI should be established for banks in China in order to transfer the cost back to them instead of the cost being borne by the public. Moreover, in the tests against H4, apart from ICB and CCSB, the operation costs of all the other 12 banks are under-estimated. In Table 4, the results of i^{AS} support both H3 and H4. Besides those results, there is a question of how to establish a high-quality EDIS. The study suggested that the focus of an EDIS should be on the exit mechanism for banks with serious problems and on the brink of bankruptcy. Also, the legislation of deposit insurance systems is another key issue as it may provide the legal ground for assisting banks, guiding the process of bankruptcy and preventing the misuse of forbearance policy. Furthermore, the standard deviation of all samples indicates that the discretion power of the model of Allen and Saunders (1993) is the lowest as its result is 0.7564bps, far lower than the 102.0054bps from the model of Merton (1977) and 64.7961bps from the model of Hwang et al. (2009). Similar results can also be found in Table 6.

The results of deposit insurance premium for i^{Merton} , i^{AS} , and i^{MDOP} are consolidated and expressed as quantile in Table 6 in order to support the suggestions of the EDIS establishment in China as proposed.

Quantile	i ^{Merton}	i^{AS}	<i>i^{MDOP}</i>
min	0.0000	0.0000	0.0000
0.10	0.0000	0.0686	0.0000
0.25	0.0835	0.8013	0.0016
0.50	17.8911	1.4325	6.4106
0.75	96.0753	1.6224	72.4750
0.90	218.0269	2.4051	141.5304
max	536.2192	3.0230	280.4034

Table 6: Quantile of deposit insurance premium for the banks in China (bps)

As mentioned, the results in Table 6 demonstrate that calculation using the model of Allen and Saunders (1993) provided a range of deposit insure premia that is very small. For example, 0.9 quantile is higher than the 0.1 quantile by only 2.3365bps. According to the current assessment rate schedule issued by the Federal Deposit Insurance Corporation (FDIC), the difference between the highest and lowest total base assessment rate is 70.5bps. Apparently, the Allen and Saunders (1993) model is not an appropriate standard for deposit insurance pricing.

4 Conclusion and Suggestion

First, according to the empirical results, up to 2008, there is no risk of bankruptcy for Chinese banks. Moreover, Chinese banks were not affected by the global subprime mortgage crisis in 2007 and 2008, and their financial condition became even more stable. This indicates that the structure of the Chinese financial industry is very healthy and,

therefore, it is worthwhile to invest in the industry and set up offices. However, this does not imply that China does not require a deposit insurance system.

On the other hand, the results that support H3 and H4 implied that the operation costs of Chinese banks are under-estimated and, as result, China really needs to establish an EDIS promptly. Though, practically, the implicit DIS (IDIS) has been operated all the way, such a situation was created by the uniqueness of the Chinese banking industry. In China, banks are actually national banks. The government controls and owns the banks directly or indirectly and is the biggest owner of Chinese banks. It is inevitable that the government would interfere and get involved into the normal operations of these banks. Therefore, if there were any problem with the bank's assets, it would be rectified by the government. This, obviously, is an unreasonable phenomenon as the risks of the banks are, in fact, borne by the public.

Finally, there are some suggestions about the establishment of EDIS:

- a. There are two common types of EDIS. The first one is to set up and run the EDIS through the government, such as the FDIC and the Canada Deposit Insurance Corporation (CDIC). The second one is to set up the EDIS by the government and the banks, just like the Deposit Insurance Corporation of Japan (DICJ). According to the political system in China, it is suggested that the deposit insurance institution should be set up and run by the government.
- b. Determination of deposit insurance premium: it is recommended to refer to the setting of the range by Merton (1977) and Hwang et al. (2009) in Table 6, or the current assessment rate schedule published by the FDIC.
- c. International Monetary Fund (IMF) suggested to members that the maximum settlement of claims should be set at around double of per capita GDP. However, data shows that the 2009 per capita GDP in China is only USD3,678. According to IMF's recommendation and the exchange rate at that time, the amount is only around CNY 50,000 which, obviously, is too low in China. Since one of the reasons of an EDIS is to protect small depositors, it is recommended that the maximum amount of settlement of claims should be set at 99% of the deposit in the accounts of such depositors.

ACKNOWLEDGEMENTS: The author thanks the financial support of Ministry of Science and Technology (MOST) of the Republic of China (Taiwan) to this work under Grant Nos. MOST 101-2410-H-025-014.

References

- [1] Allen, L. and Saunders, A., Forbearance and Valuation of Deposit Insurance as a Callable Put. *Journal of Banking and Finance*, **17**, (1993), 629-643.
- [2] Altman, E.I., Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy, *Journal of Finance*, **23**(4), 1968, 589-609.
- [3] Altman, E.I., Predicting Performance in the Savings and Loan Association Industry. *Journal of Monetary Economics*, **October**, (1977), 443-466.
- [4] Altman, E.I., *Corporate Financial Distress and Bankruptcy*. 3rd ed., New York: John Wiley & Sons, Inc, 1993.
- [5] Altman, E.I, Predicting Financial Distress of Companies: Revisiting the Z-Score and Zeta[®] Models. *Working Paper*, (2000).

- [6] Beaver, W.H., Financial Ratio as Predictors of Failure, Empirical Research in Accounting: Selected Study, *Journal of Accounting Research*, **4**, (1996), 71-111.
- [7] Boyd, J.H., Runkle, D.E., Size and performance of banking firms. *Journal of Monetary Economics*, **31**, (1993), 47-67.
- [8] De Nicoló, G., Bartholomew, P., Zaman, J., Zephirin, M., Bank consolidation, internalization, and conglomerization. *Working Paper* No. 03/158, IMF, (2004).
- [9] Duan, J.C. and Yu, M.T., Forbearance and Pricing Deposit Insurance in a Multiperiod Framework. *Journal of Risk and Insurance*, **61**(4), (1994), 575-591.
- [10] Duan, J.C. and Yu, M.T., Capital Standard, Forbearance and Deposit Insurance Pricing under GARCH. *Journal of Banking and Finance*, **23**, (1999), 1691-1706.
- [11] Edmister, R.O., and Schlarbaum G.G., Credit Policy in Lending Institutions. *Journal* of Financial and Quantitative Analysis, **9**, (1974), 335-356.
- [12] Gropp, R., Vesala, J., and Vulpes, G., Equity and Bond market signals as leading indicators of bank fragility. European Central Bank *Working Paper*, (2002).
- [13] Hwang, D.Y., Shie, F.S., Wang, K., Lin, J.C., The Pricing of Deposit Insurance Considering Bankruptcy Costs and Closure Policies. *Journal of Banking and Finance*, 33, (2009), 1909-1919.
- [14] Kerfriden, C. and Rochet, J. C., Actuarial Pricing of Deposit Insurance. *Geneva* Papers on Risk and Insurance Theory, **18**, (1993), 111-130.
- [15] Laeven, L., International evidence on the value of deposit insurance. *Quarterly Review of Economics and Finance*, **42**, (2002), 721–732.
- [16] Liu, Y., Papakirykos, E., and Yuan, M., Market valuation and risk assessment of Canadian banks. *Review of Applied Economics*, 2, (2006), 63-80.
- [17] Martin, D., Early Warning of Bank Failure: A Logit Regression Approach. *Journal of Banking and Finance*, 1, (1977), 249-276.
- [18] Merton, R.C., An Analytic Derivation of the Cost of Deposit Insurance and Loan Guarantees. *Journal of Banking and Finance*, **1**, (1977), 3-11.
- [19] Pettway, R.H., and Sinkey, Jr., J.F., Establishing On-Site Bank Examination Priorities: An Early-Warning System Using Accounting and Market Information, *Journal of Finance*, 35(1), (1980), 137-150.
- [20] Ronn, E. and Verma, A., Pricing Risk-adjusted Deposit insurance: An Option-based Model. *Journal of Finance*, 41, (1986), 871-895.
- [21] Santomero, A.M., and Vinso, J.D., Estimating the Probability of Failure for Commercial Banks and Banking System. *Journal of Banking and Finance*, 1, (1977), 185-205.
- [22] Sinkey, Jr., J.F., A Multivariate Statistical Analysis of the Characteristics of Problem Banks. *Journal of Finance*, **30**(1), (1975), 21-36.
- [23] Sinkey, Jr., J.F., Identifying Large Problem/Failed Banks: The Case of Franklin National Bank of New York. *Journal of Financial and Quantitative Analysis*, 12, (1977), 779-800.
- [24] Uhde, A., Heimeshoff, U., Consolidation in banking and financial stability in Europe: Empirical evidence. *Journal of Banking and Finance*, **33**, (2009), 1299-1311.
- [25] VanHoose, D., Theories of bank behavior under capital regulation. *Journal of Banking and Finance*, **31**, (2007), 3680-3697.