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Abstract

In this paper we show how to derive a liquidity adjusted lending value
in the case where the collateral is given by a single stock. Following
[12] and [7], the collateral market value is adjusted as a function of
the position size based on the existence of a one-parameter exponential
supply curve. The lending value is then determined as usual, i.e. such
that the probability that after a margin call the collateral value falls
below the client exposure is at most € > 0. The curve parameter for
a specific stock can be estimated from intraday data by means of a
simple regression. Furthermore, we show that an affine model where
the liquidity parameter characterizing the exponential supply curve is
assumed to be a function of the Average Daily Trading Volume (ADTYV)
has an excellent predictive power. This implies that the ADTV can be
used for a simple and direct computation of the liquidity parameter
avoiding the use of the intraday data. Concrete examples highlight the

impact of liquidity risk on the lending value.
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1 Introduction

Lombard Lending is the standard terminology used in Switzerland for col-
lateralized lending against liquid assets such as publicly traded stocks, bonds,
etc., and is usually characterized by a variable credit limit expressed as a fixed
percentage of the collateral market value: the so called lending value. Briefly
speaking, at the beginning of the contract the client is assigned a fixed per-
centage called lending value which depends on the “quality” of the pledged
assets. The lending value multiplied by the market value of the collateral de-
termines the (variable) lending limit up to which the client is allowed to draw
money from the bank. Usually, a Lombard loan contract states that the bank
is allowed to liquidate (part of) the assets as soon as the running haircut,
which is given by the relative difference between the assets value and the lent
amount, falls below some fixed threshold. The latter typically equals 75% of
the initial (or required) haircut, i.e. 75% of the running haircut at the time of

the beginning of the contract.

However, since also normal market fluctuations may determine a running
haircut erosion exceeding the required margin, the bank, instead of applying
the contract terms zealously, adopts a different control policy. For example,
as soon as the haircut erosion lies between 0% and 25%, the client comes into
a warning stage where his positions are monitored carefully but no measure
to reestablish the required haircut is taken. A so called margin call stage is
entered when the haircut erosion exceeds 25% of the required haircut. In this
case the bank asks the client to reestablish the required margin bringing new
collateral or reducing exposure creating transactions within an imposed time,
typically 10 business days. If the client does not react or the required haircut is
not reestablished through the price movement of the collateral itself, then the
bank can start liquidating (part of) the assets. Otherwise, the whole control
process restarts. The time interval from the last margin call to the liquidation
instant is called closeout period. It is clear that at the end of the closeout
period, the bank still realizes a loss if the assets value has decreased rapidly
enough so that the income due to the assets liquidation does not cover the
banks exposure. The Lombard credit risk has therefore two components: a
market risk component stemming from the movements of the assets value and

a purely obligor specific risk component due to the fact that the obligor may
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not react on margin calls. Thus, the default time, intended as the time of
exiting the closeout period, can be seen as a combination of a market default
time (equal to some margin call time plus the length of the closeout period) and
of a client default time occurring if the obligor does not react on that margin
call. Besides this, there is also a timing-risk issue that has to be considered.
Indeed, because both the magnitude and the occurrence of a Lombard loss are
contingent on the default time, which is random, we have that all occurring
cash-flows are not known with certainty ex-ante.

In summary, the Lombard credit risk consists of a market risk component
stemming from the movements of the collateral’s value, and of a purely obligor
specific risk component due to the fact that the obligor may not react on
margin calls. If the obligor specific risk component is neglected, then the
Lombard risk becomes a pure market risk with a derivative character since
the form of the Lombard loss looks like the payoff of a random maturity put

option with stochastic strike.

1.1 Literature review

There is a large literature on liquidity. For instance [1] propose a liquidity
adjusted capital asset pricing model where the expected return of a security
is increasing in its expected illiquidity and its net beta, which is proportional
to the covariance of its return net of its exogenous illiquidity costs with the
market portfolios net return. The net beta can be decomposed into the stan-
dard market beta and three betas representing different forms of liquidity risk.
These liquidity risks are associated with: commonality in liquidity with the
market liquidity, return sensitivity to market liquidity, and liquidity sensitivity
to market returns. [1] measure the liquidity by means of 5 coefficients defined
using the covariances between returns and the return variance. In other words
they do not propose a structural model taking liquidity into account.

Another liquidity paper is [5]. They provide a model that links an as-
sets market liquidity and traders’ funding liquidity. Traders provide market
liquidity, and their ability to do so depends on their availability of funding.
Conversely, traders’ funding, depends on the assets’ market liquidity. [5] show
that margins are destabilizing and market liquidity and funding liquidity are

mutually reinforcing, leading to liquidity spirals. The model explains the em-
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pirically documented features that market liquidity can suddenly dry up, has
commonality across securities, is related to volatility, is subject to “flight to
quality”, and co-moves with the market. The model provides new testable
predictions, including that speculators capital is a driver of market liquidity
and risk premiums. [5] define their measure of market illiquidity as the abso-
lute deviation of the price from its fundamental value. However, they do not

formulate explicitly a liquidity component in the asset price model.

The work of [2] surveys reviews the literature that studies the relationship
between liquidity and asset prices. They review the theoretical literature that
predicts how liquidity affects a securitys required return and discuss the empir-
ical connection between the two. However, they do not examine the literature
on liquidity and asset pricing, i.e. they do not assess the large literature on
market microstructure, which studies trading mechanisms and the origins of
illiquidity. This is done e.g. by [15], [14], [4] and [9].

[15] provides a detailed survey of the theoretical literature and considers the
standard reference for the economic theory of market microstructure. [14] sur-
veyed the literature on the microstructure studies, building on empirical, the-
oretical and experimental studies relating to markets and trading. [9] provides
a detailed conceptual overview about trading, the people who trade securities
and contracts, the marketplaces where they trade, and the rules that govern
trading; his focus is on the practitioners not on the academic literature. [8] sur-
veyed the studies on the microstructure regarding the microstructure factors
and asset price dynamics. [4] provide a comprehensive review analyzing the
price formation and trading process, interrelation between institutional struc-
ture, strategic behavior, prices and welfare. Finally, [10] provides a detailed
integrated introduction to the most important models of empirical market mi-

crostructure studies. Additional liquidity references can be found in [11].

In summary, our paper although it does not provide new methodological
steps regarding liquidity modeling, highlights the effect of liquidity contained
in the model of [12] and [7] in the Lombard lending business in view of lending

values.
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2 Modeling Lombard Loans

The mathematical modeling of Lombard lending requires the analysis of
essentially three components: a model for the banks exposure to the client,
i.e. a description of the way the client makes use of his lending limit; a for-
malization of the default triggers; a model for the market value of the pledged
assets.

We start introducing some notation. Consider a probability space (2,3, P)
equipped with the natural filtration F = (F;);>0 of a process V' = (V});>¢ de-
scribing the market value of the collateral over time. Further, let X = (X;)i0
be an F-adapted right-continuous process describing the banks exposure to the
client over time and denote by A € (0, 1] the lending value.

At the beginning of the contract, i.e. at time ¢t = 0, the amount of money
at clients disposal is bounded from above by AV;. The quantity 1 — A is called
the initial or required haircut, whereas the process (V; — X;)/V; is called the
running haircut at time t. In other words, the initial haircut 1 — A multiplied
by the initial market value of the collateral Vj represents the excess collateral
the lender wants at inception. Finally, for s <t denote by V*, :=sup,_,«, Vi
the running maximum of V' over the time interval (s,¢]. In order to simplify

the notation, we write V;* for V{,.

2.1 Margin calls and client behavior

Suppose that the bank applies a control policy triggered by margin calls
as described in the introduction. Formally, for a fixed threshold a € (0,1),
a margin call occurs as soon as the running haircut erosion exceeds «, i.e. as
soon as X/V > A/f, where f:=1— (1 —\)a > A is called margin call trigger.
Formally, consider the F-stopping times (7,)n,>1 defined by 7, := inf{t >
0]Vi/X: < B/A} and, for n > 1,

Non = inf{t > no, | Vi/ Xy > B/A},

| 2.1
Nont1 = inf{t > no, | Vi/ Xy < B/}

For example, assuming that the client draws up to his limit (see Assump-
tion 2.3), we have for t < 7y that X; = A\V;* and that 7, is precisely is the first
time ¢ for which V; < V;*.
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Once a margin call occurs, the bank asks the client to reestablish the re-
quired haircut bringing new collateral or reducing the exposure within a im-
posed time of 6 > 0 time units. Denoting by 7" > 0 the loan maturity, a
natural question that arises is: what happens if a margin call occurs within
(T'—0,T]? One possibility is to assume that the contract terminates at 7" the
latest meaning that for a margin call occurring within (7" —§, 7] the amount of
time given to the client to readjust his position equals the remaining lifetime of
the contract. Another possibility is stated in the following assumption which

is assumed to hold throughout the rest of the paper.

Assumption 2.1. If a margin call occurs within (T' — 6,T], then the ma-
turity of the contract is artificially prolonged so that the client still has 6 time

units to react on that margin call.

The next step in the formalization of our model consists in specifying the
lending mechanism, i.e. the way the client makes use of the lending limit given
by the lending value and represented by the process X. The first assumption
we make is the following.

Assumption 2.2 (Client creditworthiness). There is a non-negative
random variable Tc such that, prior to 1¢, the obligor is willing to reduce its

exposure if a margin call occurs whereas from 7c onward he is not.

Further, we assume in the sequel that the client’s behavior is driven by
the following mechanism, which is particularly in line with credit practice
in Wealth Management for clients leveraging their assets portfolio using the

borrowed amount for the purchase of new assets.
Assumption 2.3 (Speculative client).

(1) An obligor always draws up to his limit as long as the market value of

the collateral increases and he sticks to the current exposure otherwise.

(it) If @ margin call occurs at the time n and over [n,n + J) the required
haircut is not reestablished by the movements of the collaterals market
value itself, i.e. V7', .5 = Vi, then the obligors exposure remains constant
over [n;n+90), i.e. Xy =X, for all s € [n,n+0).
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(111) If the obligor reacts on a margin call occurring at time 1, then he reduces
the exposure to exactly reestablish the required haircut 0 time units after

the margin call time, i.e. X, 5 = AV 15.

The impact of Assumptions 2.2 and 2.3 on the different process involved in
the modeling of the Lombard business is illustrated schematically in Figure2.1
where 7 denotes the default time defined in Definition 2.2. Assumptions 2.2
and 2.3 together with Definition 2.1 allow us to determine the exposure process
X explicitly.

= Market value Vt
--- = Exposure XT

--- = Control process

Figure 2.1: Lombard processes.

Definition 2.1 (Critical margin call times). Consider the F-stopping
times

To=inf{t > 7,1 + 0|V, <BVZ_ }, n=>1, (2.2)

where 7y := 0. We call the random times 7,,, n > 1 critical margin call times.
Remark 2.1.
(i) Observe that {7, }n>1 C {Non—1}n>1-

(11) If the obligor behaves accordingly to Assumption 2.3 and 7¢ > T, then
the random time T,, is precisely the n-th margin call time for which the

haircut erosion exceeds the level o for all 0 time units from 7, onward.
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Using this notation, we have that the exposure process (X;);>o takes the form

Xy =AY V& L i<icry on {7c >t} (2.3)

n=1

2.2 The default time and the Lombard loss

The next model component is given by the default time, denoted by 7,
which we identify with the time at which the bank liquidates (part of) the
pledged assets.

Definition 2.2 (Default time). The default time T of the Lombard loan
is the time of the first jump time of Ny := Y o1 Laonro<y given by the critical

margin call times (T,)n>1, i.e.
7 :=inf{t > 0| N, > 1} = inf{7, |7, > 7¢ n >1}. (2.4)

The interpretation behind the above definition is that 7 — ¢ is the last
critical margin call time prior to closeout or, in other words, the first time
where the client is asked to readjust his position but either he does not nor the
market value of the collateral increases sufficiently to reestablish the required
haircut.

Finally, assuming that it is possible to instantaneously liquidate the assets
at default, we have, provided that a default occurs, that the bank incurs a
loss L equal to the positive part of the difference between the exposure at
default and the market value of the collateral at liquidation. By definition,
we have that the the default time 7 = 7,, for some n and that the exposure
cannot increase between 7 — 4 and 7. Thus, X; = X; 5 = AVZ =
ABTIBVE s = ABT'Vo 5. We obtain,

L= (XT - ‘/;')+1{TST+6} = ()\B_IVT—(S - ‘/;')+1{TST+6}' (25)

Remark 2.2. (a) If we replace Assumption 2.1 with the assumption that
the Lombard contract terminates at T the latest, then L takes the form
L = (X; = Vi) lppery + (Xo = Vi) Lircrarisy = (X = Vi) lmeny
where " :==T7 =5+ (T — 7+ ) N 6.
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(b) We want to stress that in Definition 2.2 we did not postulate that the time

T 15 a F-stopping time.

2.3 Neglecting the obligor specific risk component

In order to simplify our model, we can assume that the client never reacts
on margin calls, i.e. that 7¢ = 0. In this case, we have that the default time 7
occurs 0 time units after the first critical margin call time 77 defined in (2.2),
ie.

T="m+0=inf{t > 0|V ;, <BVy,}+0. (2.6)

In particular, we have that 7 is a F-stopping time.

2.4 A model choice for the asset value process

The last model ingredient is given by a model for the market value process
V. We restrict ourselves to the situation where the pledged assets consist
of a single stock portfolio and we model V' as the solution of the stochastic
differential equation (SDE)

dVy = Vi(pdt + odBy), t>0,
t t(,u t) (2'7)
‘/E) = .

where B is a standard Brownian motion, (¢, 0) € R x (0,00) and vy > 0. The
constants p, o and vy denote respectively the drift and the volatility of V as well
as the initial market value of the collateral. By It6’s Lemma, the solution of this
SDE is the geometric Brownian motion V; = vgexp((p—o0?/2)t+0B;), t> 0.

3 Standard Lending Values

In principle, the lending value can be chosen as any number between zero

and one. However, in order to control the Lombard risk, it is common practice
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to define the lending value as the largest number in (0, 1) such that the prob-
ability that 0 time units (the length of the so called closeout period?) after
any margin call the collateral value falls below the client exposure is at most
e > 0. Typically € is set to 1%. Assuming that after a margin call the client is
not allowed anymore to draw money from the bank, it follows that the lending

value is characterized by
PlVs < X7 ] =PV <AV, ] <€ foralln>1.

In order to determine the lending value, we need to specify a model for V.
We assume from now on that the asset value process V' follows a geometric
Brownian motion with parameters p and o. Since V,, 5 = V.. Z; for a random
variable Zs, which is lognormally distributed with parameters (u —o0?/2)é and

0%, we obtain

Py,

n

+6 S XTn] - P[VTn+5 S )‘B_lv;n] - P[VTnZ5 S )\B_IVTn] = P[Z5 S )\ﬁ_l]

o ((oED ot/
oV o

Thus, the probability that § time units after any margin call the collateral

value falls below the client exposure is at most € if
A < fexp ((,u —0%/2)6 + 0\/3<I>_1(e)> :

whence

(1—a)exp ((/L —0%/2)0 + J\/gcb’l(é))
1 —aexp ((u —02/2)0 + U\/gqfl(e)) 7
so that the right hand side of (3.1) defines the lending value.

A<

Remark 3.1. The 1 — € worst case scenario for the collateral value within
the closeout period conditioned on the information up to a margin call time, i.e.
the lowest value reached by the process within [T — 0, 7| provided that V, 5 =wv

for some v > 0, is given by

vFy(€) = vexp ((M —02/2)6 + aﬁqu(e)) .

2In this context the closeout period has to be intended as the time given to the client to
react to a margin call, and has not to be confused with the time needed to liquidate (part
of) the collateral.
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Observe that FZ_;(G) is different from the right hand side of (3.1). Setting the
lending value equal to FZ_;(G) would be incorrect since this expression does not
take into account that at a margin call time the o percentage of the haircut has

already been eroded.

4 Liquidity Adjusted Lending Values

The derivation of the lending value formula of the previous section was
based on the assumption that immediate liquidation of the assets at the end
of the closeout period was possible without affecting the transaction price.
This assumption becomes questionable if the number of collateral units held is
large as for instance in the case when it exceeds by far the average daily trading
volume for the asset at hand. In this situation, the price one would receive
would be significantly smaller than the one one would get for a much smaller
transaction, or, in the extreme case, it could be even impossible to liquidate the
entire position. The effects of the transaction size on the transaction price are
commonly referred to as one aspect of liquidity risk, so that the lending value
determination for a large collateral size must take into account the potential
liquidity costs. In the sequel, we will assume that liquidation of arbitrary large
amounts of the collateral is always possible, so that liquidity risk reduces to a
decrease in the amount earned by selling the desired amount of collateral.

The idea of [7] and [12] is to include liquidity costs in the collateral market
value directly by means of an exponential supply curve taking into account the
transaction size. Formally, for x € R denoting the order flow bought (x > 0)
or sold (z < 0) by the trader, where the zeroth order (x = 0) corresponds to
the marginal trade®, the price per share payed/rceived for the order flow w,

denoted by V;(z), is assumed to be given by

Vi(z) = €™V, (4.1)

3That is to say the trade of infinitesimally small quantities of the collateral. Observe that
z should be an integer in principle. However, the number of outstanding shares is typically
very large, (of the order 10% or more) so that trading a single share can be interpreted as
a marginal trade, and the classical price process V' can be seen as the marginal trade price
process.
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where V; is the classical collateral value per share, i.e. a geometric Brownian
motion, and v > 0 is a constant, which we call the liquidity parameter. The
term e?* captures the quantity impact on the asset price and the idea behind
(4.1) is that the more liquid an asset, the smaller v and thus the more horizontal
its supply curve. In other words, the less significant the trade size the more
the traded price equals the classical market value.

Suppose now that at some time ¢ we want to liquidate 6 € [0, 1] percent
of a (bulk) position of size > 0 we are holding. [12] show that the position
value at time ¢ including liquidity costs is the classical value less the liquidity

costs L;, which can be expressed as
L; = —0x(Vi(—0z) — V;) = —0x(e™" — 1)V, > 0, (4.2)

where the last equality follows from (4.1). Denoting the classical position value
without liquidity costs by U; := xV; and the one including liquidity costs by
U,, it follows that

U=U —Ly=aVi+0x(e® — 1)V, = (1 -0+ 07U, < U,. (4.3)

Note that the decline in value is greater when -y is larger or when the percent
of the position f that is liquidated is larger.

We can now derive a lending value formula using the same ideas as before
but including in the computation the transaction size, i.e. replacing V by U.
It is now crucial to observe that, in our situation, the minimal liquidation
percentage 0 needed to avoid a loss (provided that this is possible) is random
and is known only at the liquidation time 7, which is of the form 7,, + ¢ for
some n > 1. Indeed, at liquidation, the ratio between the (reduced) exposure
X, — V., and the market value of the retained collateral (1 — )V, should, if

possible, be equal to the lending value, so that 6 must satisfy

X, -0V,

a—op, = >

Since X, — 0V, = X,_5 — 0V, = \B~'V,_s — 0Z5V,_s, and because § must be
within [0, 1], we obtain

A 1
b= 1—\ (E N 1) Lig-r<zs<p1y + Lzg<p1ys (44)
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which is a F,-measurable random variable (where ' = (F;);>o denotes the
natural filtration of V') meaning that only at time 7 we know how much to
liquidate.

In order to keep the model tractable, we take a conservative approach by
assuming that we liquidate the entire position, i.e. we set # = 1, so that the

lending value A is determined from
€ > Ple a2V, < \aV* ;] = Ple 7 Zs <\, (4.5)

where, as before, Z; is lognormally distributed with parameters (1 — 0?/2)6

and 02. Rearranging the terms, we get

A < [exp (—7x + (u—0?/2)6 + a\/gq)_l(e)) :
and thus
(1— @) exp (—m +(u—0?/2)5 + aﬁcp—l(e))

A< .
1 — aexp (—7x + (p—0%/2)6 + a\/gqfl(e))

(4.6)

As before the right hand side of (4.6) defines the lending value.
Remark 4.1.

(a) The difference between the liquidity adjusted lending value formula (4.6)
and the standard one (3.1) is given by the additional term —vyx in the

exponential.

(b) The exponential supply curve introduced above is just one possible choice
among many different ones. For example, [12] propose a linear supply
curve, i.e. Vi(z) = (1 + yx)Vy for some v > 0 which, up to a first order
approzimation, equals the exponential supply curve. In this case, the lig-
uidity costs are given by L; = va?0?V, > 0, i.e. by yva®V; for 0 = 1. The

lending value formula becomes

(1 —a)(1 —~z)exp ((/L —0%/2)0 + U\/g@’l(é))

\ =
1—a(l —~vx)exp <(/L —02/2)0 + U\/gq)_l(é))

(4.7)
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5 Estimation of the Liquidity Parameter

Daily estimates for 7 can be obtained by means of a simple regression
starting from tick data. Assume that in a given day we observe the trading
sequence (t;,x;,v;), i = 1,...,n; i.e. the first transaction during that day
occurs at time t;, has size x;, is executed at a price v; and is followed by
another transaction at time t, having size xy, price v, and so on. Because of
(4.1), and since V; = Vyexp((un — 02 /2)t + 0 B;) for some standard P-Brownian

motion B, we have that

lOg (Ui—i—l) _ lOg <%i+1 (xH-l))
vi Vi (@:) (5.1)
= ’Y(xi—l—l — .’L’ﬁ) + (/L - 02/2)(ti+1 — tz) + O'\/ti+1 — tz €4,

where €4, ..., ¢, are iid standard normal random variables. The above expres-

sion can be rewritten as

i ::M:%M—f—(u—ﬂﬂ)\/m—kaq, (5.2)
lit1 — & lit1 — &
i.e. the parameter v can be estimated by means of a linear regression for
the response variables y; and the predictors w; := (241 — 2;)/\/Tit1 — t; and
zi = /tix1 —ti, i =1,...,n— 1. Observe that the regression implicitly yields
an estimate for p through an estimate for o.

One problem related to the implementation of (5.2) is due to the fact that,
usually, intraday data are not signed, i.e. we do not know whether a transaction
of size & occurring at time ¢ was a buy or a sell since the data only report the
absolute value of the transaction size. Nevertheless, intraday data can be
classified into market buy/sell orders using the so called tick test (see [13] for
a discussion). A trade is referred to as an uptick, a downtick, or a zerotick
depending on whether the price of the previous trade was lower, higher, or
the same than the price of the trade at hand. Zeroticks are further classified
into zero-upticks and zero-downticks according to the last price change, i.e.
a zerotick is a zero-uptick if the last price change was an uptick, and it is a
zero-downtick otherwise. The tick test classifies a trade as market buy order
if it is either an uptick or a zero-uptick. The other trades are classified as sell

orders?.

*As it can be found in [13], by convention, the first trade of a new issue is deemed an
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A second issue arising during the estimation procedure is given by the fact
that trades are often executed simultaneously, i.e. there are series of tick data
having the same trading time. This phenomenon is due to the very complicated
nature of stock exchanges, but essentially can be reduced to the fact that buy
orders have to match sell orders on the order book. For more details about the
mechanisms governing stock exchanges see e.g. the SWX webpage or [16]. The
problem in this case is that both the response variables y; and the predictors
w;, z; are undefined. For each of these series of simultaneous trades, we will
assume therefore that the relevant time step ;11 —t; in (5.2) is given by the last
non zero time step. This is motivated by the fact that a trade within a series
of simultaneous trades, and in particular its price and size, is influenced (as
any other trade in general) by the market situation at the time immediately
before that trade®. Formally, consider the situation where a trade at time s,
is followed by £ > 2 simultaneous trades at time ¢ > s which are followed by
some other trade(s) at time u > ¢:

ti =S €T; Vs
lit1 =1 Tit1 Vit1
livk =1 Titk Vitk
litk+1 = U  Titky1 Vitk+1

In this case, the relevant time step for all ticks i + 1,...,7 + k entering (5.2)
is t —s > 0. Finally, we censor any series of simultaneous trades occurring
at the beginning of day by taking only the last trade of that series. In other
words, if a trading day starts with k£ simultaneous trades occurring at the times

t) =--- =t 1 =tk <lgy1, k> 2, then the k£ — 1 ticks occurring at the times

uptick, perhaps because there is a usually a ceremonial buy transaction by the president of
the company. However, the trade history data we will use for the estimation of v will not go
back to the first trade. Thus, we will adopt the convention that the first trade of our data
history is an uptick, i.e. a buy.

Note that it would have been incorrect to collapse such a series into a single transaction
since the resulting (cumulated) size would distort the results. As an alternative to this
procedure, we could fit a generalized linear model starting from (5.1).
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t1,...,t,—1 are excluded.

Remark 5.1. As stated by [7], their method utilizes transaction prices in-
stead of bid-ask spreads for three reasons. First, trades may be executed “inside
the spread” which implies that quotes potentially overestimate liquidity costs.
Second, the bid-ask spread is a commitment to a specific volume which may
change according to market conditions. Third, quotes may be “stale” for in-

frequently traded stocks.

6 Empirical Results

In this section we investigate the impact of liquidity on lending values
for the 15 selected stocks of Table 6 traded at the SWX. For each stock, we
collected five years of tick data over the period from 06/01,/2001 to 05/31/2006.
The first group of five stocks (ABB, UBS, Swiss Re, Nestle, and Kudelski)
are commonly referred to as highly liquid equities, whereas the second group
(Lonza Grp,...,Charles Voegele), and the third one (Kaba Hldg,..., Lindt
& Spriingli) are usually seen as medium liquid, respectively illiquid assets.
Of course, in this context, we are intentionally vague about the definition of
liquidity so that some people might disagree about our classification. However,
as we will see next the intuitive rank ordering of Table 6 is almost perfectly
reflected in the estimated liquidity parameters.

The results for the daily v estimates are collected in Tables A.1 to A.5,
which contain the summary statistics for the daily v estimates generated by
(5.2). The first three rows of each table contain the median or the mean of
the daily v values and the corresponding 95%-confidence intervals boundaries,
whereas row four to six detail some percentiles of the estimated v values. The
fact that 7 varies over time, although v was assumed to be constant, should not
surprise since this is definitely due to the inappropriateness of the geometric
Brownian motion as a model for the stock price. Indeed, one cannot expect
constant v estimates if already the basic model without the liquidity term e7*
is not able to produce constant estimates for u and o.

Row seven displays the percentage of days for which a non-negative esti-

mate was obtained. We see that there are few days (13%-20% of the cases for
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Table 6.1: Summary table for the selected stocks as of June 1, 2006. The
reported volume is the average daily volume over May 2006, the market cap-
italization (MC) expressed in Swiss Francs, and the last column details the

daily average number of transactions.

Name Bid Ask Volume MC #

ABB (ABBN) 15.20 15.25  1.7898 x 107  3.14680 x 1010 2112

UBS (UBSN) 138.30 138.40  3.479 x 106  1.51930 x 101 3205

Swiss Re (RUKN) 84.80 84.85  1.951 x 105  2.74730 x 101° 2086
Nestle (NESN) 362.25 362.50  1.182 x 106  1.48091 x 10t 2750
Kudelski (KUD) 31.25 31.30  5.306 x 10°  1.51300 x 10° 793
Lonza Grp (LONN) 82.00 82.15  3.272 x 10> 4.26500 x 10° 690
Swatch (UHR) 194.60 194.70  1.650 x 10>  1.23830 x 100 792
Swisscom (SCMN) 394.25 394.50  1.557 x 105  2.45000 x 100 947
)

)

)

)

)

)

)

SERONO (SEO 768.50 769.50  5.900 x 10% 8.53900 x 10° 945
Charles Voegele (VCH 96.50 97.00  2.862 x 10*  8.84000 x 108 155
Kaba (KABN 307.25 308.00  1.162 x 104 1.08600 x 10° 119

OZ Holding (OZI 94.05 94.70  9.821 x 103 4.86000 x 108 21
Publigroup (PUBN 398.50 399.00  3.118 x 103 1.00300 x 10° 77
Bank Sarasin (BSAN 3257.00  3275.00 6.880 x 102 2.12200 x 10° 37
Lindt & Spriingli (LISN)  23695.00  23800.00  1.250 x 10>  5.18500 x 10° 33

illiquid titles and almost none for the very liquid ones) for which the estimated
v value is negative which, according to the model, should not be the case. Due
to their sporadic occurrence, the reasons behind negative v values have not
been investigated in detail.

The last four rows record the percentages of days for which various esti-
mates are significant at a 95%-confidence level. Specifically, we distinguish
between the significance of the full model (v and p) and the one of the ~
estimate in isolation from p, where the two subcases of negative and non-
negative v values are also considered. For example, we see from column one
and row nine in Table A.1 that, at a 95%-confidence level, the test hypothesis
Hy : v = 0 for LISN is rejected in favor of the alternative Hy : v # 0 in 46.65%
of the cases (days) meaning that the v predictor has an explanation power in
571 out of 1224 days®. For the other stocks, the percentage of days for which 7
is significant ranges from 36.81% (OZI) to almost 100% for highly liquid stocks

6Observe that this is the results of a two-sided t-test and that the result of a one-sided

t-test (due to the constraint v > 0) would produce an even higher figure.
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like UBSN or RUKN. With the exception of LISN, BSAN, and OZI belonging
to the group of more illiquid stocks, 7 is significant in more than 55% of the

cases.

On the contrary, although the results are not reproduced here, the estimate
for n := p—0?/2, and thus for p, are not significant in most of the cases. This
means that the null-hypothesis Hy : n = 0 cannot be rejected in many cases,
i.e. that the second predictor v/;11 — ¢; in (5.2) has a poor explanation power
for the observed data. This is however of secondary importance since we are
mainly interested in 7, but can be used to support the choice u = o2/2 for the

computation of lending values in Section 7.

As it can be seen from Figures B.1 to B.4, the v estimates appear to
be a bit “noisy” whereas, as expected, the 30—, the 60-days moving average
time series, and a smoothed average process (see Appendix B for the details),
show a much more regular behavior. We also observe that the number of
negative values for any of the averages is much smaller than the one we have
for daily v estimates. For UHR, RUKN, UBSN, and especially for LONN, there
seems to exist time points at which some event affected the liquidity parameter
substantially. Looking at the data, we see that on April 3, 2003 there was a
stock split for LONN with a ratio 10:1, which, intuitively, increased the stock
liquidity. This event is immediately reflected in the v estimate, which, exactly
on the same day, approximately decreases by a factor 10. The same happened
for UHR, RUKN, and UBSN on August 10, August 17, and July 16, 2001, with
split ratios of 10, 20, and 3 to 1, respectively. Again, the v estimates decrease
exactly at this dates approximately by a factor of 10, 20, and 3, respectively.
The latter would suggest that after a stock split the liquidity parameter must
be divided by the split ratio. Detailed information about the stock splits can

be found e.g. at www.eurexchange.com.

Finally, the bottom right picture of Figure B.4 combines the smoothed
averages for all stocks. With a few exceptions like UBSN and ABBN, or
LONN and SCMN, we see that the curves do not cross each other, at least
over sufficiently short time periods. In particular, highly liquid stocks (i.e. the
ones having small (averaged) v values tend to remain highly liquid over the
entire sample period. The same can be stated for illiquid assets like LISN or
OZI. Finally, since most of the curves tend to show a slight downward trend,

we can conclude that, besides the effects induced by stock splits, there has
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been a moderate general trend towards a more liquid market.

To summarize, it seems that the proposed model is able to differentiate
between different degrees of liquidity because the 7 smooth average is of the
order 10~7 for highly liquid stocks like ABBN or UBS, 10~% for medium liquid
titles like UHR or KUD, and 10~* for very illiquid assets like BSAN or LISN.
Additionally, although not reproduced here, the corresponding (smoothed)
95%-confidence intervals do not usually overlap, at least for stocks belonging
to different liquidity groups and for not too long time periods, implying that
the estimates can be seen as significantly different from each other (bottom
right picture of Figure B.4).

6.1 The financial crisis

We extend the results obtained for ABB and UBS to the period 2006 — 2011
in order to see the effects of the financial crisis of 2007-2008 on the liquidity

parameter. Below in Figure 6.1 we have the results relative to the v estimates
for ABB and and in Figure 6.2 the results for UBS.
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Figure 6.1: Displayed are the updated results for ABB over 2001 — 2011.

12-Jan-2011
30-Dec-2011

We see in Figures 6.1 and 6.2 that for both tickers ABB and UBS there is
an increase in the smoothed average values (green line) over the period starting
around the second half of 2008. Further, again for both stocks, the smoothed
v average decreases around the end of 2011 and reaches more or less the same
level it had in 2007.
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Figure 6.2: Displayed are the updated results for UBS over 2001 — 2011. The
picture on the right is simply the same as the picture on the left but with a
different scale on the y-axis.

The interpretation of this phenomenon is the following: the 2008 financial

crisis was catched by the model more or less instantly.

7 Liquidity Effects on Lending Values

We illustrate the impact of the liquidity parameter v on the lending value
at hand of two examples, where the collateral is given by UBSN and LISN,
which represent two extremes of our liquidity spectrum. The lending values
computations are based on the assumption that the drift parameter p of the
underlying GBM equals 0?/2. The volatilities are assumed here to be 15%
for UBSN, and 21% for LISN. Further, we assume in this section that the
minimum margin erosion « triggering a margin call is 25%, that the closeout
period ¢ equals 10 days for a 250 days long year, and that the confidence level €
for lending values is 1%. Finally, we take the mean of the v smoothed average
as an input in the lending value formula, i.e. 4.672949 x 108 for UBSN, and
3.985406 x 10~* for LISN. Table 7 shows the impact of the transaction size x
on the lending values.

Since the stock volatilities are comparable, it is not surprisingly that the

impact on the lending value is primarily governed by the product vz, and that
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Table 7.1: Effects of the liquidity parameter on the lending value. The holding
volume figure in Swiss Francs is given by the product of z and the mid price
derived from columns two and three of Table 6. Observe that the standard

lending value is a special case of the liquidity adjusted one for x = 0.

LISN UBSN
@ (# stocks) 100 600 100’000 1°000°000
Holding Vol. (CHF) 2374750  14'248'500  13'835°000  138'350°000
Holding Vol. (%MC) 0.0458% 0.2748%  0.00911%  0.0911%
Holding Vol. (ADTV mult.) 0.80 4.80 0.029 0.29
v 399 x 1072 239 x 1071 4.67x 1073 4.67 x 102
A liq.adj. 83.65% 65.25% 90.61% 85.81%
A standard 88.05% 88.05% 91.22% 91.22%

the decrease in the lending values is almost the same for both stocks as long
as yx is more or less the same (first and fourth column of Table 7). It is
also interesting to notice that a massive reduction of the LISN lending value
(from 88.05% to 65.25%) occurs when x = 600, i.e. approximative five times
the ADTV, which defines in this case the so called bulk risk indicator. The
latter is defined as the minimum between the number of stocks corresponding
to five times the ADTV, and the number of stocks corresponding to 3% of the
market capitalization. Usually, five times the ADTV is relevant for determining
the bulk risk indicator. The question at hand is now whether the bulk risk
indicator is able to distinguish between situations where liquidity risk is more
or less relevant. We plot in Figure 7.1 the lending value curves as function of
the number of stocks (left picture), and of the exposure (right). The circles on

the curves correspond to the bulk risk indicator levels.

With the only exception of OZI, we see that within each of the three liquid-
ity groups the circle heights, i.e. the lending values corresponding to the bulk
risk indicator, are more or less the same. Again, for the more illiquid stocks
(LISN, BSAN, PUBN, KABN) and for exposures equal to the bulk risk indica-
tor, the lending value reduces significantly from about 85% to approximately
50%. Very small lending values are obtained instead for the other titles as
soon as the size approximates the bulk risk indicator. If the latter would be a

good indicator for liquidity risk, then one would expect the circles in Figure 7.1
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Figure 7.1: Lending value curves as a function of the number of stocks, and of
the exposure. The circles on the curves are the lending values obtained for a

position size equal to the bulk risk indicator.

to be at least aligned on the same horizontal line. Indeed, if we believe that
the liquidity parameter, whence the liquidity adjusted lending value, properly
reflects liquidity risk, then we should get the same lending value for the same
amount of risk”. It follows that the current lending value computations, where
the standard lending value is taken, i.e. the size effect is neglected, and liquid-
ity risk is somehow controlled by not entering transactions exceeding the bulk

risk indicator, becomes questionable.

8 Implementation

The major problem of the approach based on the (exponential) supply
curve that arises as soon as the methodology has to be applied to a large
number of stocks is that the estimation of the v parameters requires a huge
amount of (very expensive) data, so that a large scale implementation of the
methodology becomes a formidable task. This problem can be solved observing
that there is a clear relationship between the smoothed v averages and the
ADTV, and exploiting the fact that the latter is a quantity which is easily

available. Indeed, performing a linear regression for the 10-th logarithm of

"The effect of different volatilities on the lending values is negligible compared to the size
effect, at least for the selected stocks. Assuming that the stocks all have the same volatility
produces very similar pictures, which, for the sake of brevity, have not been included here.
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the smoothed ~ averages as a function of the 10-th logarithm of ADTV (see
Table 6, column four) yields the results illustrated in Figure 8.1. The estimated
intercept is @ = —1.87096, and the estimated slope equals b = —0.794554.
The R2%-statistic, the F-statistic, the P-value, and the estimate for the error
variance are respectively 0.97718, 556.671, 4.677814 x 102, and 0.0324404,
meaning that a linear model seems to be appropriate in this case. It follows
that a good approximation for the (to be estimated and unknown) v parameter

can be obtained from
7~ 10° - ADTV?,

i.e. 7 can be accurately predicted from the average daily trading volume.

T T T T
[ Observations
351 ——atbx

a=-1.87096 |
b= -0.79455

2 3 4 5 6 7 8
Iog10 ADTV

Figure 8.1: Linear regression output.

9 Conclusions

The proposed model relies on a single new parameter (the liquidity param-
eter ), which has an intuitive and clear interpretation. Both the liquidity
adjusted lending value formula and the estimation of v have a sound theoret-
ical basis. Moreover, despite its simplicity, the model is able to differentiate
between different degrees of liquidity, and the effect of the liquidity parame-
ter on the lending value seems to be appropriate for the transaction size at
hand. We want to emphasize that the lending values resulting from the lig-
uidity adjusted lending value formula have been obtained without any ad hoc

adjustment. Finally, the liquidity parameter can be derived easily from the
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ADTYV based on the vy-estimates obtained for a reference set of stocks, so that
the implementation of the liquidity adjusted lending value formula becomes
straightforward. Moreover, averages of the daily v estimates show a stable
behavior over time, so that, the linear regression parameters have not to be
updated frequently. Finally, our model was able to capture the financial crisis
of 2007 — 2008 as shown in Figures 6.1 and 6.2.
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A Tables

Each of the tables in this section contains the following information. Rows
one to six detail the median of the (daily) lower bound of a 95%-confidence
interval for the parameter 7, the mean of the daily 7, the median of the (daily)
upper bound of a 95%-confidence interval for the parameter 7, as well as the
25%-, 50%-, and 75%-percentile of the daily 7 values.
the computations those days yielding a negative 7. The 7-th row, shows the

We excluded from

percentage of days (over the sample period) for which a non-negative 7 was
produced. Row number 8 records the percentage of days for which the full
model estimates (i.e. both 7 and 7, where 1 := p — 0?/2) are significant at a

95%-confidence level. Rows 9 to 11 display similar information.

Table A.1: Summary statistics for LISN, BSAN, and PUBN.

LISN BSAN PUBN
95%-lower bound (median) 3.21x107% -2.83x107% 1.28x107°
mean 4.73x107* 959 x107° 1.68 x 107°
95%-upper bound (median) 509 x 107 9.46 x 107°  1.60 x 107°
25%-percentile 871x107% 1.26x107° 3.22x10°°
50%-percentile 244 x 107% 411 x107° 847 x 107°
75%-percentile 5,59 x 1074 1.12x107* 2.01x107°
days (%) : 7> 0 87.42% 82.71% 88.18%
days (%) : full model significant (@95%) 44.20% 37.66% 56.70%
days (%) : 7 significant (Q95%) 46.65% 40.07% 56.30%
days (%) : v significant (@95%) and v > 0 44.61% 36.91% 53.13%
days (%) : v significant (@95%) and v < 0 2.04% 3.16% 3.17%
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Table A.2: Summary statistics for OZI, KABN, and VCH.

0Z1 KABN VCH
95%-lower bound (median) -5.20 x 1077 1.05x 107% 3.81 x 1077
mean 247 x 1075 824 x107% 2.75x10°°
95%-upper bound (median) 2.03x107% 7.77x107% 2.73x 1076
25%-percentile 1.76 x 1076 1.82x107% 6.64 x 107
50%-percentile 726 x 1076 425 x107% 1.50x 10
75%-percentile 233 x107% 9.71 x107% 3.20x 1076
days (%) : v>0 80.47% 89.04% 91.12%
days (%) : full model significant (@95%) 37.22% 59.57% 61.06%
days (%) : ~y significant (@95%) 36.81% 61.80% 62.25%
days (%) : v significant (@95%) and v > 0 33.64% 59.57% 59.87%
days (%) : «y significant (@95%) and v < 0 3.17% 2.22% 2.38%

Table A.3: Summary statistics for SEO, SCMN, and UHR.

SEO SCMN UHR
95%-lower bound (median) 1.96x 1075 4.72x 1077 5.06 x 1077
mean 318 x107% 7.00x 1077 9.83x 1077
95%-upper bound (median) 322x107°% 755x1077 831x10°7
25%-percentile 1.54 x107¢ 3.78 x 1077 4.17 x 1077
50%-percentile 2.57x107% 6.12x 1077 6.62 x 1077
75%-percentile 434%x107% 948 %107 1.10x10°¢
days (%) : 7> 0 99.45% 99.92% 99.68%
days (%) : full model significant (@95%) 98.18% 98.89% 98.18%
days (%) : ~y significant (@95%) 98.81% 99.13% 98.42%
days (%) : v significant (@95%) and v > 0 98.42% 99.13% 98.34%
days (%) : v significant (@95%) and v < 0 0.40% 0.00% 0.08%
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Table A.4: Summary statistics for LONN, KUD, and NESN.

LONN KUD NESN

95%-lower bound (median) 217x 1077 3.27x 1077 1.48 x 1077
mean 821 x 1077 5.84x10~7 193 x 1077
95%-upper bound (median) 3.96 x 1077 5.98 x 10=7  2.01 x 10~
25%-percentile 1.85x 1077 2.70 x 1077 1.08 x 10~7
50%-percentile 3.07x 1077 4.53x1077 1.74x1077
75%-percentile 5.36 x 10°7  7.91 x 107 2.53 x 1077
days (%) : 7 >0 99.13% 99.13% 100.00%
days (%) : full model significant (@95%) 94.06% 96.35% 100.00%
days (%) : ~ significant (@95%) 95.01% 96.91% 100.00%
days (%) : ~y significant (@95%) and v > 0 95.01% 96.59% 100.00%
days (%) : ~y significant (@95%) and v < 0 0.00% 0.32% 0.00%

Table A.5: Summary statistics for RUKN, UBSN, and ABBN.

RUKN UBSN ABBN
95%-lower bound (median) 1.04x 1077 3.68x10°% 240x 108
mean 211x 1077 4.88x107® 3.97x10°®
95%-upper bound (median) 141x 1077 4.76x10°% 3.23x 108
25%-percentile 820 x 107® 3.19x107% 1.62x 1078
50%-percentile 123 x 1077 4.24x 1078 2.80x 1078
75%-percentile 1.83x 1077 5.73x107% 5.19x 1078
days (%) : v>0 100.00% 100.00% 100.00%
days (%) : full model significant (@95%) 100.00% 100.00% 99.84%
days (%) : ~y significant (@95%) 100.00% 100.00% 99.84%
days (%) : vy significant (@95%) and v >0  100.00% 100.00% 99.84%
days (%) : v significant (@95%) and v < 0 0.00% 0.00% 0.00%
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B Figures

This section illustrates graphically the results obtained for the parameter -.
Beyond the daily 7 values (grey line), the red, and the blue line show the
behavior of a 30- and of a 60-days moving averages of 7. The green line is
a smoothed average of the daily 7, which is defined as follows. For a fixed
time, consider the 7 monthly averages over the last 12 months, denoted by
T1s- -5 712- The smoothed average is then defined as (1/6) 37, Y(6+i), 1-€. it
is the arithmetic average of the 6 highest monthly  averages.
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Figure B.1: Daily 7 estimates for LISN, BSAN, OZI, and PUBN.
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Figure B.2: Daily v estimates for KABN, SEO, VCH, and LONN.
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Figure B.3: Daily ~ estimates for UHR, KUD, SCMN, and RUKN.
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Figure B.4: Daily v estimates for NESN, ABBN, UBS. The bottom right

picture shows the smoothed averages for all selected stocks together.
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Figure C.1: Daily v estimates for ABBN, UBS over the period 2001-2011.



