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Abstract 

Reviewing the basics of mean–variance portfolio optimization and the capital asset 

pricing model, this paper discusses the plausibility of some of the underlying assumptions. 

It is pointed out that a positive in-sample relationship between the expected return of an 

asset and its covariance with the market portfolio can be a statistical artifact because it can 

be explained without using any economic arguments. In an empirical analysis of two sets 

of assets consisting of individual stocks and indices, respectively, no indication of any 

out-of-sample relationship is found. In the absence of such a relationship or any other 

additional information about the expected returns, simple averages of past returns must be 

used as input for portfolio-optimization procedures. Empirical evidence is presented 

which suggests that portfolio optimization is of little practical value in this case and, in 

addition, that the use of robust estimators can hardly make any difference. 
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1  Introduction  

Modeling the returns of a set of assets as random variables with different means and 

variances, classical portfolio optimization tries to find a mixture of these assets which 

either minimizes the variance for a given expected return or maximizes the expected 

return for a given variance. In general, it is much easier to reduce the variance than to 

increase the expected return. While the variance of a mixture of assets will practically 

always be smaller than the minimum of the individual variances, the mean of the mixture 

can never exceed the maximum of the individual means (see Figure 1). A large variance 

reduction can already be achieved by using equal weights for all assets. Any further 

reduction requires knowledge of the covariances between the individual returns. Although 

the covariances are not only unknown but are also changing over time, they can be 
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forecasted with some accuracy. But this means only that variance minimization is a 

worthwhile exercise, it does not mean that the theoretical concept of a risk-return 

trade-off is of any practical use. The problem is that the prediction of future returns is 

much harder than that of future risks. However, additional economic assumptions, which 

include the unrealistic possibility of unrestricted borrowing and lending at a riskfree rate 

[12, 15] or, alternatively, the equally unrealistic possibility of unrestricted shortselling [3], 

imply a linear relationship between the expected value of the return of an asset and the 

covariance between this return and the market return. If this hypothetical relationship was 

true, it could be used to obtain forecasts of expected returns from forecasts of covariances. 

This paper confronts the fundamental principles of classical finance with data. The bar is 

not set very high. Nobody expects a perfect agreement between theory and empirical 

results. Previous empirical studies have already revealed striking discrepancies (for an 

overview, see [8]). The only remaining question is whether the theory can at least be used 

to improve the trading performance in a statistically significant and economically relevant 

manner. If the answer is no, we should first try slight modifications before we abandon 

classical finance and turn to more complex asset pricing models such as the multi-factor 

CAPM [6, 7] and the downside-beta CAPM [2, 4, 9, 10] or to a completely different 

approach such as behavioral finance (for a survey, see [1]). At least, the use of 

conventional methods for the estimation of the variances and covariances should be 

questioned. Robust estimators are possibly more appropriate because of the apparent 

deviations from normality (for a survey of robust portfolio strategies, see [5]). Although 

the use of robust estimators has the positive side effect that the portfolio turnover is 

reduced, further stabilization measures might be necessary, e.g., smoothing of the 

portfolio weights. The results of empirical studies [11, 16, 17] suggest that the use of 

robust methods may improve portfolio performance. However, the significance of these 

results is difficult to evaluate because the performance is usually reported only for the 

whole observation period and, occasionally, also for two subperiods. There is no 

continuous assessment. Moreover, the observation periods are often very short (typically 

about ten years or less).   

In view of the vast amount of available financial data, it seems to be always possible to 

find certain assets and certain time periods which support or challenge a given hypothesis 

or model. To avoid this obvious danger of a data-snooping bias, the sole criterion for the 

selection of our data was the availability of a long history of daily prices at 

Yahoo!Finance. Both indices and individual stocks are used. No efforts are made to 

reduce the variance by searching for sets of most dissimilar assets or to increase the 

precision of estimates of model parameters such as the betas by replacing real assets by 

synthetic ones which are just collections of similar assets.  

Section 2 gives a short review of the basics of mean–variance portfolio optimization, 

which is based on the work of Markowitz [13, 14], and the capital asset pricing model 

(CAPM), which is based on the work of Sharpe [15] and Lintner [12]. In this section, it is 

also pointed out that some unrealistic assumptions are dispensable. Section 3 presents the 

empirical results. The focus is on the comparison of classical methods and robust methods. 

Also of particular interest is the in-sample relationship between the expected return of an 

asset and its covariance with the market portfolio. Section 4 concludes.   



Further Evidence of Deficiencies in Classical Finance                          3 

 
Figure 1: Comparison of cumulative returns (a) and cumulative squared returns (b) of 

nine components of the DJIA with the cumulative average returns (a) and cumulative 

squared average returns (b) from 02-01-1962 to 31-05-2013. 

Data: AA (red), BA (pink), CAT (orange), DD (gold), DIS (brown), GE (green), HPQ 

(blue), IBM (gray), KO (black), Average (magenta) 

 

 

2  Review of the Basics of Classical Finance 

2.1 Portfolio Optimization 

Suppose we are given K assets with stochastic returns R1,...,RK. The return of a portfolio 

which is a mixture of these assets is determined by the portfolio weights w1,...,wK, i.e.,  
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respectively. The method of Lagrange multipliers can be used to solve the Markowitz [13] 

problem of finding weights w1,...,wK that minimize the portfolio variance (or, equivalently, 

half the portfolio variance) for a desired expected return  

0 Tw                                                             (4) 

subject to the constraint  
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Setting the partial derivatives of the Lagrange function  
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which is a system of K+2 linear equations in the K+2 unknowns w1,...,wK,1,2. The first 
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Rewriting the equation  



Further Evidence of Deficiencies in Classical Finance                          5 


qd

q
r

q
r

w pqprqd

/

2
00

22 2

0
)(2    

as  

1
)(

2

2
0

1

2






q

d

q
r

q

w


,                                                    (6) 

we see that it defines a hyperbola with center (0,r/q) and vertices )/,/1( qrq .  

A portfolio implying a point above the vertex on the right branch of the hyperbola is 

called an efficient frontier portfolio because no other portfolio with the same expected 

return can have a smaller variance (see Figure 1). The minimum variance portfolio is that 

efficient frontier portfolio with the smallest variance (see Figure 1). The tangency 

portfolio is that efficient frontier portfolio which minimizes the Sharpe [15] ratio 

w
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where rf  is the (deterministic) return of the (hypothetical) risk-free asset (see Figure 1). 

If short selling is not allowed, the nonnegativity constraints  

0,,1 Kww                                                          (8) 

must be imposed. Under these constraints, portfolio optimization is more difficult and 

requires the use of numerical methods.  

 
Figure 2: Markowitz hyperbola (6) in the  plane with efficient frontier (green line), 

tangency portfolio (green point), and minimum variance portfolio (blue point). The red 

line is the tangent to the hyperbola from the red point which has -coordinate 0 and 

-coordinate rf. 
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2.2 The Capital Market Line 

We consider portfolios that are mixtures of a market-portfolio with stochastic return Rm 

and a risk-free asset with interest rate rf. The return of a portfolio with weights  and 1- 

is given by 

fm rRR )1(                                                     (9) 

and its mean and variance by 
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The slope of the capital market line g is the Sharpe ratio of the market-portfolio and its 

intercept is the risk-free interest rate. 

 

2.3 The Capital Asset Pricing Model 

The derivation of the CAPM relies on the critical assumption that for any given risk  the 

highest possible expected return is g(). We consider portfolios that are mixtures of a 

risky asset with stochastic return Rk and a market portfolio with stochastic return Rm. The 

mean and the variance of the return R of a portfolio with weights  and 1- are given by 
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if 0kB . The capital asset line g can only be a tangent to fj at the point (m,m) if the 

respective function is increasing. The function f1 is increasing if mk    and f2 is 

increasing if mk    (see Figure 3). Thus, the critical assumption of the optimality of 

the capital market line already implies a positive relationship between kB  and mk   , 

i.e., 
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The CAPM is obtained by rewriting the last equation as 
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2.4 The "Broken" CAPM 

Modifications of the CAPM which avoid the unrealistic assumption of borrowing at the 

risk-free rate have already been proposed in the early 1970s [3]. In contrast, Subsection 

2.3 has implicitly assumed that borrowing at the risk-free rate is possible and shorting 

does not entail additional costs. Both assumptions can be avoided by using only proper 

weights, i.e., 10   . If 1 , the CAPM can still be obtained by equating the slope 

of g to the derivative of f2 from the left (see Figure 3.c). If 1 , the derivative of f1 

from the right must be used and the borrowing rate rb must be used instead of the risk-free 

rate rf in the definition of the capital market line (see Figure 3.a). Of course, the concept 
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of a broken capital market line with different rates for lending and borrowing does not 

automatically compromise its optimality property because the expected returns must in 

the case of negative weights also be adjusted when the costs of shorting are taken into 

account. In practice, the "broken" CAPM 
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will not make a big difference because the discrepancy between rb and rf is usually small 

compared to the size of m.  

 

 
Figure 3: 

(a) The capital asset line g is a tangent to f1 at (m,m) if 0kB  and mk   . 

(b) The capital asset line g cannot be a tangent to 21 ff   at (m,m) if 0kB . 

(c) The capital asset line g is a tangent to f2 if 0kB  and mk   . 
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3  Empirical Results  

Two sets of assets are used. The first set consists of those nine components of the Dow 

Jones Industrial Average the prices of which are available at Yahoo!Finance since 

January 2, 1962. The selected components are Alcoa (AA), Boeing (BA), Caterpillar 

(CAT), Du Pont (DD), Walt Disney (DIS), General Electric (GE), Hewlett-Packard 

(HPQ), IBM (IBM), and Coca-Cola (KO). The second set consists of nine major US 

indices the prices of which are available at Yahoo!Finance since June 4, 1996. The 

selected indices are Nasdaq Bank (^IXBK), Nasdaq Biotechnology (^NBI), Nasdaq 

Insurance (^IXIS), Nasdaq Telecommunications (^IXUT), Nasdaq Transportation 

(^IXTR), AMEX Gold Bugs (^HUI), AMEX Oil (^XOI), AMEX Pharmaceutical (^DRG), 

and PHLX Semiconductor (^SOX). For both sets, the sample period ends on May 31, 

2013.  

 

3.1 Empirical Evidence on the CAPM 

Figure 4.a shows a plot of  


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against time nt ,...,1 , where Rk(s) is the return of the kth stock at time s and Ra(s) is the 

return of the equally weighted portfolio at time s. The average of the K=9 DJIA 

components is used instead of a broad market index in order to avoid a survival bias. This 

will not be necessary when the set of indices is analyzed. In the latter case, it makes more 

sense to use the S&P 500 as a proxy for the market. Overall, there seems to be no obvious 

relationship between the return Rk (Figure 1.a) and the parameter Bk (Figure 4.a). 

However, using the sign of )(ˆ sBk  to switch between Rk(s) and Ra(s) is an apparently 

successful strategy. For each k, the switching strategy outperforms both the average 

(Figure 4.b) and the respective stock (Figure 4.c). Additional strong evidence in favor of 

such a relationship is obtained when all stocks are used simultaneously. The strategy 

which always switches to the stock with the kth largest value has just the kth best 

performance (Figure 6.a).    

Because of the relative stability of kB̂ , it might be expected that past values are also 

related to present and future returns. Figure 5 and Figures 6.b-c show that this is definitely 

not the case. The out-of-sample performance of switching strategies based on sums of 

past returns is extremely poor. The explanation for this apparent paradox is purely 

statistical. Suppose that Rk and Ra are positively correlated random variables with 

practically identical means but different variances. If positive returns occur more 

frequently than negative returns, the conditional means of Rk and Ra given RkRa<0 will be 

smaller than the unconditional means and probably be negative. It is then safer to choose 

the asset with the smaller variance. Figure 7 shows that the conditional mean of Rk given 

RkRa<0 is indeed negative for each k. Clearly, this relationship holds only for a fixed pair 

of random variables and is therefore of no use for the prediction of subsequent returns. 

Because of its technical nature it has absolutely no economic relevance and must be 

interpreted with great caution.   
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However, the use of the more robust statistics:    

)(tBk
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  )()()()( tRtRtRsigntR aakk   

or  

)(
~

tBk )()( tRtR ak   

instead of )(ˆ tBk  brings a spark of hope. Overall, strategies which invest in stocks with 

larger estimates appear to outperform the equally weighted portfolio out-of-sample 

(Figure 8). However, the evidence is not very strong and is practically non-existent in 

extended subperiods. Moreover, an analogous analysis of the second data set yields a 

disappointing result (Figure 14). In general, the evidence obtained from the indices is less 

conclusive (Figures 9-14) than that obtained from the stocks (Figures 1, 4-8). This may be 

due to the smaller sample size as well as to the presence of indices with divergent 

behavior (Figure 9.a). A further important difference is that the S&P500 is used as a 

proxy for the market instead of the average of the indices. 

 

 

Figure 4: In-sample dependence of Rk on kB̂  

(a) Cumulative sums of kB̂  

(b) Performance of switching between Rk and Ra based on the sign of kB̂  

(c) Performance of switching between Rk and Ra relative to Rk 

Data: AA (red), BA (pink), CAT (orange), DD (gold), DIS (brown), GE (green), HPQ 

(blue), IBM (gray), KO (black), Average (magenta) 
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Figure 5: Out-of-sample performance relative to that of average (equally weighted 

portfolio) 

(a) Switching between Rk and Ra based on sign of )1(ˆ tBk  

(b) Switching between Rk and Ra based on sign of )1(ˆ...)5(ˆ  tBtB kk  

(c) Switching between Rk and Ra based on sign of )1(ˆ...)250(ˆ  tBtB kk  

Data: AA (red), BA (pink), CAT (orange), DD (gold), DIS (brown), GE (green), HPQ 

(blue), IBM (gray), KO (black) 
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Figure 6: In-sample (a) and out-of-sample (b-c) performance relative to that of average  

(a) Switching to Rk if kB̂  is largest (darkgreen), 2nd largest (green), 3rd (lightgreen), 4th 

(yellowgreen), 5th (yellow), 6th (orange), 7th (pink), 8th (red), 9th (darkred) ...  (b) 

Switching to Rk if )1(ˆ tBk  is largest (darkgreen), ...  (c) Switching to Rk if 

)1(ˆ...)5(ˆ  tBtB kk  is largest (darkgreen),… 
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Figure 7: Conditional mean of Rk given that 0ak RR  (red), akak RRRR  0  

(green), akak RRRR  0  (lightblue), conditional mean of Ra given that 

0ak RR  (orange), akak RRRR  0  (yellowgreen), akak RRRR  0  

(purple) 

Data: AA (a), BA (b), CAT (c), DD (d), DIS (e), GE (f), HPQ (g), IBM (h), KO (i) 
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Figure 8: Relative out-of-sample performance of robust switching between DJIA 

components:  (a) Switching to Rk if )1(...)5(  tBtB kk


 is largest (darkgreen), 

2nd largest (green), 3rd (lightgreen), 4th (yellowgreen), 5th (yellow), 6th (orange), 7th 

(pink), 8th (red), 9th (darkred) (b) Switching to Rk if )1(...)250(  tBtB kk


 is 

largest (darkgreen), ... (c) Switching to Rk if )1(
~

...)5(
~

 tBtB kk  is largest 

(darkgreen), ... (d) Switching to Rk if )1(
~

...)250(
~

 tBtB kk  is largest 

(darkgreen), ... 
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Figure 9: Comparison of cumulative returns (a) and cumulative squared returns (b) of 

nine major US indices with the cumulative S&P500 returns (a) and cumulative squared 

S&P500 returns (b) from 04-06-1996 to 31-05-2013. 

Data: ^IXBK (red), ^NBI (pink), ^IXIS (orange), ^IXUT (gold), ^IXTR (brown), ^HUI 

(green), ^XOI (blue), ^DRG (gray), ^SOX (black), S&P500 (magenta) 
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Figure 10: In-sample dependence of Rk on kB̂  

(a) Cumulative sums of kB̂  

(b) Performance of switching between Rk and Rm based on the sign of kB̂  

(c) Performance of switching between Rk and Rm relative to Rk 

Data: ^IXBK (red), ^NBI (pink), ^IXIS (orange), ^IXUT (gold), ^IXTR (brown), ^HUI 

(green), ^XOI (blue), ^DRG (gray), ^SOX (black), S&P500 (magenta) 
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Figure 11: Out-of-sample performance relative to that of S&P500 

(a) Switching between Rk and Rm based on sign of )1(ˆ tBk  

(b) Switching between Rk and Rm based on sign of )1(ˆ...)5(ˆ  tBtB kk  

(c) Switching between Rk and Rm based on sign of )1(ˆ...)250(ˆ  tBtB kk  

Data: ^IXBK (red), ^NBI (pink), ^IXIS (orange), ^IXUT (gold), ^IXTR (brown), ^HUI 

(green), ^XOI (blue), ^DRG (gray), ^SOX (black) 
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Figure 12: In-sample (a) and out-of-sample (b-c) performance relative to that of S&P500  

(a) Switching to Rk if kB̂  is largest (darkgreen), second largest (green), 3rd (lightgreen), 

4th (yellowgreen), 5th (yellow), 6th (orange), 7th (pink), 8th (red), 9th (darkred)  (b) 

Switching to Rk if )1(ˆ tBk  is largest (darkgreen), ...  (c) Switching to Rk if 

)1(ˆ...)5(ˆ  tBtB kk  is largest (darkgreen), ... 
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Figure 13: Conditional mean of Rk given that 0ak RR  (red), akak RRRR  0  

(green), akak RRRR  0  (lightblue), conditional mean of Ra given that 

0ak RR  (orange), akak RRRR  0  (yellowgreen), akak RRRR  0  

(purple) 

Data: ^IXBK (a), ^NBI (b), ^IXIS (c), ^IXUT (d), ^IXTR (e), ^HUI (f), ^XOI (g), ^DRG 

(h), ^SOX (i) 
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Figure 14: Relative out-of-sample performance of robust switching between US indices  

(a) Switching to Rk if )1(...)5(  tBtB kk


 is largest (darkgreen), 2nd largest 

(green), 3rd (lightgreen), 4th (yellowgreen), 5th (yellow), 6th (orange), 7th (pink), 8th 

(red), 9th (darkred) (b) Switching to Rk if )1(...)250(  tBtB kk


 is largest 

(darkgreen), ...  (c) Switching to Rk if )1(
~

...)5(
~

 tBtB kk  is largest 

(darkgreen), ...  (d) Switching to Rk if )1(
~

...)250(
~

 tBtB kk  is largest 

(darkgreen), ... 

 

3.2 Empirical Evidence on the Performance of Portfolio Optimization 

Procedures 

Because of the failure of the CAPM to provide suitable forecasts of future returns, simple 

historical means are used instead. In a rolling analysis, the returns of the last 200 trading 

days are used as input for the R/Rmetrics "fPortfolio" package [18] to find the optimal 

portfolio weights (long only) for the next trading day. The risk-free rate is either set to 

zero (rf=0) or obtained from the 13-week treasury bill rate (rf=r13).  Figure 15.a shows 

the relative performance of the minimum variance portfolio as well as the tangency 

portfolios with risk-free rates rf=0 and rf=r13, respectively.  Only the latter tangency 
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portfolio can outperform the equally weighted portfolio over an extended period of time. 

However, its miserable performance in the last decades wrecks all hopes. In another try to 

corroborate the theoretical results, the portfolio variance is minimized for different return 

targets (first, second and third quartile of historical 200-day means). Contrary to 

expectations, the lowest target return yields the highest return and the highest target return 

yields the lowest return (Figure 15.b). Finally, in a last attempt, the portfolio-optimization 

procedure is robustified by using alternative covariance estimators. Unfortunately, the 

results do not get any better. They are still the wrong way round (Figure 15.c). The fact 

that the observed performance differences are possibly not even significant is only small 

comfort. Similarly, there is also no indication that the performance depends on the 

specification of the target return in the case of the second data set (Figures 16.b-c). 

 

 
Figure 15: Relative out-of-sample performance of optimized portfolios of DJIA 

components (a) Minimum variance portfolio (red), tangency portfolios with rf=0  (blue) 

and rf=r13 (green)  (b) Minimum variance for given low (red), medium (blue) and high 

(green) target return  (c) Minimum variance for given low (red), medium (blue) and high 

(green) target return based on Spearman's rank estimator 



22                                    Erhard Reschenhofer and Kevin Windisch 

 
Figure 16: Relative out-of-sample performance of optimized portfolios of major US 

indices  (a) Minimum variance portfolio (red), tangency portfolios with rf=0  (blue) and 

rf=r13 (green)  (b) Minimum variance for given low (red), medium (blue) and high (green) 

target return  (c) Minimum variance for given low (red), medium (blue) and high (green) 

target return based on Spearman's rank estimator 

 

 

4  Conclusion  

Mean–variance portfolio optimization and the CAPM are the pillars of classical finance. 

Both focus on the first and second moments of the returns of financial assets. Despite the 

usually large sample sizes in financial applications, it is practically impossible to obtain 

precise estimates of these quantities because they change over time. Naturally, the 

non-normality of the returns seriously complicates the estimation of the variances and 

covariances. In the case of the means, it is their smallness (compared to the size of the 

variances) that makes the estimation so difficult. While the former problem can possibly 

be overcome by using robust estimation methods, additional information is required for 

the latter one. Thus, the validity of the CAPM which claims that there is a linear 

relationship between the expected return of an asset and its covariance with the market 

portfolio is not only important for its own sake but is also of vital importance for the 

practical implementation of portfolio-optimization procedures. 

On the one hand, the discussion in 2.4 shows that some unrealistic assumptions usually 

required for the derivation of the CAPM can be relaxed and, on the other hand, it is 

argued in 3.1 that a relationship of the CAPM-type can as well be explained by statistical 
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effects alone. The empirical results obtained from two sets of assets consisting of 

individual stocks and indices, respectively, suggest that the CAPM is either wrong or of 

no practical value (not even when robust methods are used and transaction costs are 

disregarded), and, in addition, that portfolio optimization is of little use for managing the 

trade-off between risk and return. Only the trivial task of reducing the risk appears to be 

doable.  

Of course, nicer results could easily be obtained by fiddling around with different assets, 

time periods, estimation methods, parameters (such as risk-free rates and return targets) 

and - most conveniently - sampling frequencies (anything can be "proven" with monthly 

data). However, the evidence obtained in this way would not be of any significance.  
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