
Journal of Applied Finance & Banking, vol.1, no.2, 2011, 189-206  
ISSN: 1792-6580 (print version), 1792-6599 (online) 
International Scientific Press, 2011 

 

 

An Estimation Error Corrected Sharpe Ratio  

Using Bootstrap Resampling 

Grant H. Skrepnek1  and  Ashok Sahai2 

 
 

Abstract 

The Sharpe ratio is a common financial performance measure that represents the 

optimal risk versus return of an investment portfolio, also defined as the slope of 

the capital market line within the mean-variance Markowitz efficient frontier. 

Obtaining sample point and confidence interval estimates for this metric is 

challenging due to both its dynamic nature and issues surrounding its statistical 

properties.  Given the importance of obtaining robust determinations of risk versus 

return within financial portfolios, the purpose of the current research was to 

improve the statistical estimation error associated with Sharpe’s ratio, offering an 

approach to point and confidence interval estimation which employs bootstrap 

resampling and computational intelligence. This work also extends prior studies 

by minimizing the ratio’s statistical estimation error first by incorporating the 

common assumption that the ratio’s loss function is the squared error and second 

by correcting for overestimation through an approach that recognizes that the 
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negative covariance between the variables representing the estimate of the Sharpe 

ratio and the standard deviation can be used for corrective purposes. Results of an 

accompanying empirical simulation study indicated improved relative efficiency 

of point estimates and the coverage probability, coverage error, length, and 

relative bias of confidence intervals. 

 

JEL classification numbers: C15, G11 

Keywords: Sharpe ratio, Bootstrap resampling, Relative efficiency of a point 

estimator, Coverage error of confidence interval estimation 

 

 

1  Introduction: Sharpe Ratio Estimation Error  

The Sharpe's ratio [11, 12] for portfolio performance has become an 

established approach among analysts to assess financial portfolios within 

investment strategies. A ratio of the portfolio’s excess expected return relative to a 

risk-free return divided by the standard deviation of the asset return distribution, 

the Sharpe ratio represents the slope of the capital market line within the mean-

variance Markowitz efficient frontier [8, 9]. Christie [1], among others, remarked 

that investors frequently use Sharpe ratios to suggest evidence of portfolio 

superiority.  Importantly, however, caution has been issued against an overreliance 

upon this metric to provide guidance for decision making, as it may provide 

statistically indistinguishable results due to estimation error even if obtained via 

large data samples. More specifically, the requirements for calculating expected 

returns and standard deviation are measured with error, hence subjecting the 

Sharpe ratio to estimation error itself. From a mathematical stance, the sampling 

distribution of the ratio may be difficult to determine due to the presence of the 

random denominator that defines the ratio. Despite challenges in its estimation, 

the measure continues to be an important tool in the comparative assessment of 
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financial portfolio performance.   

A number of generalizations of the Sharpe ratio have been developed since 

its initial publication that seek to adjust several factors including autocorrelation, 

skew and kurtosis (e.g., [10]), and non-normal distributions (e.g., [4, 6]). Despite 

developments of this nature, Lo [7] commented that relatively limited empirical 

work has focused upon the statistical properties of the Sharpe ratio itself. In one 

notable study, Jobson and Korkie [5] developed a test of the difference between 

Sharpe ratios utilizing the Delta method, but subsequently found that the 

procedure lacked statistical power; robust methods to test statistical differences in 

the presence of sampling error continue to be under investigated.  In other 

important work, Lo [7] presented statistical distributions of the ratio using 

standard asymptotic theory under numerous assumptions, also illustrating 

conditions wherein the ratio may be markedly overestimated. By building upon 

the concept that the denominator of the Sharpe ratio is random and presents 

challenges to the ratio’s overall estimation, Vinod and Morey [13, 14] proposed a 

modification that sought to control for estimation error by capturing the standard 

deviation of the Sharpe ratio via a bootstrap approach, termed the Double Sharpe 

ratio. Notably, this latter work also emphasized the notion that sampling error 

contributes substantially to estimation error when considering expected returns 

and volatilities in financial portfolios. 

Given the aforementioned, the purpose of the current research was to 

improve the statistical estimation error and overestimation associated with 

calculations of the Sharpe ratio, offering a methodology for both point estimates 

and confidence intervals that utilize implicit bootstrap resampling and 

computational intelligence while adding explicit analytic control via two central 

lemmas. The first lemma of this estimation error correction (EEC) minimizes the 

statistical estimation error under the common assumption that the loss function is 

defined as the squared error. The second lemma corrects for overestimation by 

identifying that the negative covariance between two variables representing the 
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estimate of the Sharpe ratio and the standard deviation can be used for corrective 

purposes. In presenting the findings of the proposed estimation error correction 

approach, an empirical simulation study was also conducted to present 

improvements in statistical estimation errors after considering the known 

limitations of normal distributions within financial data. To allow for more direct 

comparisons, the current empirical simulation study built upon the parameters 

presented by Vinod and Morey [13, 14] in their analysis of financial data from 30 

large historical growth mutual funds in terms of overall assets managed. 

 

 

2  A Proposed Estimation Error Corrected (EEC) Sharpe 

Ratio 

The population value of the Sharpe [11, 12] performance measure for 

portfolio i is defined as  
i

fi

i

i
i

RzSr
σ
−µ

=
σ
−µ

= ,  or the excess of the expected 

return of a portfolio above the risk-free rate of return divided by the standard 

deviation of the excess returns for the portfolio. If solely considering a financial 

portfolio i, a second investment portfolio may also be defined with a set 

proportion of funds allocated to it.  If this second portfolio is defined as a risk-free 

rate of return, fR , the proportion of funds allocated will be (1 – γ) if the 

proportion allocated to portfolio i is defined as γ. Thus, the expected return of the 

new combined portfolio j is: fij R)1( γ−+γµ=µ . 

As the risk free return has zero variance by definition, the standard deviation of 

the new portfolio j is ij γσ=σ . Recognizing that the aforementioned standard 

deviations may also be presented as 
i

j

σ

σ
=γ , substituting this into the equation 

representing the expected return of the new portfolio j yields: 
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For a portfolio population mean µ, fixed risk-free rate of return z  or fR  with zero 

variance, and portfolio standard deviation σ , the sample counterparts used to 

estimate these population parameters via the sample mean and sample standard 

deviation are calculated from a random sample (X1, X2, X3… Xn) generally as a 

sample mean 
n
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= = . Therefore, the applied point estimate for the Sharpe ratio may 
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While Vinod and Morey [13, 14] did not use this aforementioned sampling 

approach (i.e., X1, X2, X3,…,Xn) directly in their development of the Double 

Sharpe ratio, these authors proposed the use of the bootstrap methodology to 

generate a large number of resamples from the original sample (X1, X2, X3,…, 

Xn). Some 999 bootstrap resamples were used to calculate the estimate of the 

Sharpe ratio, coupled with an estimation of the standard deviation of these ratios 

by using bootstrapped means as r~Sσ . Therefore, the improvements proposed by 

Vinod and Morey [13, 14] consisted of the estimation of both the numerators and 

the denominators of the Sharpe ratio using the bootstrap-resamples, separately by 

their bootstrap-mean estimates of the numerator and of the denominator.  

As discussed previously, the applied point estimate for the Sharpe ratio 

may be represented as )Sr(E
s

Rxr~S
i

f =
−

= . The novel estimators of the Sharpe 

ratios constructed and proposed in the current research endeavor consist of 



194                                                                  An Estimation Error Corrected Sharpe Ratio 

 

improved estimation in both the numerator and denominators of the ratio using 

999 bootstrap resamples as presented by Vinod and Morey [13, 14]. In this 

context, the first undertaking is to establish an efficient estimator of the inverse of 

the normal standard deviation via Lemma 1, which minimizes the statistical 

estimation error under the common assumption that the loss function is the 

squared error. 

 

Lemma 1.  For a random sample (X1, X2, X3,…,Xn) from a normal population 

N(µ, σ), the minimum mean square error (MMSE) of the inverse of the normal 

standard deviation  may be designated as )s
1(C* , wherein:  

)
2

3n(
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2
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−Γ⋅
−=  

 Proof: C* is the MMSE of given that: 

)
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Furthermore, it is well-established that (n-1)(s2) ~ χ2n-1.                                      

 

 The second lemma of the current investigation corrects for overestimation by 

identifying that the negative covariance between two variables representing the 

estimate of the Sharpe ratio and the standard deviation can be used for corrective 

purposes.  In developing this, it is again established that the Sharpe ratio is defined 

as
i

fi

i

i
i
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=  which is the excess expected return of portfolio i 

relative to a risk-free return divided by the standard deviation of the asset return 

distribution, estimated as )Sr(E
s
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s
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=  and recalling again 
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that the risk-free rate of return in this ratio has zero variance. Extending this 

definition of the Sharpe ratio, a bootstrap resample may be defined as 

)
s

R)R(E
(E)Sr(

i

fi
Bi

−
=ΕΒ . The aforementioned must be noted in the context of 

formalizing Lemma 2, as follows. 

 

Lemma 2. For two variables defined as fi R)R(E −  and is  within the Sharpe 

ratio, representing the excess expected return of portfolio i relative to a risk-free 

return with zero variance and the standard deviation of the asset return 

distribution, respectively, the bootstrap resample EB for the given characteristics is 

as follows:  
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which holds as
i

fi

s
R)R(E −  may either increase or decrease as is  increases or 

decreases, respectively.                                                                                             

 

The Double Sharpe Ratio was defined by Vinod and Morey [13, 14] as 

r~S
r~Sr~DS σ= , noting the importance of the standard deviation of the Sharpe ratio 

estimates which was estimated using 999 bootstrap resamples with replacements 

from the original sample. In the current investigation, the efficient estimation of 

the Sharpe ratio’s numerator is adopted through similar approach, though adding 
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more explicit control through Lemma 1 and Lemma 2. To illustrate the current 

study’s findings in a comprehensible fashion and for comparative reference, the 

case-study employed by Vinod and Morey [13, 14] is also used, wherein Sharpe 

measures were calculated from original excess return series from 30 largest 

historical growth funds.  These authors justified the 999 measures calculated 

because the rank-ordered 25th and 975th values estimated yielded useful 95 percent 

confidence intervals.  Results of this previous investigation reported the excess 

monthly mean return, the standard deviation of the excess monthly returns, the 

Sharpe ratios, and the mean and standard deviations of the bootstrapped Sharpe 

ratios.  Furthermore, the upper and lower bounds of the confidence intervals of the 

bootstrapped Sharpe ratios were reported, as were their widths.  Complementary 

analyses were conducted for their proposed Double Sharpe ratio.  It is important to 

recognize, both within Vinod and Morey [13, 14] and within the current 

investigation, that the mean values of bootstrapped Sharpe ratios will always be 

observed to be higher than those values computed that ignore estimation error 

(i.e., point estimates of the Sharpe ratio); this observation occurs because the 

sampling distribution that represents the statistical estimation error for the Sharpe 

ratio has been reported to be markedly non-normal with positive skew. 

In applying Lemma 1 and Lemma 2 more formally to the Sharpe ratio or 

Double Sharpe ratio, and as a prelude to the forthcoming, it should be emphasized 

that the stochastic variation of the denominator remains the key challenge that 

requires estimation error minimization when the Sharpe ratio is calculated.  To 

reach this investigative goal, again, an empirical simulation study was used that 

parallels the Double Sharpe ratio of Vinod and Morey [13, 14], wherein the 

bootstrap resamples of both their numerator and denominator should be 

determined prior to that of the ratio itself.  Recalling, the Double Sharpe ratio 

defines the numerator as the estimated Sharpe ratio and the denominator as the 

standard error of this estimated Sharpe ratio (i.e., the standard deviation of the 

sample estimates of Sharpe ratio from various bootstrap resamples), 
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r~S
r~Sr~DS σ= . In the current study, the ‘estimation error corrected bootstrap 

point estimate of the Sharpe ratio’ is designated as )Sr(E EEC,B  relative to the 

Vinod and Morey [13, 14] bootstrap point estimate of the Sharpe ratio as 

)Sr(E VM,B . Based upon Lemma 1 and Lemma 2, it may be expected that 

)Sr(E VM,B  provides an overestimate due to the estimation error present.  Building 

upon )Sr(E EEC,B , computational intelligence described by Engelbrecht [3] was 

also applied, which incorporates information from the simulation to yield 

additional improvements, designated as the ‘estimation error corrected bootstrap 

point estimate of the Sharpe ratio via computational intelligence’, or 

)Sr(E CI,EEC,B . The additional analyses that provided this computational 

intelligence indicated that an optimal choice of the design parameter m  was a 

value of  3, to yield: 

m)Sr(E)Sr(E EEC,BCI,EEC,B ⋅=  

where m is defined as a positive integer.  Overall, the final numerator after 

incorporating computation intelligence is:  

( ))Sr(E)Sr(E3)Sr(E)Sr(E EEC,BVM,BEEC,BCI,EEC,B −−=  

Capturing the concepts relating to Lemma 1, Lemma 2, and computational 

intelligence )Sr(E CI,EEC,B , three final efficient point estimators were ultimately 

analyzed in the current study via the empirical simulation study: 

1) Applying Lemma 1, the first proposed efficient point estimator of the Sharpe 

ratio estimator )Sr(E 1,EEC,B  using all resamples is: 
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2) Applying Lemma 1 in conjunction with Lemma 2, the second proposed 

efficient point estimator of the Sharpe ratio )Sr(E 21,EEC,B +  using all resamples 

is: 
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3) Applying Lemma 1 with Lemma 2 and adding the results of computational 

intelligence, the third proposed efficient point estimator of the Sharpe ratio 

)Sr(E CI21,EEC,B ++  is: 

( ) ( ))Sr(E3)Sr(E4)Sr(E 1,EEC,B21,EEC,BCI21,EEC,B −= +++  

To assess the relative performance of these three final point estimators 

)Sr(E 1,EEC,B , )Sr(E 21,EEC,B +  and )Sr(E CI21,EEC,B ++ , the Double Sharpe ratio r~DS  

from Vinod and Morey [13, 14] was defined as referent computation through 

which relative efficiencies were measured. 

In addition to the three point estimates presented above, the current 

investigation also sought to develop a more efficient estimation error corrected 

95% confidence interval for the Sharpe ratio, )Sr(E CI%95,EEC,B . In articulating this 

confidence interval and recalling that the Sharpe ratio may be described as 

)Sr(E
s

Rx
s

R)R(Er~S i
i

f

i

fi
i =

−
=

−
= , a series of 999 values of ir~S  was 

determined for each of  999  bootstrap resamples.  If arranged in ascending order 

of these values, the resultant row vector array will be of the order (1, 999) and can 

be designated as )Sr(E iArrayEEC,B . Consequently, the 25th and 975th elements of 

this array yield a 95% confidence interval at )25)(Sr(E iArrayEEC,B  and 

)975)(Sr(E iArrayEEC,B . After applying Lemma 2, the current study proposes a 
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more efficient 95% confidence interval of the Sharpe ratio, )Sr(E CI%95,EEC,B  

defined as: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
Γ

−Γ⋅
−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
Γ

−Γ⋅
−=

=⋅⋅=

)975)(Sr(E
)

2
3n(

1
2
n(

1n
2

),25)(Sr(E
)

2
3n(

1
2
n(

1n
2

)]975)(Sr(EC),25)(Sr(EC[)Sr(E

iArray,EEC,BiArray,EEC,B

iArray,EEC,B
*

iArray,EEC,B
*

CI%95,EEC,B

 

For consistency, the 95% confidence intervals for the Double Sharpe ratio from 

Vinod and Morey [13, 14] were established as the referent computation through 

which relative efficiencies were measured, designated as: 

)]975)(Sr(E),25)(Sr(E[)Sr(E Array,VM,BArray,VM,BCI%95,VM,B = . 

 

 

3  Main Results: Empirical Simulation Study  

The empirical simulation study for the current investigation was conducted 

using Matlab 2010b (The Mathworks Inc., Natick, Massachusetts, USA) for 

various illustrative values of the sample sizes N = 11, 21, 31, 41, 51, 71, and 101.  

Using parameters established from Vinod and Morey [13, 14], the parent 

population was taken to be normal with the population Sharpe ratio of  0.20. Also 

from Vinod and Morey [13, 14], the various values of population standard 

deviation were defined as σ = 3.25, 3.75, 4.25, 4.75, 5.25, 5.75, 6.25, 6.75, and 

7.25.  Some 1111 replications were conducted in the current simulation for the 

999 bootstrap resamples utilizing bootstrap methodology outlined by Davison and 

Hinkley [2].  The actual mean squared error (MSE) of the Vinod and Morey [13, 

14] bootstrap point estimate of the Sharpe ratio, )Sr(E VM,B  and of the three final 

point estimators )Sr(E 1,EEC,B , )Sr(E 21,EEC,B +  and )Sr(E CI21,EEC,B ++  were 

calculated by averaging the squared deviation of the estimator’s value from the 

population Sharpe ratio (i.e., 0.20) using 999 resamples for each of the original 
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1111 samples.  Furthermore, the relative efficiency of the three proposed 

estimators relative to that of Vinod and Morey [13, 14] were calculated via the 

following formula: 

( )
( )

B,EEC,1 B,EEC,1+2 B,EEC,1+2+CI

B,VM

B,EEC,1 B,EEC,1+2 B,EEC,1+2+CI

Re E (Sr),E (Sr), or E (Sr)

MSE E (Sr) 100
= %

MSE(E (Sr),E (Sr),or E (Sr))

lEff

⎡ ⎤⋅
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Results of the relative efficiencies of the three proposed estimation error corrected 

point estimators are presented in Table 1. Across the 999 bootstrap resamples 

replicated 1111 times, the relative efficiencies for all three proposed estimation 

error corrected (EEC) approaches were comprehensively improved versus Vinod 

and Morey [13, 14].  Furthermore, within these three proposed EEC approaches, 

the method that employed Lemma 1 and Lemma 2 with computational 

intelligence, )Sr(E CI21,EEC,B ++ , yielded the highest relative efficiencies with values 

ranging from 105.210 percent (N = 101, σ = 6.25) to 198.959 percent (N = 11, σ = 

3.25).  Not unexpectedly, improvements were also more pronounced at smaller 

sample sizes. 

Table 2 presents the relative performance of the proposed estimation error 

corrected confidence interval within the current study, versus the Vinod and 

Morey [13, 14] approach, )Sr(E CI%95,EEC,B . For the 1111 replication samples and 

respective 999 bootstrap resamples, the 95% confidence interval performance 

characteristics calculated included: coverage probability; coverage error; length; 

left bias; right bias; and relative bias. For each of these performance 

characteristics, results of the current empirical simulation study indicated that 

)Sr(E CI%95,EEC,B  offered substantial improvements versus )Sr(E CI%95,VM,B . 

Across all simulated combinations of sample sizes and standard deviations, the 

coverage probability for the EEC confidence interval fared equally to or better 

than the Vinod and Morey [13, 14] approach in each of the 20 empirical scenarios, 

with all estimation error corrected values more closely approaching 0.95.  
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Importantly as well, the coverage error for )Sr(E CI%95,EEC,B  was equal or 

improved across all simulations, and the confidence interval length was uniformly 

shorter.  Finally, unlike )Sr(E CI%95,VM,B , the )Sr(E CI%95,EEC,B  also offered a more 

balanced left and right bias, which ultimately resulted in a markedly improved 

relative bias throughout the empirical investigation. 

 

 

 

4  Conclusion 
The Sharpe ratio is a commonly-used method that is used to assess 

financial portfolio performance based upon risk versus return. Despite its 

popularity, only limited research has been conducted to improve the statistical 

properties of this metric. The current study sought to improve the statistical 

estimation error and overestimation associated with calculations of the Sharpe 

ratio, offering a methodology for both point estimates and confidence intervals 

that utilize implicit bootstrap resampling and computational intelligence while 

adding explicit analytic control via two central lemmas.  Results of the empirical 

simulation study indicated improved estimation error correction of the Sharpe 

ratio based upon the relative efficiency of point estimates and the coverage 

probability, coverage error, length, and relative bias of confidence intervals. 



202                                                                  An Estimation Error Corrected Sharpe Ratio 

 

Table 1. Simulation Results of Relative Efficiencies for Three Proposed Estimation Error Corrected (EEC) Point Estimates of the Sharpe 
Ratio Relative to Vinod and Morey [13, 14] 
   

Relative Efficiency (%) 
 

  σ = 3.25 σ = 3.75 σ = 4.25 σ = 4.75 σ = 5.25 σ = 5.75 σ = 6.25 σ = 6.75 σ = 7.25 
N = 11 EB,EEC,1 (Sr) 134.093 134.699 134.313 134.327 133.611 134.172 134.750 135.234 135.548 
 EB,EEC,1+2 (Sr) 154.803 154.415 150.784 152.999 149.760 150.718 154.864 153.519 155.145 
 EB,EEC,1+2+CI (Sr) 198.959 183.912 181.423 182.684 175.459 179.455 194.275 188.390 190.247 
N = 21 EB,EEC,1 (Sr) 115.357 115.223 114.121 114.921 114.807 115.562 115.004 114.846 114.826 
 EB,EEC,1+2 (Sr) 122.107 121.179 119.336 121.304 121.198 121.697 121.129 121.032 120.561 
 EB,EEC,1+2+CI (Sr) 138.928 135.208 130.911 136.208 136.483 137.629 135.771 136.610 134.465 
N = 31 EB,EEC,1 (Sr) 109.201 109.152 110.108 109.649 110.008 110.499 109.638 109.884 109.241 
 EB,EEC,1+2 (Sr) 112.943 112.957 114.103 113.973 114.587 114.398 113.080 114.468 113.171 
 EB,EEC,1+2+CI (Sr) 122.643 122.730 124.407 125.043 127.025 124.804 121.235 127.279 123.522 
N = 41 EB,EEC,1 (Sr) 107.384 106.722 107.272 107.147 107.232 106.620 106.839 106.932 106.956 
 EB,EEC,1+2 (Sr) 110.405 109.335 109.976 109.974 110.207 109.197 109.758 109.537 109.747 
 EB,EEC,1+2+CI (Sr) 118.628 116.247 117.083 117.465 118.255 115.806 117.720 116.346 117.326 
N = 51 EB,EEC,1 (Sr) 105.365 105.779 105.589 105.299 105.240 105.657 105.752 105.190 105.301 
 EB,EEC,1+2 (Sr) 107.380 108.105 108.085 107.525 107.505 107.775 107.955 107.223 107.768 
 EB,EEC,1+2+CI (Sr) 112.852 114.491 115.027 113.708 113.723 113.400 113.988 112.612 114.610 
N = 71 EB,EEC,1 (Sr) 103.755 103.713 104.190 104.140 103.921 103.814 103.984 103.879 103.816 
 EB,EEC,1+2 (Sr) 105.181 105.128 105.862 105.746 105.274 105.451 105.406 105.336 105.138 
 EB,EEC,1+2+CI (Sr) 109.056 108.984 110.539 110.206 108.998 110.065 109.278 109.294 108.667 
N = 101 EB,EEC,1 (Sr) 102.622 102.749 102.572 102.600 102.766 102.439 102.355 102.606 102.897 
 EB,EEC,1+2 (Sr) 103.783 103.834 103.619 103.662 103.820 103.337 103.131 103.716 103.996 
 EB,EEC,1+2+CI (Sr) 107.118 106.893 106.540 106.660 106.770 105.781 105.210 106.806 107.093 

EB,EEC,1+2+CI (Sr): Bootstrap expected value of the point estimate for the estimated error corrected Sharpe ratio applying Lemma 1 and 2, 
and Computational Intelligence, respectively; Comparator for relative efficiency defined as the Vinod and Morey [13, 14] bootstrap 
expected value of the Sharpe ratio 
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Table 2. Simulation Results of Performance for Proposed Estimation Error Corrected (EEC) Sharpe ratio 95% Confidence Interval 
Relative to Vinod and Morey [13, 14] 
 

 
95% Confidence Interval Performance Characteristics 

 

 
 
 

 
Coverage 

Probability 
 

 
Coverag
e Error 

 
Length 

 
Left Bias 

 
Right Bias 

 
Relative Bias 

N = 31, σ = 3.25 EB,VM,95%CI (SR) 0.927093 0.022907 0.756226 0.030603 0.042304 0.160494 
 EB,EEC,95%CI (SR) 0.930693 0.019307 0.724091 0.032403 0.036904 0.064935 
N = 31, σ = 4.25 EB,VM,95%CI (SR) 0.932493 0.017507 0.754222 0.027903 0.037804 0.150685 
 EB,EEC,95%CI (SR) 0.934293 0.015707 0.722172 0.032403 0.035104 0.040000 
N = 31, σ = 5.25 EB,VM,95%CI (SR) 0.942394 0.007606 0.755497 0.020702 0.036904 0.281250 
 EB,EEC,95%CI (SR) 0.943294 0.006706 0.723393 0.023402 0.033303 0.174603 
N = 31, σ = 6.25 EB,VM,95%CI (SR) 0.946895 0.003105 0.750657 0.025203 0.027903 0.050847 
 EB,EEC,95%CI (SR) 0.947795 0.002205 0.718758 0.027003 0.025203 0.034483 
N = 31, σ = 7.25 EB,VM,95%CI (SR) 0.920792 0.029208 0.754303 0.029703 0.049505 0.250000 
 EB,EEC,95%CI (SR) 0.920792 0.029208 0.722249 0.031503 0.047705 0.204545 
N = 51, σ = 3.25 EB,VM,95%CI (SR) 0.940594 0.009406 0.574231 0.023402 0.036004 0.212121 
 EB,EEC,95%CI (SR) 0.941494 0.008506 0.559706 0.024302 0.034203 0.169231 
N = 51, σ = 4.25 EB,VM,95%CI (SR) 0.947795 0.002205 0.573691 0.027903 0.024302 0.068966 
 EB,EEC,95%CI (SR) 0.950495 0.000495 0.559180 0.023402    0.026103 0.054545 
N = 51, σ = 5.25 EB,VM,95%CI (SR) 0.945995 0.004005 0.575705 0.019802 0.034203 0.266667 
 EB,EEC,95%CI (SR) 0.945995 0.004005 0.561143 0.022502 0.031503 0.166667 
N = 51, σ = 6.25 EB,VM,95%CI (SR) 0.938794 0.011206 0.574478 0.017102 0.044104 0.441176 
 EB,EEC,95%CI (SR) 0.941494 0.008506 0.559948 0.018002 0.040504 0.384615 
N = 51, σ = 7.25 EB,VM,95%CI (SR) 0.937894 0.012106 0.574725 0.027903 0.034203 0.101449 
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 EB,EEC,95%CI (SR) 0.937894 0.012106 0.560188 0.028803 0.033303 0.072464 
N = 71, σ = 3.25 EB,VM,95%CI (SR) 0.939694 0.010306 0.481578 0.022502 0.037804 0.253731 
 EB,EEC,95%CI (SR) 0.940594 0.009406 0.472907 0.023402 0.036004 0.212121 
N = 71, σ = 4.25 EB,VM,95%CI (SR) 0.944194 0.005806 0.481914 0.026103 0.029703 0.064516 
 EB,EEC,95%CI (SR) 0.948695 0.001305 0.473237 0.026103 0.025203 0.017544 
N = 71, σ = 5.25 EB,VM,95%CI (SR) 0.957696 0.007696 0.481648 0.016202 0.027903 0.265306 
 EB,EEC,95%CI (SR) 0.955896 0.005896 0.472976 0.016202 0.026103 0.234043 
N = 71, σ = 6.25 EB,VM,95%CI (SR) 0.954095 0.004095 0.482228 0.018002 0.028803 0.230769 
 EB,EEC,95%CI (SR) 0.953195 0.003195 0.473545 0.018902 0.027003 0.176471 
N = 71, σ = 7.25 EB,VM,95%CI (SR) 0.943294 0.006706 0.481991 0.019802 0.036904 0.301587 
 EB,EEC,95%CI (SR) 0.948695 0.001305 0.473312 0.019802 0.031503 0.228070 
N = 101, σ = 3.25 EB,VM,95%CI (SR) 0.936094 0.013906 0.400797 0.035104 0.028803 0.098592 
 EB,EEC,95%CI (SR) 0.937894 0.012106 0.395757 0.033303 0.028803 0.072464 
N = 101, σ = 4.25 EB,VM,95%CI (SR) 0.947795 0.002205 0.402040 0.023402 0.027903 0.087719 
 EB,EEC,95%CI (SR) 0.947795 0.002205 0.396985 0.026103 0.026103 0.000000 
N = 101, σ = 5.25 EB,VM,95%CI (SR) 0.944194 0.005806 0.401403 0.019802 0.036004 0.290323 
 EB,EEC,95%CI (SR) 0.945995 0.004005 0.396356 0.021602 0.032403 0.200000 
N = 101, σ = 6.25 EB,VM,95%CI (SR) 0.942394 0.007606 0.401476 0.032403 0.024302 0.142857 
 EB,EEC,95%CI (SR) 0.943294 0.006706 0.396428 0.029703 0.027903 0.031250 
N = 101, σ = 7.25 EB,VM,95%CI (SR) 0.937894 0.012106 0.401857 0.016202 0.045905 0.478261 
 EB,EEC,95%CI (SR) 0.938794 0.011206 0.396805 0.017102 0.044104 0.441176 

EB,VM,95%CI (Sr): Bootstrap expected value of the 95% confidence interval for Vinod and Morey [13, 14] Sharpe ratio  
EB,EEC,95%CI (Sr): Bootstrap expected value of the 95% confidence interval for the estimated error corrected Sharpe ratio.  
 

 

 



G.H. Skrepnek and A. Sahai                                                                                             205 

 

References 

[1] S. Christie, Beware the Sharpe ratio, Macquarie University Applied Finance 

Centre, Sydney, 2007. 

[2] A.C. Davison and D.V. Hinkley,  Bootstrap Methods and their Application, 

Cambridge University Press, New York, 1997. 

[3]  A.P. Engelbrecht, Computational Intelligence: An Introduction, Second 

edition, John Wiley and Sons, Hoboken NJ, 2007. 

[4]  S.D. Hodges, A Generalization of the Sharpe ratio and its Application to 

Valuation Bounds and Risk Measures,  Financial Options Research Centre, 

University of Warwick, Coventry, 1998. 

[5] J.D. Jobson and B.M. Korkie, Performance Hypothesis Tesing with the 

Sharpe and Treynor, Journal of Finance, 36(4), (1981), 889-908. 

[6]  S. Koekebakker and V. Zakamouline, Generalized Sharpe ratios and 

Portfolio Performance Evaluation, Agder University College, Kristiansand, 

2007.  

[7] A.W. Lo, The Statistics of Sharpe ratios, Financial Analysts Journal, 58(4), 

(2002), 36-52. 

[8]  H.M. Markowitz, Portfolio Selection, Journal of Finance, 7(1), (1952), 77-

91. 

[9] H.M. Markowitz, Portfolio Selection: Efficient Diversification of 

Investments, John Wiley & Sons, New York, 1959. 

[10] J.P. Pézier, Maximum Certain Equivalent Returns and Equivalent 

Performance Criteria, ICMA Center Discussion Papers in Finance, Reading 

University, Reading, UK, 2010. 

[11]  W.F. Sharpe, Mutual Fund Performance, Journal of Business, 39, (1966), 

119-138. 

[12] W.F. Sharpe, The Sharpe Ratio, Journal of Portfolio Management, 21(1), 

(1994), 49-58. 

[13]  H.D. Vinod and M.R. Morey, A Double Sharpe ratio, Fordham University, 



206                                                                  An Estimation Error Corrected Sharpe Ratio 

 

New York, 1999. 

[14] H.D. Vinod and M.R. Morey, A Double Sharpe ratio, In: C.F. Lee, editor, 

Advances in Investment Analysis and Portfolio Management, Volume 8, JAI-

Elsevier Science, New York, 2001. 

 

 
 


