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Abstract 
 

This study focuses on predicting the USD/TL exchange rate by integrating 

sentiment analysis from Twitter with traditional economic indicators. With the 

dynamic nature of global finance, accurate exchange rate forecasting is crucial for 

financial planning and risk management. While economic indicators have 

traditionally been used for this purpose, the increasing influence of public sentiment, 

particularly on digital platforms like Twitter, has prompted the exploration of 

sentiment analysis as a complementary tool. Our research aims to evaluate the 

effectiveness of combining sentiment analysis with economic indicators in 

predicting the USD/TL exchange rate. We employ machine learning techniques, 

including LSTM Neural Network, xgboost, and RNN, to analyze Twitter data 

containing keywords related to the Turkish economy alongside TL/USD exchange 

rate data. Our findings demonstrate that integrating sentiment analysis from Twitter 

enhances the predictive accuracy of exchange rate movements. This study 

contributes to the evolving landscape of financial forecasting by highlighting the 

significance of sentiment analysis in exchange rate prediction and providing 

insights into its potential applications in financial decision-making processes. 
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1. Introduction  

In the dynamic landscape of global finance, the accurate prediction of exchange 

rates is a critical endeavor. This study focuses on the forecasting of the USD/TL 

(United States Dollar to Turkish Lira) exchange rate, utilizing a unique approach 

that integrates economic indicators with sentiment analysis derived from social 

media data. 

Understanding and predicting currency movements is vital for financial planning, 

risk management, and policy formulation. Economic indicators traditionally play a 

pivotal role in such forecasts, providing valuable insights into the health of an 

economy. However, in an era dominated by digital communication, the influence of 

public sentiment on financial markets has gained prominence. Social media 

platforms, particularly Twitter, have become rich sources of real-time public 

opinion, reflecting sentiments that may impact economic behaviors. 

This study is motivated by the belief that combining traditional economic indicators 

with sentiment analysis from Twitter can enhance the accuracy of exchange rate 

predictions. The amalgamation of these factors may provide a more comprehensive 

understanding of the intricate dynamics influencing currency markets. 

The central question guiding this research is: Can sentiment analysis on social 

media, specifically Twitter, contribute significantly to the prediction of the USD/TL 

exchange rate? To address this, the study aims to achieve the following objectives: 

• Evaluate the effectiveness of sentiment analysis in capturing market 

sentiment related to economic variables. 

• Investigate the correlation between sentiment scores derived from Twitter 

data and fluctuations in the USD/TL exchange rate. 

• Develop and assess machine learning models, including LSTM Neural 

Network, XGboost, and RNN, to predict exchange rate movements based 

on sentiment and economic indicators. 

Throughout the study, it was observed that the LSTM model outperformed both 

RNN and XGBoost, achieving a prediction accuracy of 65% and a Mean Absolute 

Percentage Error (MAPE) of 35%. Notably, the robustness of the model was 

challenged by external factors, particularly interventions by the Central Bank of the 

Republic of Turkey. The observed accuracy suggests a significant predictive 

capability, even in the presence of interventions that may introduce artificial 

fluctuations in the exchange rate. 

Through these objectives, we aspire to contribute insights into the evolving 

landscape of financial forecasting, showcasing the potential of sentiment analysis 

as a complementary tool in predicting currency exchange rates. 
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2. Literature Review 

A range of studies have explored the role of economic indicators in exchange rate 

prediction. Panopoulou and Souropanis (2019) found that both technical indicators 

and macroeconomic predictors are valuable in forecasting exchange rates, with a 

combination of the two significantly improving forecast accuracy. However, Faust 

et al. (2003) cautioned that data revisions and changes in sample periods can 

significantly impact the predictability of exchange rates, suggesting a need for 

ongoing evaluation and refinement of forecasting models. 

Kucuklerli and Ulusoy (2023) utilized the DCC-GARCH model to assess the 

relationship between narratives regarding the Turkish economy on Twitter and 

TL/USD FX rate movements. This choice was motivated by the non-normal and 

heteroskedastic nature of the Twitter and TL/USD FX rate data, alongside their 

varying conditional correlations across different lags. Subsequent analysis of 

delayed relationships up to 10 lags revealed that the 6th and 10th lags of 60-minute 

frequency 7-day Twitter data exhibited significant conditional correlation with 60-

minute frequency TL/USD FX rate data. However, other lags and series were 

deemed statistically insignificant in elucidating the conditional correlation and 

dynamic relationship. the DCC-GARCH model indicated that volatility in Twitter 

data containing specific keywords, notably "Dolar," could precipitate volatility in 

the TL/USD rate at T+360 minutes and T+600 minutes, enabling investors to 

anticipate these fluctuations.  

Research in sentiment analysis and its applications in finance has demonstrated 

promising outcomes. Souza et al. (2015) revealed that Twitter sentiment can exert 

a significant impact on stock returns and volatility in the retail sector, surpassing 

the predictive power of traditional news sources. Building on this, Jangid et al. 

(2018) took a step forward by developing a deep learning model for aspect-based 

sentiment analysis in the financial domain, achieving remarkable accuracy. 

Expanding the scope, Ravi et al. (2015) applied sentiment analysis to customer 

reviews in the educational sector, showcasing its effectiveness in evaluating 

program quality. In the realm of Chinese microblogs related to finance, Yan et al. 

(2018) proposed a method for sentiment analysis using a hybrid approach involving 

rule-based and classification methods. Together, these studies underscore the 

considerable potential of sentiment analysis in finance, offering valuable insights 

for both market analysis and customer feedback evaluation. 

Moreover, an array of studies has delved into the intricate relationship between 

social media sentiment and market movements. Rao and Srivastava (2012) 

discovered a pronounced correlation between stock prices and Twitter sentiments, 

emphasizing the substantial impact of Twitter discussions on stock price dynamics. 

Yang et al. (2015) identified a distinct financial community on Twitter, whose 

sentiment exhibited a noteworthy correlation with the returns of major financial 

market indices. Examining public sentiments in tweets, Pagolu et al. (2016) found 

a robust correlation with stock market movements, particularly in response to 

positive news and tweets. Ranco et al. (2015) conducted a detailed investigation 
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into the connections between Twitter sentiment and stock prices, revealing a 

significant dependence between Twitter sentiment and abnormal returns, especially 

during peaks of Twitter volume. 

The integration of sentiment analysis into traditional forecasting models offers 

several advantages. Ren et al. (2019) and Nguyen and Shirai (2015) both 

demonstrate that it can significantly improve the accuracy of stock market 

movement predictions, with Ren reporting an 18.6% increase in accuracy. Dang et 

al. (2021) further highlights its potential in enhancing the performance of 

recommender systems, particularly in understanding user attitudes and emotions. 

However, Mishev et al. (2020) cautions that the effectiveness of sentiment analysis 

in finance is contingent on the use of domain-specific language and the availability 

of large labeled datasets. Despite these limitations, the potential for improved 

forecasting accuracy and performance in various applications makes the integration 

of sentiment analysis a promising area for further research and development. 

Research has consistently shown a strong interplay between economic factors and 

sentiment. Benhabib (2017) found that sentiment, particularly expectations about 

national output growth, significantly influences future state economic activity. This 

was further supported by Baghestani and Palmer (2017), who demonstrated a 

dynamic relationship between consumer sentiment and economic policy assessment, 

with both influencing each other. Dergiades (2012) added to this by showing that 

investors' sentiment dynamics can significantly predict stock returns. These studies 

collectively highlight the importance of sentiment in shaping economic outcomes. 

A range of machine learning models have been used to predict exchange rates, with 

varying degrees of success. Goncu (2019) found that Ridge regression offered 

accurate estimation, particularly for the US Dollar and Turkish Lira exchange rates. 

Chen et al. (2021) developed a two-stage approach for Bitcoin exchange rate 

prediction, using economic and technology determinants to achieve better 

performance than traditional methods. Pfahler (2021) used artificial neural networks 

and XGBoost models to make out-of-sample forecasts for ten currency pairs, 

demonstrating significant predictive power in directional forecasts. Tak and 

Logeswaran (2022) highlighted the potential of hybrid machine learning models, 

particularly those incorporating text mining for sentiment analysis, in predicting 

foreign currency exchange rates. 

Ketkar (2017) stated Recurrent Neural Networks (RNNs) are a type of neural 

network that utilize recurrence, allowing them to use information from previous 

forward passes and they are characterized by internal loops that introduce delayed 

activation dependencies, creating recursive dynamics. Kaur and Mohta (2019) 

emphasized that RNNs are a key component of deep learning, capable of processing 

sequential data and preserving elements over time. Bisong (2019) highlighted they 

are particularly well-suited for tasks where past information is crucial for future 

predictions, such as language modeling and stock market prediction.  

A range of studies have demonstrated the effectiveness of LSTM and XGBoost 

models in financial forecasting. Liwei et al. (2021) found that the LSTM-BO-

XGBoost model outperformed both LSTM and RNN in stock price prediction. 
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Similarly, Qu et al. (2019) reported that the LSTM neural network model had 

smaller errors and more accurate predictions than the RNN model in foreign 

exchange price forecasting. In the context of volatility forecasting, Liu (2019) found 

that LSTM RNNs performed as well as v-SVR and outperformed the GARCH 

model. Tsang et al. (2018) further supported the use of LSTM-based models in stock 

market index prediction, demonstrating significant profitability. These studies 

collectively highlight the potential of LSTM and XGBoost models in financial 

forecasting. 

A range of studies have explored the impact of central bank interventions on 

currency markets. Beine et al. (2007) found that both concerted and unilateral 

interventions can influence exchange rate dynamics, with the former affecting both 

currency components and the latter primarily impacting the central bank's currency. 

Pasquariello (2010) proposed a theory that the mere expectation of future 

interventions can affect exchange rate levels, volatility, and bid-ask spreads, with 

these effects being influenced by dealership competition, the central bank's policy 

trade-off, and the credibility of its threats. Nikkinen and Vähämaa (2009) further 

noted that central bank interventions can alter market expectations about future 

exchange rate movements, temporarily increasing correlations among major 

exchange rates. 

In addition, Sağlam et al. (2019) introduced SWNetTR++, a Turkish sentiment 

lexicon crafted to encapsulate the sentiment orientations of approximately 49,000 

Turkish words and word groups. This lexicon comprises polarity and tone values, 

serving as indicators of the directional sentiment associated with each word. 

Specifically, the polarity value of a word reflects a positive sentiment with a score 

of 1, whereas it indicates a negative sentiment with a score of -1. Moreover, the tone 

values of words fall within the continuous range of [-1, +1], offering nuanced 

insights into the intensity or strength of the associated sentiment. SWNetTR++ 

stands as a pivotal resource in the realm of sentiment analysis, furnishing 

researchers and practitioners with a comprehensive tool to decipher and interpret 

the intricate fabric of sentiment embedded within Turkish language expressions. 

Given the limited research on Turkish sentiments in this domain and the absence of 

studies utilizing machine learning algorithms such as LSTM, RNN, and XGBoost 

for sentiment-based exchange rate predictions, our literature review serves the 

purpose of situating our research within the current scholarly landscape. This 

endeavor seeks to underscore the relevance of our approach, offering valuable 

insights to the evolving dialogue on exchange rate prediction. 

 

3. Data and Methodology 

The data were retrieved from Thomson Reuters EIKON and Twitter Inc. databases, 

encompassing tweets originating from Turkey containing keywords such as 

"economic crisis," "inflation," "unemployment," "economic recession," “refugee” 

and "#dollar," alongside TL/USD fx rate data. The data span from October 1, 2020, 

to April 11, 2023, comprising a total of 16,163,207 tweets. 
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With this Twitter data at hand, sentiment scores were assigned to each word of every 

tweet using the SWNET++ lexicon for sentiment analysis, followed by aggregation 

at the tweet level. R programming language was employed for these analyses. 

Subsequently, sentiment scores obtained for each tweet were aggregated over 

intervals of 15, 30, and 60 minutes, as well as 12 hours and 1 day, forming a time 

series dataset tailored for analysis. 

Concurrently, TL/USD exchange rate data for the same periods were sourced from 

the Thomson Reuters EIKON database and merged with tweet data to construct a 

time series. Then, this dataset was subjected to analysis utilizing LSTM Neural 

Network, xgboost, and RNN techniques, with the USD/TL exchange rate serving as 

the dependent variable, and aggregated sentiment scores assigned to specific 

keywords ("economic crisis," "inflation," "unemployment," “refugee”, "economic 

recession," and "#dollar") across aggregated periods acting as independent variables. 

Descriptive statistical values for the variables are provided in Appendix 1 and 

Appendix 2. 

In this study, three distinct machine learning techniques were employed for analysis: 

Long Short-Term Memory (LSTM) Neural Network, eXtreme Gradient Boosting 

(xgboost), and Recurrent Neural Network (RNN). These models were chosen due 

to their established effectiveness in handling sequential data and their applicability 

to time series forecasting tasks. 

Prior to model implementation, the dataset underwent rigorous preprocessing steps 

to ensure compatibility with each respective model. This included data cleaning, 

normalization, and feature engineering to extract relevant information from the raw 

input data. 

 

3.1 Recurrent Neural Network (RNN) 
 

The Recurrent Neural Network (RNN) architecture was also employed to analyze 

the dataset. RNNs are particularly adept at capturing sequential patterns and have 

been widely utilized in various natural language processing and time series analysis 

tasks. In this study, RNNs were utilized to model the temporal dynamics of the data 

and make predictions based on historical trends. 

Recurrent Neural Networks (RNNs) constitute a class of artificial neural networks 

particularly suited for sequential data analysis, including time series forecasting and 

natural language processing tasks. Unlike traditional feedforward neural networks, 

RNNs possess feedback loops that enable them to exhibit temporal dynamics by 

incorporating information from previous time steps into their computations. 

The architecture of an RNN typically comprises three main components: an input 

layer, a hidden layer with recurrent connections, and an output layer. The key 

distinguishing feature of RNNs is the presence of connections that allow 

information to persist over time, making them well-suited for tasks involving 

sequential data. 

The recurrent connections in an RNN enable it to maintain a form of memory, 

allowing past information to influence the network's current output. At each time 
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step, the hidden layer receives both the current input and the output from the 

previous time step, thus capturing temporal dependencies in the data. 

Training an RNN involves optimizing its parameters to minimize a specified loss 

function, typically achieved through gradient-based optimization techniques such 

as backpropagation through time (BPTT). During training, the network learns to 

update its internal state based on both the current input and its previous state, 

allowing it to capture complex temporal patterns in the data. 

Despite their effectiveness in modeling sequential data, RNNs have certain 

limitations, such as difficulties in capturing long-range dependencies and issues 

with vanishing or exploding gradients during training. These challenges have led to 

the development of more advanced architectures, such as Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU), which address some of the 

shortcomings of traditional RNNs. 

As per Goodfellow et al. (2016), multilayer perceptrons (MLPs) are employed to 

approximate a function denoted as 𝑓∗ . The concept underlying multilayer 

perceptrons involves learning the parameters 𝜃 of a mapping  

 

                             𝑦 = 𝑓∗(∙, 𝜃)                    (1) 

 

Essentially, an MLP consists of a sequence of linear mappings and activation 

functions applied to the input data. For instance, a two-layer MLP can be 

mathematically represented by the following equations: 

 

                             ℎ =  𝜑(𝑊𝑥ℎ𝑥  +  𝑏ℎ)            (2) 

 

                             𝑦 =  𝑊ℎ𝑦ℎ   +  𝑏𝑦              (3) 

 

In the context of multilayer perceptrons (MLPs), the weight matrices 𝑊𝑥ℎ  and 

𝑊ℎ𝑦 are utilized in the input-to-hidden layer mapping and hidden-to-output layer 

mapping, respectively. Here, 𝑥 represents a vector containing the input data, 𝑏 

denotes a bias vector, and 𝜑  signifies an element-wise applied non-linear 

activation function. MLPs possess the capability to approximate any mapping given 

adequate capacity. RNNs leverage the same set of weights across multiple time 

steps and incorporate recurrent connections. This characteristic, known as 

parameter sharing, empowers RNNs to effectively process data of varying lengths. 

The introduction to the RNN, as outlined by Graves et al. (2013), describes a 

standard Recurrent Neural Network (RNN) architecture. In this setup, the RNN 

computes two sequences: the hidden vector sequence ℎ = (ℎ1, ℎ2, . . . , ℎ𝑇) and the 

output sequence 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑇). This computation unfolds iteratively over 

time 𝑡 within the range [1, 2, . . . , 𝑇] , governed by a set of equations. 

 

                   ℎ𝑡 =  𝜑(𝑊𝑥ℎ𝑥𝑡  + 𝑊ℎℎℎ𝑡 − 1 +  𝑏ℎ)         (4) 
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                           𝑦𝑡 =  𝑊ℎ𝑦ℎ𝑡  +  𝑏𝑦               (5) 

 

where 𝑊𝑥ℎ is a weight matrix applied to input layer, 𝑊ℎℎ and 𝑊ℎ𝑦  are weight 

matrices applied to the output from the hidden layer at time 𝑡 − 1  and t 

respectively, 𝑥 is input data, 𝑏 denotes a bias vector and is a function applied to 

the hidden layer. In a simple RNN, the hidden layer function could be for example 

an element-wise application of the sigmoid function. The RNN is illustrated in Figure 

1. 

 

Figure 1: RNN Framework 

 

To optimize the model parameters within a Recurrent Neural Network (RNN), 

conventional practice involves employing gradient-based backpropagation 

techniques over time, known as backpropagation through time (BPTT). The primary 

objective of this optimization process is to minimize an objective function, 𝐿(𝑦𝑡, �̂�𝑡

), which quantifies the current error of the model. Here, 𝑦𝑡represents the target 

output, while �̂�𝑡 denotes the current output generated by the model. BPTT operates 

by computing the gradients of the model parameters relative to the error, beginning 

from the most recent time step and then systematically moving backward in time. 

Subsequently, the model parameters undergo updates via gradient descent. This 

iterative process continues until the error diminishes to an acceptable level or the 

parameters converge. 

The update rules for the parameters in Backpropagation Through Time (BPTT) are 

as follows:  

For the output layer, the gradient 𝛿𝑡
𝑦

 is computed as the partial derivative of the 

loss function 𝐿(𝑦𝑡, �̂�𝑡) with respect to the output 𝑦𝑡, given by: 

 

                      𝛿𝑡
𝑦

=  
𝜕𝐿(𝑦𝑡,�̂�𝑡)

𝜕𝑦𝑡
                  (6) 
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These gradients are then propagated to the hidden layer according to: 

 

𝛿𝑡
ℎ =  𝜑′(𝛿𝑡

𝑦
𝑊ℎ𝑦

′  + 𝛿𝑡+1
ℎ 𝑊ℎℎ

′ )         (7) 

 

Where 𝜑′ represents the element-wise derivative of the activation function, and for 

the last time step 𝑇, the term 𝛿𝑡+1
ℎ 𝑊ℎℎ

′  is zero. 

Finally, the model parameters are updated using gradient descent based on these 

computed gradients. 

 

𝑊ℎ𝑦
𝑖+1 =  𝑊ℎ𝑦

𝑖 + 𝑠 ∑ 𝛿𝑡
𝑦

ℎ𝑡
′𝑇

𝑡=1          (8) 

 

𝑏𝑦
𝑖+1 =  𝑏𝑦

𝑖 + 𝑠 ∑ 𝛿𝑡
𝑦𝑇

𝑡=1          (9) 

 

𝑊ℎℎ
𝑖+1 =  𝑊ℎℎ

𝑖 + 𝑠 ∑ 𝛿𝑡
ℎℎ𝑡−1

′𝑇
𝑡=1          (10) 

 

𝑊𝑥ℎ
𝑖+1 =  𝑊𝑥ℎ

𝑖 + 𝑠 ∑ 𝛿𝑡
ℎ𝑥𝑡−1

′𝑇
𝑡=1            (11) 

 

𝑏ℎ
𝑖+1 =  𝑏ℎ

𝑖 + 𝑠 ∑ 𝛿𝑡
ℎ𝑇

𝑡=1            (12) 

 

Here, 𝑠 represents a predefined learning rate, and 𝑖 denotes the iteration number. 

 
 

3.2 LSTM Neural Network 
 

The LSTM Neural Network, a type of recurrent neural network with specialized 

memory cells, was implemented to capture temporal dependencies within the 

dataset. LSTM networks are well-suited for modeling sequential data, making them 

ideal for time series prediction tasks such as forecasting exchange rate movements. 

According to Hochreiter and Schmidhuber (1997), Long Short-Term Memory 

(LSTM) represents an advancement in Recurrent Neural Network (RNN) 

architecture. By introducing memory cells within the hidden layers, LSTM 

effectively manages temporal information in time series data. This structural 

enhancement enables the controlled transmission of information across various cells 

within the hidden layer via controllable gates, namely the forget gate, input gate, 

and output gate. Consequently, the extent of memory retention and forgetting 

pertaining to both previous and current information can be regulated. Unlike 

traditional RNNs, LSTM incorporates a long-term memory function, thus 

mitigating the issue of gradient disappearance which is called vanishing gradients.  

In response to vanishing gradients, Schmidhuber and Hochreiter (1997) proposed a 

solution by introducing long short-term memory (LSTM) cells. These specialized 

cells can be integrated into RNNs by replacing the activation function in Equation 

2 with a composite function. 
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𝑖𝑡  =  𝜎(𝑊𝑥𝑖 𝑋𝑡  + 𝑊ℎ𝑖 ℎ𝑡−1 + 𝑊𝑐𝑖 𝐶𝑡 − 1 +  𝑏𝑖      (13) 

 

𝑓𝑡  =  𝜎(𝑊𝑥𝑓 𝑋𝑡 + 𝑊ℎ𝑓 ℎ𝑡−1 + 𝑊𝑐𝑓 𝐶𝑡−1 +  𝑏𝑓 )       (14) 

 

𝐶𝑡  =  𝑓𝑡 𝐶𝑡−1 +  𝑖𝑡 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 𝑋𝑡  + 𝑊ℎ𝑐 ℎ𝑡−1 + 𝑏𝑐)     (15) 

 

𝑜𝑡  = 𝜎(𝑊𝑥𝑜 𝑋𝑡  + 𝑊ℎ𝑜 ℎ𝑡−1 + 𝑊𝑐𝑜 𝐶𝑡−1 +  𝑏𝑜)         (16)  

 

ℎ𝑡  =  𝑜𝑡 𝑡𝑎𝑛ℎ(𝑐𝑡),              (17) 

where 

𝜎 (𝑥) =  
1

1+𝑒−𝑥
                   (18) 

 

tanh(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                  (19) 

 

In the LSTM architecture, 𝑖, 𝑓, and 𝑜 denote the input, forget, and output gate 

vectors, respectively. Additionally, 𝑐 represents the cell vector, and each weight 

matrix applied to the cell-to-gate mapping is diagonal. Graves et al. (2013) visualize 

the LSTM cell structure is visually given the Figure 2 below.  

 

Figure 2: LSTM-NN cell structure 

 

The LSTM RNN exhibits the capability to model dependencies with arbitrary time 

spans between the predictive signal and the target. Within the LSTM architecture, 

the memory cell 𝑐𝑡 retains the temporal state values of the network, while the gates, 

characterized by elements ranging between 0 and 1, regulate the flow of information. 

For instance, when the elements of the input gate vector are zero, new information 

is prevented from being added to the temporal state. Similarly, the output vector 

governs the flow of information exiting the cell. 

Extreme Gradient Boosting (xgboost) is a powerful ensemble learning technique 
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that combines the strengths of decision trees with gradient boosting algorithms. In 

this study, xgboost was utilized for its ability to handle complex, nonlinear 

relationships in the data and its robust performance in predictive modeling tasks 

with decision tree regression model with boosting.  

Chen and Guestrin (2016) described XGBoost as; 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1 , 𝑓𝑘 ∈ 𝐹              (20) 

Where K is the total trees and F is the total trees. The objective function is: 

𝐿 = ∑ 𝑙(�̂�𝑖, 𝑦𝑖)𝑖 + ∑ 𝛺(𝑓𝑘)𝑘             (21) 

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2              (22) 

In the given context, 𝐿  represents the loss function, while 𝛺  denotes the 

regularization function utilized to mitigate overfitting. Additionally, T signifies the 

number of leaves per tree, and w denotes the weight associated with each leaf of the 

tree. �̂�𝑖
(𝑡)

 represents the predictive value after the 𝑡𝑡ℎ  iteration, then: 

�̂�𝑖
(𝑡) = �̂�𝑖

(𝑡−1) + 𝑓𝑡(𝑥𝑖)                (23) 

Therefore, the objective function can be expressed as: 

𝐿(𝑡) = ∑ 𝑙(�̂�𝑖
(𝑡−1) + 𝑓𝑡(𝑥𝑖), 𝑦𝑖)𝑖 + 𝛺(𝑓)         (24) 

The second-order Taylor expansion of the objective function is: 

𝐿(𝑡) = ∑ [𝑖 𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖))] + 𝛺(𝑓)    (25) 

where: 

𝑔𝑖 = 𝜕
�̂�𝑖

(𝑡−1)𝑙(𝑦𝑖, �̂�𝑖
(𝑡−1))               (26) 

ℎ𝑖 = 𝜕
�̂�𝑖

(𝑡−1)
2𝑙(𝑦𝑖, �̂�𝑖

(𝑡−1))                

(27) 

Ignore constant term could be written as:  

𝐿(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]𝑖 + 𝛺(𝑓)         (28) 

Define  𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗}  as the 𝑗𝑡ℎ leaf node and (28) can be written as:  
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𝐿(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]𝑖 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1        (29) 

 

  = ∑ [(∑ 𝑔𝑖𝑖∈𝐼𝑗
) 𝑤𝑗 +

1

2
(∑ ℎ𝑖𝑖∈𝐼𝑗

+ 𝜆)𝑤𝑗
2]𝑇

𝑗=1 + 𝛾𝑇     (30) 

When the derivative of the objective function reaches 0, the optimal weight is 

attained. 

 

 

𝑤𝑗
∗= - 

∑ 𝑔𝑖𝑖∈𝐼𝑗

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

                    (31) 

When  𝑤𝑗 = 𝑤𝑗
∗, the objective function is: 

�̃�(𝑡)(𝑞) = −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑗

𝑇
𝑗=1 + 𝛾𝑇            (32) 

If we define 𝐼𝐿  as the collection of all left nodes post-split, and 𝐼𝑅 as the set of all 

right nodes post-split, then following each split, the objective function's information 

gain is calculated as: 

 

𝐺𝑎𝑖𝑛 =
1

2
[

(∑ 𝑔𝑖𝑖∈𝐼𝐿
)2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝐿

+
(∑ 𝑔𝑖𝑖∈𝐼𝑅

)2

∑ ℎ𝑖+𝜆𝑖∈𝐼𝑅

−
(∑ 𝑔𝑖𝑖∈𝐼 )2

∑ ℎ𝑖+𝜆𝑖∈𝐼
] − 𝛾      (32) 

 

4. Model Training and Evaluation 

The correlation matrix provides insights into the relationships among the variables 

analyzed in the study. It indicates positive correlations between the USD/TL FX 

Rate and factors such as Unemployment, Economic Recession with RTE (where 

RTE refers to "retweet effect"), #Dolar with RTE, and Refugee with RTE. These 

findings underscore potential interdependencies among the variables examined, 

emphasizing their roles in economic dynamics and policy-making contexts. The 

Pearson correlation results measured between variables are presented in Appendix 

3. 

In delineating the training process for each machine learning model utilized in this 

study, a systematic approach was adopted to ensure optimal performance. Initially, 

the dataset was partitioned into training and testing sets to facilitate model 

evaluation and prevent overfitting. In the models where "RTE" (retweet effect) is 

incorporated, the sentiment score of tweets is multiplied by the number of retweets 

to enhance the predictive power of the sentiment analysis. This multiplication serves 

to amplify the impact of tweets that have been widely shared, under the assumption 

that highly retweeted tweets may exert a stronger influence on market sentiment 

and subsequently on exchange rate movements. By integrating the retweet count 

into the sentiment analysis, these models aim to capture the potential amplifying 
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effect of social media activity on financial markets, thereby improving the accuracy 

of exchange rate predictions. 

The training process for the machine learning models involved sequential 

processing of input data to capture temporal dependencies. In LSTM Neural 

Network models, backpropagation through time iteratively adjusted the network's 

weights to minimize loss and improve predictive accuracy. Hyperparameter tuning 

optimized parameters like layer count, hidden units, and learning rate. Similarly, 

SimpleRNN models processed data sequentially, albeit with a simpler architecture 

than LSTM, potentially limiting their ability to capture long-term dependencies. 

Nevertheless, hyperparameter tuning was employed to enhance predictive accuracy. 

XGBoost models refined decision trees iteratively, utilizing techniques such as grid 

search or random search to optimize parameters like tree depth and learning rate. 

Throughout the training process for each model, validation techniques such as 

cross-validation were utilized to assess generalization performance and mitigate 

overfitting. Additionally, models were trained iteratively, with adjustments made to 

optimize performance metrics such as accuracy and precision. 

Overall, the training process for each machine learning model aimed to maximize 

predictive accuracy and generalization capability, thereby enhancing the 

effectiveness of exchange rate forecasting. 

In evaluating the performance of the machine learning models, Mean Absolute 

Percentage Error (MAPE) was utilized as a key metric. MAPE is a commonly used 

measure in forecasting tasks, particularly in financial forecasting, as it provides 

insights into the accuracy of predictions relative to the actual values. To calculate 

MAPE following formula is used.  

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑌𝑖−𝑌𝑝𝑟𝑒𝑑|

𝑌𝑖

𝑛
𝑖=1           (33) 

 

Where,  

𝑌𝑖: is the actual value of the TL/USD FX Rate 

𝑌𝑝𝑟𝑒𝑑: is the forecasted value of TL/USD FX Rate 

n is the total number of observations 
 

By employing MAPE as a performance metric, this study sought to gauge the 

effectiveness of each machine learning model in accurately forecasting exchange 

rate movements while considering the magnitude of errors relative to the actual 

values. This approach enabled a robust assessment of model performance, 

facilitating informed comparisons and aiding in the selection of the most suitable 

model for exchange rate forecasting. The MAPE values measured for the models 

are provided in Appendix 4. 

In evaluating the performance of each machine learning model in predicting 

exchange rate movements, several key metrics were utilized to provide a 

comprehensive assessment. The Mean Absolute Percentage Error (MAPE) served 

as a primary metric, quantifying the average absolute percentage difference between 
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predicted and actual values. This metrics allowed for an evaluation of each model's 

predictive accuracy and effectiveness in capturing exchange rate dynamics. Among 

the models examined, those utilizing LSTM Neural Networks consistently 

demonstrated lower MAPE values and higher Prediction Power scores compared to 

other models, indicating superior performance in predicting exchange rate 

movements. Notably, the LSTM_NN_1day_rte model stood out with the lowest 

MAPE of 34.56% and the highest Prediction Power of 65.44%, highlighting its 

effectiveness in accurately forecasting exchange rates. Conversely, models 

employing SimpleRNN and XGBoost techniques generally yielded higher MAPE 

values and lower Prediction Power scores across various time intervals and tweet 

inclusion variations, suggesting comparatively poorer predictive performance. 

These findings underscore the importance of selecting appropriate machine learning 

techniques, such as LSTM Neural Networks, for achieving more reliable predictions 

in financial forecasting tasks. 

 

5. Conclusion 

In the dynamic realm of global finance, accurately predicting exchange rates is 

paramount. This study delves into forecasting the USD/TL exchange rate, 

employing a novel methodology that integrates economic indicators with sentiment 

analysis sourced from social media data. Understanding and forecasting currency 

movements are essential for effective financial planning, risk management, and 

policy formulation. While economic indicators traditionally offer valuable insights, 

the burgeoning influence of public sentiment, particularly on digital platforms like 

Twitter, has garnered significance in recent years. 

Our study aims to enhance exchange rate predictions by combining traditional 

economic indicators with sentiment analysis from Twitter, aiming for a more 

comprehensive view of currency market dynamics. We ask: Can Twitter sentiment 

analysis significantly aid in predicting the USD/TL exchange rate? To answer this, 

we assess the effectiveness of Twitter sentiment analysis in capturing market 

sentiment on economic variables and develop and evaluate machine learning 

models like LSTM Neural Network, XGBoost, and RNN to forecast exchange rate 

movements using sentiment and economic indicators. 

Throughout our study, we observed that the LSTM model consistently 

outperformed both RNN and XGBoost, boasting a prediction accuracy of 65% and 

a Mean Absolute Percentage Error (MAPE) of 35%. Notably, the model's 

robustness was tested by external factors, particularly interventions by the Central 

Bank of the Republic of Turkey. Despite these challenges, our findings underscore 

the model's significant predictive prowess, even in the face of interventions that 

may introduce artificial fluctuations in the exchange rate. 

The implications of sentiment analysis in predicting exchange rates are profound. 

By leveraging sentiment analysis from social media platforms, financial institutions, 

policymakers, and investors can gain a more nuanced understanding of market 

sentiment and sentiment-driven behaviors. This, in turn, can aid in making informed 
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decisions regarding currency trading, investment strategies, and policy adjustments. 

Moreover, the real-time nature of sentiment analysis allows for timely responses to 

market fluctuations, enhancing agility and responsiveness in the financial landscape. 

There are several avenues for future research in the realm of predicting exchange 

rates using sentiment analysis. Firstly, exploring the integration of sentiment 

analysis from multiple social media platforms can provide a more comprehensive 

understanding of market sentiment. Additionally, incorporating alternative data 

sources, such as news articles or economic reports, may further enhance predictive 

accuracy. Furthermore, refining sentiment analysis techniques to account for 

linguistic nuances and context-specific factors can improve the reliability of 

predictions. Finally, longitudinal studies tracking the effectiveness of sentiment 

analysis in different market conditions and geopolitical contexts can provide 

valuable insights into its robustness and applicability. 
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Appendix 1: Descriptive Statistical Values for the Variables 

Freq 
Descriptive 

Stats 

USD/TL 

FX Rate 

Economic 

Crisis 
Inflation Unemployment 

Economic 

Recession 
#Dolar Refugee 

15 

Min 

Mean 13.22 (0.79) 1.97 (2.35) (0.01) 4.31 (0.21) 

Standart 

Deviation 
4.59 4.44 12.85 6.34 0.40 10.80 1.13 

Max 19.46 376.01 360.88 208.15 7.25 529.36 18.92 

Min 6.90 (162.29) (577.77) (347.29) (90.98) (231.51) (65.54) 

Median 13.68 (0.15) 0.11 (0.95) - 1.91 - 

30 

Min 

Mean 13.22 (1.97) 4.93 (5.88) (0.02) 10.12 (0.51) 

Standart 

Deviation 
4.59 10.23 30.30 14.60 0.53 26.06 2.55 

Max 19.46 679.44 895.32 371.24 24.35 1,300.60 34.40 

Min 6.90 (358.67) (1,100.08) (452.64) (40.98) (171.56) (124.39) 

Median 13.68 (0.60) 0.38 (2.56) - 4.30 - 

60 

Min 

Mean 13.22 (4.34) 10.84 (13.00) (0.06) 23.65 (1.13) 

Standart 

Deviation 
4.59 20.81 63.53 29.64 1.30 55.34 5.31 

Max 19.46 1,131.95 1,747.53 490.74 34.18 2,225.34 66.87 

Min 6.90 (630.48) (2,438.05) (617.09) (105.31) (223.01) (200.37) 

Median 13.68 (1.48) 0.88 (5.92) - 11.39 - 

6 

Hour 

Mean 13.22 (28.00) 69.81 (83.63) (0.36) 149.66 (7.25) 

Standart 

Deviation 
4.60 103.51 320.27 140.93 5.18 299.32 27.56 

Max 19.45 1,576.79 5,121.45 1,273.86 61.58 7,384.89 78.25 

Min 6.90 (1,857.26) (2,961.34) (2,173.85) (202.80) (1,119.40) (555.30) 

Median 13.70 (12.12) 8.54 (45.19) - 83.61 (0.95) 

12 

Hour 

Mean 13.22 (56.45) 141.12 (168.88) (0.74) 302.75 (14.62) 

Standart 

Deviation 
4.60 184.01 543.19 233.70 8.67 554.82 48.99 

Max 19.45 2,373.33 6,386.34 1,387.37 61.78 13,390.36 96.56 

Min 6.90 (2,161.95) (3,761.92) (2,249.15) (261.35) (1,638.43) (783.01) 

Median 13.70 (28.25) 24.87 (113.30) - 182.92 (3.19) 

1 

Day 

Mean 13.24 (112.94) 282.53 (337.91) (1.47) 607.06 (29.28) 

Standart 

Deviation 
4.60 316.12 963.65 393.51 16.35 871.02 92.13 

Max 19.45 3,217.32 10,604.24 1,149.00 95.44 13,716.28 119.93 

Min 6.92 (2,509.17) (4,518.33) (2,873.08) (420.38) (649.80) (1,397.30) 

Median 13.70 (60.67) 59.55 (240.53) (0.09) 393.57 (10.28) 
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Appendix 2: Descriptive Statistical Values for the Variables (w/RTE) 

 

Freq 
Descripti
ve Stats 

Economic 
Crisis w/RTE 

Inflation w/RTE 
Unemployment 

w/RTE 
Economic 

Recession w/RTE 
#Dolar w/RTE Refugee w/RTE 

15 Min 

Mean (372.64) 1,840.35 (252.43) (1.50) 956.21 (102.10) 

Standart 

Deviation 
18,999.22 47,773.01 9,674.32 101.85 10,554.32 1,827.54 

Max 2,736,040.46 4,992,801.00 915,071.60 6,388.00 600,918.90 8,115.55 

Min (814,103.50) (2,837,776.00) (300,217.40) (13,282.48) (272,924.10) (190,830.20) 

Median (0.26) - (9.00) - 15.22 - 

30 Min 

Mean (914.29) 4,620.46 (604.57) (3.16) 2,392.66 (256.05) 

Standart 
Deviation 

44,261.31 117,772.61 24,272.31 217.30 25,670.52 4,362.96 

Max 4,931,931.07 9,978,586.44 2,078,188.02 21,454.03 1,229,895.80 9,376.13 

Min (2,101,334.00) (5,299,743.30) (597,891.36) (19,054.71) (589,502.53) (364,734.05) 

Median (6.90) - (53.54) - 74.88 - 

60 Min 

Mean (2,102.40) 10,124.15 (1,366.53) (7.54) 5,265.00 (562.83) 

Standart 
Deviation 

86,640.41 240,527.38 50,112.35 471.85 54,893.92 9,287.05 

Max 8,288,862.00 13,139,768.90 3,660,150.40 30,493.22 2,217,505.40 15,859.40 

Min (3,743,803.70) (8,832,758.58) (1,055,780.85) (39,924.16) (1,213,128.80) (581,790.50) 

Median (33.70) - (152.33) - 233.49 - 

6 Hour 

Mean (13,417.43) 65,662.31 (8,750.53) (49.69) 33,941.97 (3,623.55) 

Standart 

Deviation 
385,793.43 1,201,942.97 247,488.99 2,138.02 301,117.86 49,988.07 

Max 11,658,165.32 23,931,277.02 9,255,651.00 54,960.02 7,158,300.02 58,847.13 

Min (8,184,615.80) (23,865,069.54) (2,336,652.41) (94,366.07) (6,807,545.97) (1,617,722.25) 

Median (636.30) - (1,647.51) - 2,457.37 - 

12 
Hour 

Mean (26,391.56) 133,136.21 (17,612.96) (100.09) 68,606.51 (7,294.12) 

Standart 

Deviation 
715,272.96 2,071,273.99 408,090.79 3,534.12 573,300.33 87,608.06 

Max 18,113,571.01 41,049,326.32 9,990,469.05 54,960.22 13,235,985.89 109,237.02 

Min (12,221,473.07) (29,425,388.85) (4,358,064.44) (122,174.45) (10,376,844.35) (1,943,224.46) 

Median (1,712.55) 814.51 (4,016.32) - 6,757.88 - 

1 Day 

Mean (52,981.78) 266,716.84 (35,197.19) (203.89) 137,483.59 (14,644.36) 

Standart 

Deviation 
1,227,364.64 3,620,264.92 648,105.65 7,237.74 862,000.50 169,366.89 

Max 24,416,786.60 59,694,433.50 9,212,065.17 84,730.56 14,807,306.62 176,761.46 

Min (11,351,882.47) (35,691,280.47) (5,151,089.69) (198,101.50) (11,170,196.80) (4,090,118.05) 

Median (4,129.17) 2,174.17 (10,772.84) (0.09) 18,147.54 (13.59) 
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Appendix 3: Pearson Correlations Between Variables 

 USD/TL 

FX Rate 

Economic 

Crisis 
Inflation Unemployment 

Economic 

Recession 
#Dolar Refugee 

Economic 

Crisis 

w/RTE 

Inflation 

w/RTE 

Unemployment 

w/RTE 

Economic 

Recession 

w/RTE 

#Dolar 

w/RTE 

Refugee 

w/RTE 

USD/TL FX 

Rate 
1.0000 (0.0301) 0.0633 0.1126 (0.0092) 0.0673 (0.0782) 0.0006 (0.0009) 0.0243 0.0060 (0.0108) (0.0380) 

Economic 

Crisis 
(0.0301) 1.0000 (0.0062) 0.0417 0.0075 (0.0496) 0.0157 0.7659 (0.0074) 0.0254 0.0030 (0.0907) (0.0030) 

Inflation 0.0633 (0.0062) 1.0000 0.0062 (0.0001) 0.0635 (0.0165) 0.0067 0.5100 0.0284 (0.0029) 0.0388 0.0127 

Unemployment 0.1126 0.0417 0.0062 1.0000 0.0097 (0.0389) 0.0045 0.0073 (0.0041) 0.4073 0.0126 (0.0102) 0.0046 

Economic 

Recession 
(0.0092) 0.0075 (0.0001) 0.0097 1.0000 0.0068 (0.0006) 0.0034 0.0006 0.0054 0.7771 (0.0008) (0.0011) 

#Dolar 0.0673 (0.0496) 0.0635 (0.0389) 0.0068 1.0000 (0.0151) (0.0163) (0.0088) 0.0081 0.0322 0.7241 0.0087 

Refugee (0.0782) 0.0157 (0.0165) 0.0045 (0.0006) (0.0151) 1.0000 0.0067 0.0059 (0.0049) (0.0015) (0.0031) 0.6852 

Economic 

Crisis w/RTE 
0.0006 0.7659 0.0067 0.0073 0.0034 (0.0163) 0.0067 1.0000 0.0006 0.0069 0.0003 (0.0508) (0.0014) 

Inflation 

w/RTE 
(0.0009) (0.0074) 0.5100 (0.0041) 0.0006 (0.0088) 0.0059 0.0006 1.0000 0.0208 (0.0002) 0.0168 0.0198 

Unemployment 

w/RTE 
0.0243 0.0254 0.0284 0.4073 0.0054 0.0081 (0.0049) 0.0069 0.0208 1.0000 0.0080 0.0021 0.0047 

Economic 

Recession 

w/RTE 

0.0060 0.0030 (0.0029) 0.0126 0.7771 0.0322 (0.0015) 0.0003 (0.0002) 0.0080 1.0000 0.0018 (0.0008) 

#Dolar w/RTE (0.0108) (0.0907) 0.0388 (0.0102) (0.0008) 0.7241 (0.0031) (0.0508) 0.0168 0.0021 0.0018 1.0000 0.0013 

Refugee 

w/RTE 
(0.0380) (0.0030) 0.0127 0.0046 (0.0011) 0.0087 0.6852 (0.0014) 0.0198 0.0047 (0.0008) 0.0013 1.0000 
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Appendix 4: The MAPE Values for the Models 

 

Model Mape_s Prediction_Power 

LSTM_NN_1day_rte 34.56% 65.44% 

LSTM_NN_15min_tweet 35.48% 64.52% 

SimpleRNN_1day 36.10% 63.90% 

LSTM_NN_15min 36.73% 63.27% 

LSTM_NN_1day 36.97% 63.03% 

LSTM_NN_60min_tweet 37.05% 62.95% 

LSTM_NN_1day_tweet 37.22% 62.78% 

SimpleRNN_60min 37.25% 62.75% 

SimpleRNN_15min_tweet 37.39% 62.61% 

SimpleRNN_30min 37.56% 62.44% 

SimpleRNN_30min_tweet 37.70% 62.30% 

LSTM_NN_15min_rte 37.77% 62.23% 

LSTM_NN_60min_rte 37.79% 62.21% 

SimpleRNN_15min_rte 37.84% 62.16% 

LSTM_NN_6hour_rte 37.88% 62.12% 

SimpleRNN_1day_rte 37.90% 62.10% 

SimpleRNN_15min 37.92% 62.08% 

LSTM_NN_12hour_rte 37.93% 62.07% 

SimpleRNN_1day_tweet 37.96% 62.04% 

LSTM_NN_6hour 38.06% 61.94% 

LSTM_NN_30min 38.16% 61.84% 

LSTM_NN_30min_rte 38.16% 61.84% 

SimpleRNN_60min_rte 38.16% 61.84% 

SimpleRNN_30min_rte 38.17% 61.83% 

LSTM_NN_30min_tweet 38.38% 61.62% 

LSTM_NN_60min 38.44% 61.56% 

SimpleRNN_60min_tweet 38.57% 61.43% 

SimpleRNN_12hour_tweet 38.60% 61.40% 

LSTM_NN_12hour_tweet 39.01% 60.99% 

SimpleRNN_12hour_rte 39.21% 60.79% 

SimpleRNN_12hour 39.33% 60.67% 

LSTM_NN_6hour_tweet 39.49% 60.51% 

SimpleRNN_6hour 39.95% 60.05% 

SimpleRNN_6hour_rte 40.07% 59.93% 

XGBoost_15min_tweet 40.22% 59.78% 

SimpleRNN_6hour_tweet 40.28% 59.72% 

XGBoost_15min_rte 40.63% 59.37% 
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Model Mape_s Prediction_Power 

XGBoost_30min_rte 41.00% 59.00% 

XGBoost_30min_tweet 41.00% 59.00% 

XGBoost_15min 41.01% 58.99% 

LSTM_NN_12hour 41.12% 58.88% 

XGBoost_30min 41.65% 58.35% 

XGBoost_60min_rte 41.91% 58.09% 

XGBoost_60min_tweet 41.91% 58.09% 

XGBoost_60min 42.37% 57.63% 

XGBoost_12hour 42.93% 57.07% 

XGBoost_6hour_rte 42.95% 57.05% 

XGBoost_6hour_tweet 42.95% 57.05% 

XGBoost_1day_rte 43.05% 56.95% 

XGBoost_1day_tweet 43.05% 56.95% 

XGBoost_12hour_rte 43.15% 56.85% 

XGBoost_12hour_tweet 43.15% 56.85% 

XGBoost_6hour 43.27% 56.73% 

XGBoost_1day 43.37% 56.63% 
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