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Abstract 
 

This paper is concerned with the behavior of energy ETF prices. It applies three 

models: autoregressive moving average (ARMA) and generalized autoregressive 

conditional heteroskedasticity (GARCH), along with their revised forms, ARMA–

Exponential-GARCH, Glosten-Jagannathan-Runkle (GJR), and GARCH diffusion 

process with jump models. This study looks at the volatility behavior and jumps 

dynamics of Energy and Master Limited Partnership's (MLP) ETFs. The results 

show that ARMA-GARCH is appropriate for modeling energy and MLP ETFs. 

Both ETFs offer positive leverage and asymmetric volatility. The results show that 

the jump model with a GARCH volatility specification has an actual amount of 

jump presence and time variation in the jump size distribution. The conclusion of 

the ARMA - EGARCH model gives evidence of the reverse leverage effect. The 

leverage term positively influences the conditional variance, while the asymmetry 

coefficient for the GJR model is positive and significant. These results reveal that 

both Energy and MLPs ETF have high volatility. 
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1. Introduction  

Exchange Traded Funds (ETFs), which replicated the performance of certain 

benchmark indexes by owning a diverse group of assets such as stocks, equities, 

commodities, or bonds, have become popular investment vehicles in modern 

finance. Investing in ETFs, relative to individual stocks, helps investors reduce 

unsystematic risks and provides knowledge to market indices and industries. ETFs 

often have lower management costs and are more transparent and flexible. Energy 

ETFs have become popular among investors, government officials, and 

policymakers due to global energy transformation. An energy economy based on 

everyday living depends on a reliable and affordable supply of energy products. For 

example, market recessions, high inflation, lack of productivity, and slowing 

economic growth have been related to the energy sector, particularly regarding the 

volatility of crude oil and gas prices. 

Energy ETF is engaged in energy exploration and production. An energy ETF 

database, which is traded on the US exchanges, has $79.98 billion of assets under 

management (ETF.com). Many companies have invested directly in energy sectors 

for attractive development projects to create new enterprises. The energy stock 

market is an interesting investing preference. Price shocks in the energy market 

would be of tremendous concern to investors and regulators due to the significant 

impact on the financial sector. Energy ETFs and Master Limited Partnership (MLP) 

are closely linked. Limited partnerships are publicly traded limited partnerships that 

primarily control oil and gas assets and offer tax advantages to their investors. MLPs 

have received little attention from either academics or literature. 

Barsky and Kilian (2004), Du et al. (2010), Acaravci et al. (2012), and Ordu and 

Soytaş (2016) revealed that there is a strong relationship between energy crude oil 

prices and macroeconomic settings. Rising energy prices have increased business 

input costs, resulting in lower profitability and productivity and impacting a 

country's macroeconomic situation. As a result, such a rise in energy costs increases 

the borrowing cost for businesses and negatively impacts financial markets. On the 

other hand, rising energy prices also strengthen inflationary pressure on the public 

sector and contribute to high-interest rates (Sadorsky, 1999).  

Energy market volatility influences the global economy and financial market 

stability (Wang et al. 2016; Amelie and Darne 2017; and Gong and Lin 2018). 

Investors, fund managers, and risk managers need to understand the empirical 

implications of a large energy ETF. Several studies have examined the mechanism 

of volatility transmission in various markets (Dornbusch, Park, and Claessens, 2000; 

Bae, Karolyi, and Stulz, 2003; and Tang and Xiong 2012). The stock market 

volatilities' transmission was quantified using basic cross-market correlation 

coefficients or Probit models. Another way to test volatility transmission is to use 

the ARCH (Engle, 1982) or GARCH (Bollerslev, 1986) to evaluate the variance-

covariance transmission mechanism. Popular specifications include the multivariate 

extension of the model presented by McAleer, Hoti, and Chan (2009), the matrix-

exponential of GARCH presented by (Kawakatsu, 2006), and the asymmetric Baba 
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Engle Kraft Kroner (BEKK) model based on Engle and Kroner (1995) and Kroner 

and Ng (1998). 

Time series of financial returns are conditionally heteroscedastic as volatilities 

respond asymmetrically to historical returns. Volatility levels tend to be higher in 

response to previous negative shocks (that is, bad news) than in response to positive 

shocks (good news), known as leverage (Black, 1976). The presence of leverage in 

ETF markets is an unsolved issue that has piqued the curiosity of academics over 

the past decade. Most empirical research on the subject of volatility asymmetry or 

leverage effect utilizes the same technique, which is based on matching numerous 

asymmetric GARCH-type models to financial returns and assessing the statistical 

significance of the coefficient representing the leverage effect. Kristoufek (2014), 

Chkili et al. (2014), Chang (2012), and Wu et al. (2012) have provided empirical 

findings that examine the energy commodities, including West Texas Intermediate 

(WTI) and Brent crude oils, heating oil, and natural gas for leverage effect. 

This study aims to investigate the effect of volatility on one of the most popular 

investment vehicles in the energy industry: ETFs. This study develops a novel 

methodology for analyzing the volatility asymmetry and leverage effect on Energy 

and MLPs ETFs utilizing an ARMA-GARCH, ARMA-EGARCH, ARMA-GJR, 

and GARCH-Jump model. ETF Energy and MLPs display clustering volatility and 

Jump behavior. It will eventually lead to even greater movements in ETF prices. To 

our knowledge, this research on MLP and Energy ETFs focuses on the importance 

of investor investment decisions. The study is driven by the gap and looks at how 

ETFs impact investment decisions and risk.   

Both Energy and MLP ETF returns are asymmetric with a leverage effect. The 

findings show that negative shocks to ETF returns have a larger impact than positive 

shocks. The fact that an ETF jump has different effects on different ETFs. Both 

ETFs statistics show a large number of jumps. The impact of jumps can be perceived 

in variations in asset prices in financial applications. This study provides a 

generalization and a step forward by finding evidence for jumps and leverage effects 

in the Energy and MLPs ETFs. Investors and risk managers are concerned about 

risks, particularly when they involve significant price movements and volatility 

shocks. As a result, scholars and market practitioners are fascinated by return jump 

events. By examining the metrics, this study hopes to uncover channels of 

information flow and explain the price discovery process between financial markets 

and energy ETFs. From an investment perspective, this information would facilitate 

efficient portfolio construction and cover volatility in the energy sector. The 

empirical results should contribute to a regulatory perception and an understanding 

of the possible mechanism for transmitting risks between the entire financial market 

and the energy sector. 

The body of this article is organized according to the following. The second part 

presents the relevant literature. Section 3 deals with data selection and methodology, 

whereas Section 4 deals with empirical results. Section 5 concludes the findings and 

their implications. 
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2. Literature Review 

The empirical evidence that energy price shocks are closely linked to 

macroeconomic performance has been a longstanding concern for economists. 

Since the 1970s, it has been widely recognized that energy prices have responded 

to the economic dynamics influencing stock prices. Investors know that ETFs 

contribute to reducing systemic risk and have become a critical source of financial 

market information. Alexopoulos (2018) reviewed energy ETF performance and 

found that all ETFs outperform. Chang et al. (2018) used generated regressors and 

a multivariate conditional volatility model to examine the spillover effects of the 

US energy and financial sectors in the spot and futures markets. The empirical 

evidence indicates a positive impact between the financial and Energy ETF. It states 

that there is an optimal portfolio to hedge capital market risks. Chang and Ke (2014) 

used the Vector Autoregressive (VAR) model and examined the relationship 

between returns and flows for five ETFs in the US energy sector. They discussed 

four assumptions: price pressure, reporting, feedback trading, and smoothing. The 

empirical evidence only argues for the smoothing hypothesis. Baum et al. (2021) 

looked into the similarities and differences between energy commodities markets 

by using the Generalized Method of Moments (GMM) approach. The study 

concluded that the jumps and leverage model is best suited for the volatility of future 

natural gas and stock index returns. 

Hamilton (2003), Hammes and Wills (2005), and Benkraiem et al. (2018) examined 

the connection between the S&P 500 Index and energy prices such as West Texas 

Intermediate (WTI), gasoline, heating, diesel, and natural gas prices to highlight the 

influence of energy price shocks on financial market prices. According to the 

Quantile Autoregressive Distributed Lags (QARDL) model, the results suggest that 

crude oil and natural gas are important economic factors in explaining equity 

markets' short- and long-term volatility. Bastianin and Manera (2018) used a 

structural vector autoregressive model to examine the reaction of US equity market 

volatility to three different structural oil market volatilities. Their findings revealed 

that stock market volatility had been heavily affected by oil price shocks brought 

about by unforeseen changes in global and oil-specific demand. Based on an 

autoregressive structural vector model, Kang et al. (2017) evaluated the effect of oil 

price shocks and economic policy uncertainty on the stock returns of oil and gas 

industries. Empirical findings revealed that oil demand shocks significantly impact 

oil and gas company returns, but political uncertainty shocks have a negative impact.  

Mason and Wilmot (2014) looked into the possibility of a jump in natural gas prices, 

including the Henry Hub spot price in the US and the National Balancing Point spot 

price in the UK. They found solid empirical evidence of jumps for both markets. 

However, jumps seem to be larger in the United Kingdom. With the Jump diffusion 

process and changing volatility over time, they found that a model containing 

stochastic volatility and leverage is best suited for future natural gas. Chen et al. 

(2019) investigated the relationship between oil returns and volatility transmission 

using daily spot returns in the crude oil markets with a focus on the leverage effect 



Jump Dynamics and Leverage Effect: Evidences from Energy Exchange… 131  

on risk measures like value at risk (VaR) and Conditional Value at Risk (CvaR). 

The traditional Stochastic Volatility (SV) model associated with customarily 

distributed errors produced the best predictions in out-of-sample studies and has a 

leverage effect.  

Yang et al. (2022) used a multivariate Hawkes process modeling technique by 

examining Intraday high-frequency market data. They developed a contagion jump 

modeling framework to study the contagion effect of market jumps in energy ETFs. 

He reported that the negative index jumps to the front of the index market price 

processes. Baum and Zerilli (2016) demonstrated a surge in the crude oil futures 

market. This article also looked at how Jumps and leverage affect risk management 

for individual investors and businesses looking to manage risk in terms of realized 

volatility jumps while minimizing their capital. 

 

3. Data and Methodology 

On transparency and price flexibility, Energy ETFs have always performed well and 

are considered the top investment vehicle in the world. This study used Energy 

ETFs and MLPs ETFs, generally traded on the US ETFs market. A total of 32,829 

observations covering the period from 2 May 2012 to 29 April 2022 are extracted 

from the website "Yahoo Finance" database. This work employs six Energy ETFs 

and six MLPs ETFs, as shown in Table 1. This document uses the closing price of 

ETFs to ensure consistency across day-to-day data. To better understand the data 

based on their operations, it divides them into two categories, Energy ETFs and 

MLP ETFs. 

 

Table 1: The summary and inception period of Energy and MLPs ETF 

Types ETF Ticker Inception Date 

Energy 

ETFs 

iShares Global Energy ETF IXE  

 

 

2012.05.02-2022.04.29 

 

 

iShares U.S. Energy ETF IYE 

VanEck Oil Services ETF OIH 

Vanguard Energy ETF VDE 

Energy Select Sector SPDR Fund XLE 

SPDR S&P Oil & Gas Exploration & 

Production ETF 

XOP 

MLPs 

ETFs 

iShares U.S. Oil & Gas Exploration & 

Production 

IEO  

2012.05.02-2022.04.29 

 iShares MSCI Global Energy Producers FILL 

InfraCap MLP ETF AMZA 2014.03.10-2022.04.29 

First Trust North American Energy 

Infrastructure Fund 

EMLP 2012.06.22-2022.04.29 

Global X MLP ETF MLPA 2012.05.02-2022.04.29 

Global X MLP & Energy Infrastructure ETF MLPX 2013.08.08-2022.04.29 
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The Energy ETF refers to the energy industry, such as crude oil and Brent gas 

refining, fuels, solar and wind, etc. Master Limited Partnerships (MLPs) focus on 

operating companies that frequently transport and process energy products such as 

oil, natural gas, refined products, and natural gas liquids (NGLs). ETFs often offer 

attractive dividends. The statistical features of the data clustering series are 

visualized in Figure 1. The trend to higher volatility over a period will be followed 

by higher volatility in the following period. This study uses the GARCH model to 

overcome the phenomenon. 

 

3.1 Auto Regressive and Moving Average Model (ARMA) model 

The Auto-regressive Moving Average (ARMA) model was created by Box and 

Jenkins (1976) to express the relationship between current and past variables.  The 

AR model indicates that the variable y𝑡 can be affected by the error term 𝜀𝑡, and 

influenced by its own lagged variables. The ARMA (p, q) model is represented by: 

 

y𝑡 = 𝑎0 + ∑ 𝑎𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝜀𝑡 + ∑ 𝑏𝑖𝜀𝑡−𝑖

𝑞
𝑖=1 .                                 (1) 

 

where 𝑎0 represents a constant intercept term; p denotes the number of lagged 

periods; 𝑎𝑖  is the coefficient of 𝑦𝑡−𝑖 ; 𝜀𝑡  Stands for the error term. This paper 

breaks down the model of the symmetrical and asymmetrical functions. The ARCH 

and GARCH models are known to be symmetric functions, while the asymmetric 

function consists of EGARCH, GJR-GARCH, and Jump models. These models 

apply to measure asymmetry and volatility behavior between Energy  and MLPs  

ETFs. 

 

3.2 Symmetric Model 

As the residual variability was fixed in classical models, Engle (1982) developed 

the ARCH model, allowed residual variations over time, and solved numerous 

econometric problems. Conditional variability is influenced by unexpected 

volatility, that is, the square of the residual term of the past period. The ARCH 

model allows variation in conditional variability at any moment. The ARCH model 

(q) is given by: 

 

y𝑡｜ψ𝑡−1~𝑁(𝑥𝑡𝛽, ℎ𝑡)                                             (2) 

 

ℎ𝑡 = ℎ(ε𝑡−1, ε𝑡−2, … , ε𝑡−𝑞 , 𝛼),                                       (3) 

𝜀𝑡 = 𝑦𝑡 − 𝑥𝑡𝛽, 

 

where yt  stands for the time series data; ψt−1 refers to all information in the 

period 1 to t-1; ht represents the yt  conditional variation influenced by the 

residual term of the previous q; α, β are an unknown parameter; q is the order of 

the ARCH process; xtβ means a linear set comprising of exogenous variables in 

the lagged period of the message set. In addition, the conditional residue is set to a 
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nonnegative value. Reorganize the equation to: 

 

ℎ𝑡 = 𝛼0 + 𝛼1𝜀𝑡−1
2 + 𝛼2𝜀𝑡−2

2 + ⋯ + 𝛼𝑞𝜀𝑡−𝑞
2 = 𝑍𝑡

′𝛼,                       (4) 

𝑍𝑡
′ = (1, 𝜀𝑡−1

2 , 𝜀𝑡−2
2 , … , 𝜀𝑡−𝑞

2 ), 

α = (𝛼0, 𝛼1, … , 𝛼𝑞), 

𝛼0 > 0, 𝛼𝑖 > 0,      𝑖 = 1,2, … , 𝑞, 

 

where ℎ𝑡  represents the current condition change related to time-varying volatility 

and fluctuation clustering. Based on (GARCH) model developed by Engle and 

Bollerslev (1986) is given the following form:  

 

𝑦𝑡 = 𝑏𝑥𝑡 + 𝜀𝑡, 

𝜀𝑡 = 𝑦𝑡 − 𝑏𝑥𝑡,                                  (5) 

𝜀𝑡｜ψ𝑡−1~𝑁(0, ℎ𝑡), 

ℎ𝑡 = 𝜔 + ∑ 𝛼𝑗𝜀𝑡−1
2 + ∑ 𝛽𝑖ℎ𝑗−1

2𝑝
𝑖=1 = 𝑎0 + 𝐴(𝐿)𝜀𝑡

2𝑞
𝑗=1 + 𝐵(𝐿)ℎ𝑡

2, 

q ≥ 0, p ≥ 0, 

𝛼0 > 0, 𝛼𝑗 > 0, 𝑗 = 1,2, … , 𝑞, 

𝛽𝑖 > 0, 𝑖 = 1,2, … , 𝑝, 

 

where 𝑦𝑡 stands for the time series data, ψ𝑡−1 provides all information from the 

period t to t-1, and ℎ𝑡 is the y connected with both the square of the residual q and 

the conditional variation from the previous period. Let the conditional variation 

number is the unknown parameter vector associated with the conditional average of 

𝑦𝑡. q represents the sequence of the ARCH process, and p acts like the sequence of 

the GARCH process. When p=0, GARCH (p,q) will be returned. The residual term 

is defined as a white noise process if p=q=0 for ARCH (q). 

 

3.3 Asymmetric Model 

3.3.1 Exponential Generalized Autoregressive Conditional 

Heteroskedasticity (EGARCH) Model 

The EGARCH model suggested by Nelson (1991) was as follows: 

ln(σ𝑡
2) = 𝜔 + 𝛽ln(σ𝑡−1

2 ) + α |
𝜇𝑡−1

𝜎𝑡−1
− √

2

𝜋
| + 𝛾

𝜇𝑡−1

𝜎𝑡−1
,                    (6) 

If γ < 0 indicates the leverage effect, 𝛾 ≠ 0 represents an asymmetric effect. 

 

3.3.2 Glosten, Jagannathan and Runkle (GJR) model 

The GJR-GARCH model defined by Glosten, Jagannathan, and Runkle (1993) 

explained the parametric form of conditional heteroskedasticity.  
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σ𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑞
𝑖=1 𝜀𝑡−𝑖

2 + ∑ 𝛾𝑖
𝑞
𝑖=1 𝑆𝑡−𝑖

− 𝜀𝑡−𝑖
2 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1 ,             (7) 

where 𝑆𝑡−𝑖
−  represents a dummy variable that denotes the value 1 when 𝛾𝑖  is 

negative and zero otherwise. 

 

3.3.3 Jumps Model 

Concerning the jump process, this document assumes that the performance of a 

financial asset is part of an underlying ongoing process. The stochastic response 

standard is expressed as follows: 

 

 𝑅𝐽𝑡(𝛥) ≡ 𝑅𝑉𝑡(𝛥) − 𝐼𝑉𝑡(𝛥).                                  (8) 

This study applied stochastic volatility models to resolve the issue of impairment. 

The GARCH model was generally incapable of adequately explaining when it 

encountered excessive kurtosis in time series data.  Based on Giot and Laurent 

(2007), the jump-diffusion process can be evaluated by: 

 

dp(t) = μ(t)dt + σ(t)dW(t) + κ(t)dq(t), 0 ≤ t ≤ T,              (9) 

where dP(t) denotes the sample series' logarithmic price increment. μ(t) represents 

a continuous locally controlled variation, σ(t) stands for a strictly positive 

stochastic volatility, W(t)  refers to  a standard Brownian motion, dq(t) 

represents a counting process that equates to one for a jump to time t, and 0 if not. 

The jump intensity is the size of the jump for κ(t). 

Exchange rate fluctuations are expected to follow a law of probability. Jumps 

represent a distinct continuous-time process associated with a Poisson distribution. 

Assumed that X𝑡 is the number of times and a special event like an announcement 

during the period [0, t]. This study used a Poisson distribution followed by X𝑡 if: 
 

Pr(X𝑡 = m) =
𝑙𝑚𝑡𝑚

𝑚!
exp(−𝑙t) , 𝑙 > 0.                          (10) 

Noted that 𝑙 is parameter that rules the occurrence of the special event and let 

E(X𝑡) = 𝑙. It had to do with the speed or intensity of the process. A continuous-time 

GARCH diffusion process with jumps can be stimulated as follows: 

 

dp(t) = σ(t)dW𝑝(𝑡) + κ(𝑡)𝑑𝑞(𝑡),                            (11) 

dσ2(t) = θ[ω − σ2(𝑡)]𝑑𝑡 + (2𝜆𝜃)
1

2𝜎2(𝑡)𝑑𝑊𝑑(𝑡),             (12) 

κ(𝑡)~ N(0, σ𝑘
2 ), 

dp(𝑡)~Poisson(𝑙). 

 

This article provides a consistent nonparametric estimation of price variation to 

achieve discrete volatility. Andersen and Bollerslev (1998) used volatility to 

transmit continuous time. This study measured the daily volatility that is the sum of 
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the squared intraday returns associated with a particular trading day. 

 Let ∆-period return is r𝑡,∆ ≡ 𝑟(𝑡, ∆) ≡ 𝑝(𝑡) − 𝑝(𝑡 − ∆). This study normalizes 

the daily time interval to unity for r𝑡+1,1 = r𝑡+1 . Noted that RV𝑡+1(∆), can be 

calculated as the daily volatility at the end of day t, which is stated as: 

 

RV𝑡+1(∆) ≡ ∑ 𝑟𝑡+𝑗∆,∆
21/∆

𝑗=1 .                                          (13)                                                                                                                 

According to the theory of quadratic variation, when 0, the probability of no jump 

may be defined as: 

 

RV𝑡+1(∆) → ∫ 𝜎2(𝑖)𝑑𝑖
𝑡+1

𝑡
.                                         (14) 

Given the quadratic variation, when ∆→ 0 , the probability of jumps will be 

converted as follows:   

 

RV𝑡+1(∆) → ∫ 𝜎2(𝑖)𝑑𝑖
𝑡+1

𝑡
+ ∑ 𝑘2(𝑖)𝑡<𝑖≤𝑡+1 .                           (15)                                                                                                                             

The realized volatility can be measured as a consistent estimator of the integrated 

volatility when there are no jumps while the presence of jumps occurs.   

This study applies a bi-power variation measurement to split the two components 

of the quadratic variation process. Barndorff and Shephard (2004) illustrate that the 

normalized sum of the product of the absolute values of continuous returns may be 

used to estimate integrated volatility consistently. It is referred to as a bi-power 

variation (BV) and is defined as: 

 

𝐵𝑉𝑡+1(Δ) ≡ μ1
−2 ∑ |𝑟𝑡+𝑗Δ, Δ||𝑟𝑡+(𝑗−1)Δ, Δ|1/Δ

𝑗=2 ,                    (16) 

where Δ represents a small value in increments time and 𝜇1 ≡ √2
𝜋⁄ ≅ 0.79788.  

 

The presence of jumps for ∆→ 0 can be expressed as: 

𝐵𝑉𝑡+1(∆) → ∫ 𝜎2(𝑠)𝑑𝑠
𝑡+1

𝑡
.                                         (17)                                           

The bi-power variant is meant to be robust to jumps. The product of current and lag 

returns makes it robust, whereas the realized variance is subject to jumps since. This 

paper utilizes the square of the current return. If the current or lagged return contains 

a jump component and another one follows the diffusion process, then the product 

does not affect the bi-power variation. 
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MLP ETF Returns Volatility  

Figure 1: Daily Energy ETFs and MLPs ETFs market returns for clustering 

volatility 
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4. Empirical Results 

Table 2 shows descriptive statistics for Energy and MLP returns. Based on the 

Jarque–beta test, all significant test results demonstrated non-Gaussian properties 

of the return series in both ETFs. With a considerable positive kurtosis over 3, 

Energy and MLP ETFs have a modest positive bias and are leptokurtic or "fat-

tailed." The daily return distribution is higher-peaked than a normal distribution, 

indicating that the GARCH effect is evident in both ETFs. All Energy ETFs and 

MLP ETFs show positive average returns except for MLPs ETFs for EMLP (-

0.0849). In the case mean return, the (XOP) ETF in Energy and the (AMZA) ETF 

in MLPs have the highest volatility (0.02703) and (0.0325), respectively. Table 3 

represents the ARMA-GARCH, LM, ARCH-LM, and Augmented Dickey-Fuller 

test results. 

 

Table 2: Descriptive statistics of Energy and MLP ETFs 

 

Energy ETF 

 IXC IYE OIH VDE XLE XOP 

Mean 0.000182 0.000178 0.000781 0.000164 0.000146 0.000566 

St. Div. 0.016754 0.018140 0.026021 0.018207 0.018089 0.027037 

Minimum 0.241491 -0.13858 -0.15920 -0.13593 -0.13820 -0.17925 

Maximum -0.14760 0.260405 0.475904 0.247278 0.252210 0.584049 

Skewness 1.868314 1.591119 2.518143 1.351387 1.561385 3.880399 

Kurtosis 33.79879 29.03935 51.17401 24.92739 28.33053 90.98395 

J-Bera 1009.0*** 721.61*** 2459.4*** 511.75*** 682.12*** 817.3*** 

MLPs ETF 

 IEO FILL AMZA EMLP MLPA MLPX 

Mean 0.0001 0.0001 0.0015 -0.0849 0.0005 0.0002 

St. Div. 0.0218 0.0162 0.0325 0.011625 0.01992 0.0192 

Minimum -0.1378 -0.1195 -0.1941 -0.0849 -0.1562 -0.1245 

Maximum 0.3498 0.2268 0.7354 0.16371 0.42448 0.2989 

Skewness 1.7877 1.5498 7.0144 3.0535 4.7908 3.0214 

Kurtosis 33.4345 25.6065 145.74 43.972 96.798 44.033 

J-Bera 98443.57*** 54517.9*** 1.703*** 2.036*** 9.918*** 1.8091 
Note: *, ** and *** denote at 10%, 5% and 1% significant level respectively for both energy and 

MLP ETFs. 

 

ADF test for Energy and MLP ETFs returns. At the 1% significance level, the daily 

return series shows significant ARCH effects at 1 to 4 lags periods. The trend of the 

returns series in Figure 1 shows that significant price volatilities are followed by 

massive movements confirming these findings. Also, ADF tests are used before 

adjusting time series to check for stationarity. The null hypothesis of unit root is 

intensely rejected by the Augmented Dickey-Fuller (ADF) test, which shows 

evidence of stationary in the time series dataset. Using the Akaike Information 
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Criterion (AIC) minimum value, this article compares many alternative models and 

finds the most suitable one for the data. In addition to verifying the serial correlation 

of the problem, the Breusch–Godfrey Lagrange multiplier test was used, and the 

results show no serial correlation in both ETF returns. The Lagrange Multiplication 

(ARCH-LM) test was used in this study to diagnose the ARCH effect. Using the 

best order of ARMA statistics, this article rejected the null hypothesis of no ARCH 

effect and significantly accepted the alternative hypothesis of the ARCH effect for 

the two ETFs. The ARCH-LM test is also used to properly evaluate the hypothesis 

that the residuals of the GARCH-ARMA and EGARCH-ARMA models include 

ARCH errors. The test results show no autoregressive conditional heteroscedasticity 

in both Energy and MLPs ETFs. 

 
Table 3: ARMA- GARCH, LM, ARCH-LM, and ADF test for Energy and MLP 

ETFs 

 

Energy ETFs 

 IXC IYE OIH VDE XLE XOP 

ADF -20.607*** -20.970*** -32.640*** -20.773*** -20.922*** -52.840*** 

ARMA (0,2) (0,2) (1,1) (0,2) (0,2) (2,2) 

AIC -5.3462 -5.1873 -4.4636 -5.1782 -5.1922 -4.3894 

LM 0.4811 

(0.7862) 

0.1628 

(0.9218) 

4.4049 

(0.110) 

0.1504 

(0.927) 

0.2158 

(0.897) 

3.8572 

(0.1453) 

ARCH-LM 48.053*** 

(0.0000) 

308.712*** 

(0.0000) 

90.208*** 

(0.0000) 

358.776*** 

(0.0000) 

137.545*** 

(0.0000) 

42.1065*** 

(0.0000) 

GARCH (1,1) (1,2) (1,2) (2,2) (2,2) (1,2) 

AIC -5.8382 -5.6601 -4.9325 -5.6428 -5.7010 -4.7774 

ARCH-LM 0.0246 

(0.9999) 

0.6627 

(0.9558) 

1.1485 

(0.8865) 

0.7228 

(0.9485) 

0.2702 

(0.8736) 

0.1939 

(0.9076) 

MLPs ETF 

 IEO FILL AMZA EMLP MLPA MLPX 

ADF -20.903*** -21.116*** -16.752*** -19.880*** -19.739*** -18.465*** 

ARMA (2,1) (0,2) (2,2) (1,2) (2,2) (1,2) 

AIC -4.8149 -5.4095 -4.0245 -6.0835 -5.003 -5.0619 

LM 1.1776*** 

(0.555) 

1.7724 

(0.4122) 

1.002 

(0.606) 

1.4089 

(0.4944) 

1.0581 

(0.5892) 

0.1508 

(0.9274) 

ARCH-LM 54.682*** 

(0.0000) 

121.848*** 

(0.0000) 

38.525*** 

(0.0000) 

690.390*** 

(0.0000) 

177.682*** 

(0.0000) 

438.611*** 

(0.0000) 

GARCH (2,2) (2,2) (1,2) (2,2) (1,2) (2,2) 

AIC -5.2129 -5.7481 -4.8964 -6.7194 -5.9661 -5.7063 

ARCH-LM 0.3359 

(0.8454) 

0.0409 

(0.8397) 

0.1460 

(0.9297) 

1.6213 

(0.8050) 

1.1603 

(0.8846) 

0.8814 

(0.9272) 
Note: *, ** and *** denote at 10%, 5% and 1% significant level respectively for both energy and MLP ETFs. 
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4.1 Symmetric models for ARMA-GARCH       

One of the well-known phenomena in financial economics is the leverage effect. 

Black (1976) explored the historical association between equity returns and 

volatility changes. When bad news happens on the market, the volatility of the 

corresponding value usually increases due to unpredictable future developments. 

Negative news affected prices resulting in a negative return. The estimations result 

of the ARMA-GARCH model is reported in Table 4. When the value of α+β is equal 

to or less than 1 when added together indicates the influence of GARCH order. Chen 

and Hung (2010) also illustrate how different order levels interact with GARCH 

variations. The majority of instant criteria represent findings close to or equal to 1 

that guarantee the possibility of the near-maximum likelihood estimator for the 

GARCH model. 

 

Table 4: ARMA-GARCH Assessments for Energy and MLPs ETFs. 

 

These result report that the volatility rate of both Energy and MLPs ETFs are highly 

persistent and vary highly in the time series. Radha and Thenmozhi (2006) predicted 

short-term interest rates and found that the GARCH model was more predictive than 

other models because of the volatility of clusters.       

           

4.2 Asymmetric model for ARMA-EGARCH, ARMA-GJR, and Jump Model 

4.1.1 ARMA-EGARCH Model Results        

This study uses the EGARCH, GJR-GARCH, and Jump models to assess the 

volatility leverage effect of the two ETFs. Results from the EGARCH-ARMA 

model provided evidence for leverage. In Table 5, all the coefficients of (𝛾) reported 

at a 1% significance level and confirmed leverage exists in both ETFs. The leverage 

term (γ) positively influences the conditional variance of ETF market returns. The 

results show a large positive symmetric or inverse leverage effect in the Energy and 

MLPs ETFs, which is consistent with the study of Benth and Vos (2013), Bowden 

and Payne (2008), and Suleman (2012). Bowden and Payne (2008) found that the 

most important impact on volatility returns appeared to be the positive impact on 

electricity prices. Suleman (2012) found that the impact of negative news 

outweighed positive news.  

Energy ETFs 

ETF IXC IYE OIH VDE XLE XOP 

ARMA/ 

GARCH 
(0,2)/ (1,1) (0,2)/ (1,2) (1,1)/ (1,2) (0,2)/ (2,2) (0,2)/ (2,2) (2,2)/ (1,2) 

α+β 0.9955 0.9952 1.0000 0.9999 0.9998 0.9990 

MLPs ETF 

ETF IEO FILL AMZA EMLP MLPA MLPX 

ARMA/ 

GARCH 
(2,1)/ (2,2) (0,2)/ (2,2) (2,2)/ (1,2) (1,2)/ (2,2) (2,2)/ (1,2) (1,2)/ (2,2) 

α+β 0.9982 0.9779 1.0039 0.9931 1.0163 0.9933 
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Table 5: ARMA-EGARCH results for Energy and MLPs ETFs 

 

4.1.2 GJR-GARCH model results  

Glosten et al. (1993) created the GJR-GARCH model and used it to simulate the 

asymmetry process of the GARCH. For ARIMA-GARCH nonlinear modeling, this 

article uses AIC criteria to find the best ARMA order by choosing from different 

models. Models with smaller AIC values are commonly used to select the ARMA 

order. This paper uses the GJR model to evaluate whether there is a leverage effect. 

The GJR-GARCH model results are presented in Table 6. Results confirmed the 

conditions of the GJR model. All coefficients must be significant for conditions, 

such as ω≥0, α1≥0, β1≥0, and α1+γ1≥0, when there is a positive shock:  εt-1>0 and 

for negative shocks: εt-1<0, while β1 reflect the good news in relation with α1+γ1, so 

γ1>0 represent that there will be a negative effect leading to higher volatility. The 

asymmetry coefficient for the GJR model, all (α1) and (β1), are found to be positive 

and significant at the 1 % level. These results indicated that volatility of both Energy 

and MLPs ETTs returns have enhanced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy ETFs 

ETF IXC IYE OIH VDE XLE XOP 

ARMA/ 

EGARCH 
(0,2)/ (1,1) (0,2)/ (1,1) (1,1)/ (1,2) (0,2)/ (1,1) (0,2)/ (2,1) (2,2)/ (1,2) 

𝜸 0.0758*** 

(0.0000) 

0.0670*** 

(0.0000) 

0.0611*** 

(0.0000) 

0.0682*** 

(0.0000) 

0.0882*** 

(0.0000) 

0.0775*** 

(0.0000) 

MLPs ETF 

ETF IEO FILL AMZA EMLP MLPA MLPX 

ARMA/ 

EGARCH 
(2,1)/ (1,1) (0,2)/ (1,2) (2,2)/ (2,1) (1,2)/ (2,1) (2,2)/ (1,2) (1,2)/ (2,2) 

𝜸 0.0731*** 

(0.0000) 

0.0708*** 

(0.0000) 

0.1193*** 

(0.0000) 

0.1225*** 

(0.0000) 

0.1141*** 

(0.0000) 

0.0167*** 

(0.0000) 

Note: *, ** and *** denote at 10%, 5% and 1% significant level respectively for both Energy and MLPs ETFs. 
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Table 6: GJR-GARCH statistics of Energy and MLP ETFs 

Energy ETFs 

ETFs IXC IYE OIH VDE XLE XOP 

ARMA/GARCH (0,2)/ (1,1) (0,2)/ (1,2) (1,1)/ (1,2) (0,2)/ (2,2) (0,2)/ (2,2) (2,2)/(1,2) 

𝜔 0.0258** 

(0.0126) 

0.0192*** 

(0.0096) 

0.0102* 

(0.0822) 

0.0023*** 

(0.0000) 

0.0045 

(0.3958) 

0.0368* 

(0.0172) 

𝛼1 0.1348*** 

(0.0021) 

0.2135* 

(0.0300) 

0.2796* 

(0.0131) 

0.2009*** 

(0.0000) 

0.2360* 

(0.0212) 

0.3387* 

(0.0423) 

𝛽1 0.9028*** 

(0.0000) 

0.9318*** 

(0.0000) 

0.9627*** 

(0.0000) 

1.6855*** 

(0.0000) 

1.5459*** 

(0.0000) 

0.9406*** 

(0.0000) 

𝛾1 -0.093*** 

(0.0079) 

-0.203* 

(0.0347) 

-0.2559* 

(0.0195) 

-0.202*** 

(0.0000) 

-0.238* 

(0.0228) 

-0.3379* 

(0.0399) 

𝛼 + 𝛽 + (
𝛾

2
) 0.9908 0.9931 0.9989 1.7852 0.9982 0.9961 

MLPs ETFs 

ETFs IEO FILL AMZA EMLP MLPA MLPX 

ARMA/GARCH (2,1)/ (2,2) (0,2)/ (2,2) (2,2)/ (1,2) (1,2)/ (2,2) (2,2)/ (1,2) (1,2)/ (2,2) 

𝜔 0.0108* 

(0.0755) 

0.0154* 

(0.0259) 

0.0840* 

(0.0840) 

0.0065* 

(0.0451) 

0.0067* 

(0.0131) 

0.0040*** 

(0.0000) 

𝛼1 0.2482* 

(0.0149) 

0.1646* 

(0.0275) 

0.6059* 

(0.0198) 

0.2785*** 

(0.0000) 

0.4859** 

(0.0030) 

0.2977*** 

(0.0000) 

𝛽1 1.4098*** 

(0.0000) 

1.3183*** 

(0.0000) 

0.8859*** 

(0.0000) 

1.5057*** 

(0.0000) 

0.9193*** 

(0.0000) 

1.6864*** 

(0.0000) 

𝛾1 -0.2604* 

(0.0101) 

-0.1658* 

(0.0253) 

-0.5209* 

(0.0356) 

-0.213*** 

(0.0006) 

-0.421*** 

(0.0080) 

-0.329*** 

(0.0000) 

𝛼 + 𝛽 + (
𝛾

2
) 0.99746 0.9935 0.9956 0.9923 1.0005 0.8272 

Note: *, ** and *** denote at 10%, 5% and 1% significant level respectively for both energy and MLP ETFs. 

 

The results of Energy and MLPs ETFs findings reported that the majority of cases 

had a strong negative significant effect at the 1 % level. In addition, the leverage 

term (γ1) negatively impacts the conditional variance of ETF market returns. It 

shows a strong asymmetric impact of leverage on all ETFs returns. The second 

phase requirements concern α+β+γ2<1, and it fulfills the condition that all results of 

both Energy and MLPs ETFs are close to 1. These results supported Chen and 

Tung's (2019) and Bunnag's (2014) research. 
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4.1.3 Jump detection 

This section provides the results obtained using the Bi-Power Variations method. 

The study examined the distinction between performed volatility (VR) and 

performed jump, also known as bi-power variation (BV). If a jump effect exists, it 

is asymmetrical. Table 7 shows the jump model estimations. There is evidence of 

steady jump intensity in the data. This paper provides a new nonparametric test for 

spotting Energy and MLPs ETFs returns jump arrival times and realized jump 

frequency on daily closes price data. This paper examines the difference between 

realized volatility (VR) and two-power variation (BV). If the jump occurs, the ETF 

has an asymmetric impact (Chen and Tung, 2019). The estimates for the average 

frequencies show that an average jump is positive for both ETFs. Based on the 

selected observation on Energy ETFs, we found XLE and VDE have a higher 

number of detected jumps (25) with a critical value of 3.090, and the jump 

percentage becomes 24.03% of total data. For MLPs, MLPX shows the maximum 

number of detected jumps (53) with a critical value of 3.090, which is the highest 

variable among both Energy and MLPs ETFs in terms of jump detection. 

The empirical results reveal that both Energy and MLPs have a jump effect, while 

MLPs ETFs reported the highest frequency of Jumps with an average percentage of 

24.79%. In Table 7, the presence of jumps and their significant influence may give 

knowledge to the investors, with a correct investing tool for decision making of 

future trading planning and investment. 

Bi-power Variation (BV) and Realized Jumps (RJ) variations of Energy and MLPs 

ETF as shown in Figures 2 and 3. The figures exhibit integrated volatility and Bi-

Power variation for the continuous GARCH jump process for Energy and MLPs 

ETFs. Unlike return volatility RVT (Δ), this study revealed that the Bi-Power 

volatility is a much better estimate of the integrated volatility in the presence of 

jumps. The Bi-Power Variations is built for robust jumps because its basic structure 

is the product of two continuous returns rather than just the squared return. Figures 

show that each ETF displays apparent jump fluctuations, indicating an asymmetric 

effect. These results align with those of Liao, Lin, and Liao (2017). 
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Table 7: Realize Jump (RJ) statistics of Energy and MLPs ETFs 

   

 

 

 

 

 

 

 

 

 

Energy ETFs 

ETFs Code IXC IYE OIH VDE XLE XOP 

Number of detected jumps 17 24 21 25 25 15 

Expected number of spurious 

detected jumps 

0.104 0.104 0.104 0.104 0.104 0.104 

Proportion of detected jumps 0.1634 0.231 0.200 0.240 0.240 0.144 

Critical level: 0.001 0.001 0.001 0.001 0.001 0.001 

Critical value: 3.090 3.090 3.090 3.090 3.090 3.090 

Observations 104 104 104 104 104 104 

Jump Ratio 0.16 0.23 0.20 0.24 0.24 0.14 

Jump Percentage 16.34% 23.07% 20.19% 24.03% 24.03% 14.42% 

Jump Average Percentage 20.35% 

MLPs ETFs 

ETFs Code IEO FILL AMZA EMLP MLPA MLPX 

Number of detected jumps 24 19 31 13 30 53 

Expected number of spurious 

detected jumps 

0.104 0.101 0.299 0.068 0.104 0.188 

Proportion of detected jumps 0.23076 0.1881 0.3344 0.1911 0.2884 0.2819 

Critical level: 0.001 0.001 0.001 0.001 0.001 0.001 

Critical value: 3.090 3.090 3.090 3.090 3.090 3.090 

Observations 104 101 101 68 104 188 

Jump Ratio 0.10 0.10 0.29 0.06 0.10 0.18 

Jump Percentage 23.07% 18.81% 30.69% 19.11% 28.84% 28.19% 

Jump Average Percentage 24.79% 
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Figure 2: Bi-power Variation (BV) and Realized Jumps (RJ) of variations of Energy 

ETFs 

Energy ETFs 
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BV 
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MLP ETFs 

IEO FILL 

  

AMZA EMLP 

  
MLPA MLPX 

  

Figure 3: Bi-power Variation (BV) and Realized Jumps (RJ) of variations of MLP ETFs 
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5. Conclusion            

paper examines the impact of price volatilities on Energy and Master limited 

partnership ETFs traded in the United States using the ARMA-GARCH, ARMA-

EGARCH, and the GJR-GARCH models. Empirical research on the asymmetric 

effect of ETF Energy and MLP is covered in this paper. The study was driven by 

the gap and explored the impact of ETFs on investment decisions and risk. The 

study contributes basic information about the frequency of jumps in daily ETFs 

market returns and discovers high volatility in conditional jumps and the jump size 

distribution.  

This study looks at the volatility dynamics by daily information. The ARMA model 

is first used to select the order which best corresponds to the ARCH effect, then to 

estimate the GARCH model. The price volatilities of ETFs are separated into two 

categories Energy and MLPs. The empirical results of ARMA-EGARCH revealed 

that the effect of positive news was greater in both groups than the influence of 

negative news. The leverage term (𝛾) positively influences the conditional spread 

in ETF market returns. The results generally show a significant positive symmetric 

or inverse leverage effect in Energy and MLPs ETF.       

The GJR GARCH result meets the requirement that the volatilities generated by the 

unintentional negative shock were bigger than the fluctuation stimulated by the 

predicted shock to enhance prediction performance. The asymmetry coefficient for 

the GJR model, all (α1) and (β1), is positive and significant. These results indicated 

that highly volatile for both Energy and MLPs ETTs returns. Both Energy and MLP 

ETFs returns are asymmetric.    

Finally, the Jump effect fills the variance of conditional volatilities, demonstrating 

that volatilities are discontinuous. This study revealed that The Bi-Power volatility 

BV t (Δ) is a much better estimate of the integrated volatility in the presence of 

jumps. The MLPs ETFs performed well in terms of Jump effects. The presence of 

jumps and their significant influence can provide investors with a proper investment 

tool for decision-making, future planning, and investment. It is beneficial for 

policymakers and market players to appropriately respond to global energy price 

shocks and reduce the price volatility of Energy and MLP ETFs. 
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