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Abstract 
 

This study extends the standard STIRPAT model by introducing an energy price 

factor and uses the extended STIRPAT model to examine the effect of international 

crude oil prices on China’s carbon emission, This paper applies Ridge regression to 

conduct empirical analysis. The study finds that changes in international crude 

prices have a significantly positive impact on China’s carbon emission. A 1 percent 

increase in international crude oil price leads to a 0.12 percent increase in China’s 

carbon emission This finding remains unchanged even after a set of control 

variables are included in the analysis and survives all the rigidity tests. 
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1. Introduction  

Climate change is an environmental issue that the whole human society is struggling 

to solve. According to the IPCC 2019 special report on global warming, global 

warming is likely to reach 1.5°C between 2030 and 2052 if it continues to increase 

at the current rate. In order to achieve the 1.5°C target by the end of this century, 

the human society needs to reduce global carbon emission by 50% by 2030 and by 

100% by 2050. As increasing carbon emission is the chief contributor of global 

warming, cutting carbon emission is an unavoidable path to a net zero world.  

In order to reduce carbon emission, more and more countries have announced their 

targets on carbon neutral and low-carbon transition. By the end of 2021, the 

combined carbon emission by countries that have announced carbon neutral pledges 

accounted for around 90% of world’s total carbon emission. More and more 

companies have announced net zero strategies. By the end of last June, over 3000 

companies have announced strategies of net zero operation and production, more 

than 6 times of the number of companies that have announced net zero strategies in 

2019.  

China authorities also announced a set of targets on decarbonization, including both 

short term targets and long term targets. In the 14th Five Year Plan, China aims to 

reduce the energy intensity of GDP by 13.5% and carbon emission per unit of GDP 

by 18% in 2020-2025. China also plans to peak its carbon emission by 2030 and 

achieve carbon neutrality by 2060. In order to achieve these targets on carbon 

reduction, we needs to have a comprehensive understanding about all factors that 

have been affecting the changes of China’s carbon emission.  

The structure of this paper is as follows: section 2 reviews literatures; section 3 lists 

key assumptions; section 4 introduces research methodology; section 5 describes 

data; section 6 reports empirical results. Section 7 summarizes key findings. 

 

2. Literature review 
Many studies have examined the factors that drive changes in a region’s carbon 

emission. Over the last thirty years, a lot of researchers have investigated the 

relationship between income and carbon emission. Grossman and Krueger (1991) 

pioneeringly proposed the inverse U shape relationship between economic growth 

and environment pollution. Shafik (1994) and Wagner (2008) found that carbon 

emission per capita rose monotonously with per capita income, and there was no 

inflection point. Galeotti, et al. (2006) find that there exists an inverse U shape 

relationship between carbon emission and per capita income, but the inflection 

points they proposed vary significantly.  

Over the last fifteen years, Chinese researchers have paid quite a lot of efforts to 

understand those key drivers of China’s carbon emission. Lin Boqiang et al. (2010) 

finds that increases in China’s per capita GDP, urbanization rates and energy 

intensity all leads to increasing carbon emission in the 1978-2008 period. Wu 

Zhenxin (2021) finds that a one percent decrease in China’s industry’s share in GDP 

can help lower per capita carbon emission by 0.32%. Lu Wanbo (2013) finds that 
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energy intensity and energy mix have forecasting capability in China’s carbon 

emission. Zhang Lei (2003) finds that diversification of energy consumption mix 

can help reduce China’s carbon emission.  

Recently, some researchers started to investigate the influence of a set of different 

social factors on China’s carbon emission. They concluded that social factors also 

play a role in China’s carbon emission. For instance, Li Kai and Qi Shaozhou (2011) 

finds that foreign trades increases China’s carbon emission and carbon intensity. 

They concludes that international trade has a negative impact on China’s 

environment. Gao Xinwei and Zhu Yuan (2021) finds that improvement in the 

efficiency of research and development reduces carbon emission. Liu Chuanjiang 

(2021) finds that human capital accumulation can help boost carbon emission. 

Zhang Banruo and Li Zijie (2021) finds that access to high-speed-railway can 

reduce local carbon emission.  

But only a small stream of studies examines the relationship between crude oil 

prices and carbon emission. Some of them document a negative relationship 

between oil price and a region’s carbon emission. For example, Blazquez et al. 

(2017) finds that international oil price has a significantly negative impacts on 

Spain’s carbon emission. Wong, Chia and Chang (2013) find that crude oil price 

has a negative impact on the carbon emission of OECD countries. Malik et al. (2020) 

finds that oil price has a negative influence on the carbon emission of Pakistan. 

Some of them find no obvious connections between oil price and a region’s carbon 

emission. For example, He and Richard (2010) finds that oil price has no significant 

impact on Canada’s carbon emission.  

However, little research has been done to understand how international crude oil 

prices affect China’s carbon emission. Existing research related to this topic seems 

to be segmented into two parts: one part of research studies the relationship between 

international crude oil prices and Chinese energy prices. The other part of research 

studies how domestic energy prices impact domestic carbon emission. However, as 

domestic fossil fuel markets are still partly regulated by NDRC, domestic energy 

prices fail to respond to changes in international energy prices in a timely way. In 

addition, China’s market positions of different fossil fuels in the world are quite 

different, indicating that different types of international energy prices could have 

different types of impacts on China’s carbon emission.   

This paper has three contributions to existing literature. First, it extends the standard 

STIRPAT model by introducing an energy price factor, allowing researchers to 

examine the effects of energy prices on environmental indicators. Secondly, to the 

best of my knowledge, it is the first study that have been done to understand the 

influence of international crude oil prices on China’s carbon emission. Thirdly, its 

findings that international oil price has a significantly positive effect on China’s 

carbon emission through the channel of oil-coal substitution has an important policy 

implication for Chinese energy policy makers. It shows how important that energy 

price signals are in carbon emission. This is exactly a point that has been missed by 

both academic researchers and policy makers.  
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3. Key assumptions 

This paper raises one new assumption on factors that have been contributing to 

China’s carbon emissions. The new assumption is that international crude oil price 

has a positive impact on China’s carbon emission. When international crude oil 

price increases, China’s carbon emission increases; When international crude oil 

price decreases, China’s carbon emission decreases. Changes in international oil 

prices have an influence on China’s carbon emission through two transmission 

channels, one is the direct substitution channel, the other one is the indirect 

substitution channel.  

Figure 1: channels through which international oil prices affect China’s 

carbon emission 

Direct substitution channel: China is one of the largest oil importation countries in 

the world, with its oil importation dependency ratio rising to 73% in 2020. When 

international crude oil price increases, Chinese users in the field of non-combusted 

sectors, feedstock sectors and petrochemical fields have a higher motivation to 

switch from crude oil to other fossil fuels like coal and gas. Coal is naturally the 

best choice for local companies as China has a rich supply of coal at cheap prices. 

As a consequence of increasing coal use, carbon emission rises.  

Indirect substitution channel: Asian gas prices are linked with international crude 

oil prices. In other words, when international crude oil prices rise, spot market 

natural gas prices in Asia also trend up; when international crude oil prices go down, 

spot market natural gas prices in Asia also decrease. One key implication of this 

linkage is that when internal oil prices and Asian natural gas prices increase, gas’ 

use in industry, power generation and residential sector will be partly replaced by 

other low-cost fuels like coal. This leads to an increasing carbon emission of these 

sectors.  
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Table 1: carbon emission coefficient of different types of fossil fuels 

Sources 

Coal Oil Natural gas 

t (C) /t t (C) /t t (C) /t 

EIA 0.702 0.478 0.389 

IEA 0.756 0.586 0.449 

NDRC ERI 0.726 0.583 0.409 

average 0.728 0.549 0.415 

 

4. Methodology 

Both IPAT model and STIRPAT model are widely used in analyzing the 

relationship between environmental indicators and driving factors such as 

population, wealth and technology. This study chooses STIRPAT model as the 

benchmark model for analysis. The reason for which that this study does not choose 

IPAT model is that it assumes that each different factor has an equal amount of 

impact on the environmental indicator investigated. In addition, IPAT model can 

only examine the impacts of limited number of factors.  

 

A standard STIRPAT model:  

 

𝐼𝑖 = 𝑎𝐻𝑖
𝑏𝐴𝑖

𝑐𝑇𝑖
𝑑𝑒𝑖                           (1) 

 

I represents the environmental indicator that the study researches; H, A, T represents 

population, wealth and technology respectively; b, c, d represents the index of H, A, 

T respectively; e is model error term; I means that the observation is from different 

years. When a=b=c=d=1 STIRPAT model is equal to IPAT model.   

 

In this study, China’s carbon emission is the environmental indicator that we wanted 

to investigate further. As energy price may affect carbon emission by fossil 

substitution in different industries, I include a price factor into the standard 

STIRPAT model. The extended STIRPAT model is listed as below:  

 

𝐼𝑖 = 𝑎𝐻𝑖
𝑏𝐴𝑖

𝑐𝑇𝑖
𝑑𝑃𝑖

𝑓
𝑒𝑖                       (2) 

 

Taking logs on both sides gives us equation (3): 

 

𝐿𝑛𝐼 = 𝛼 + 𝑏𝐿𝑛𝐻 + 𝑐𝐿𝑛𝐴 + 𝑑𝐿𝑛𝑇 + 𝑓𝐿𝑛𝑃 + 𝜖𝑖        (3) 

 

Specifically, I represent annual carbon emission in China, denoted by CO2; H 

represents China’s population size at the end of each year, denoted by pop; A 

represents China’s economic size, denoted by GDP; T represents China’s 
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technology of turning energy into economic output. I use primary energy 

consumption to measure T, and use pe to denote it in this paper. P represents 

international oil prices, measured by the nominal levels of Brent spot oil prices. I 

use OP to denote Brent spot oil price. Therefore, the benchmark equation for 

empirical test in this paper is: 

 

𝐿𝑛𝐶𝑂2 = 𝛼 + 𝑏𝐿𝑛𝑝𝑜𝑝 + 𝑐𝐿𝑛𝑔𝑑𝑝 + 𝑑𝐿𝑛𝑝𝑒 + 𝑓𝐿𝑛𝑂𝑃 + 𝜖𝑖     (4) 

 

Table 2 describes each of these variables in details.  

 

 

5. Data description 

Table 3 reports description statistics of each variable. The sample period is 1978 to 

2019. The years before 1978 is excluded, mainly because the country’s economy 

was hardly hit by the Great Cultural Revolution. Data in 2020 and 2021 are also 

excluded from this sample, because of the outbreak and spread of Covid-19 starting 

in January 2020. The pandemic not only causes a significant shock to the oil market, 

it also suppresses the growth of the economy. Thus, observations before 1978 and 

those after 2019 are treated as outliers in China’s economic system and energy 

market.  

During this sample period, average annual carbon emission in China was 4690 mn 

tones, while average Brent spot oil price was USD 63 per barrel. The skewness of 

carbon emission and oil price are both larger than zero, suggesting that the 

distributions have a long tail in the right side. The kurtosis of carbon emission and 

oil price are both negative, indicating that the distributions of these two variables 

are flatter than normal distribution. Primary energy consumption reveals similar 

pattern.  
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Table 2: Data description 

    Variables Data Code Unit Frequency 
Data 

process 
Source 

Sample 

period 

Dependent 

variable 

environmental 
indicator 

carbon 
emission 

CO2 emission 
from energy use 

CO2 mn tonnes annual take log NBS 1978-2019 

Independent 

variables 
population population population size pop 10,000 annual    take log NBS 1978-2019 

 wealth economic size GDP gdp 
100 

mn,CNY 
annual 

take log，
$2019 

NBS 1978-2019 

 technology 

primary 

energy 

consumption 

primary energy 
use 

pe EJ annual take log NBS 1978-2019 

  energy price oil prices 
Brent oil spot 

price 
OP 

USD per 
barrel 

nominal 

annual   bp 1978-2019 
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Table 3: Description statistics 

  CO2 OP pe gdp pop 

observations 43 43 43 43 43 

mean 4690.6 63 60.7 198028  122032  

sd 3009 31.8 41.7 264746  13461  

median 3236.1 55.7 40.3 45236  125274  

trimmed 4509.8 60.5 57.2 148439  122822  

mad 2484.9 31.6 32.2 61110  14524  

min 1418.5 19.9 16.7 3593  96259  

max 9825.8 126.5 141.7 890305  140005  

range 8407.3 106.5 125.1 886712  43746  

skew 0.5 0.6 0.6 1.3 -0.4 

kurtosis -1.4 -1 -1.2 0.4 -1.2 

se 464.3 4.9 6.4 40851  2077  
Source: WIND 

 

6. Empirical results 

6.1 Ridge regression analysis 

Table 4 shows that the correlation coefficient between GDP and pe is 0.95, the 

correlation coefficient between pop and pe is 0.88, and the correlation coefficient 

between pop and gdp is 0.76. These large correlation coefficients among variables 

suggest the existence of multicollinearity, which leads to unreliable estimates from 

OLS regressions. Consequently, we use Ridge regression rather than OLS to 

conduct the empirical analysis of the extended STIRPAT model.  

 
Table 4: Correlation 

  CO2 OP pe gdp pop 

CO2 1     

OP 0.42 1    

pe 0.99 0.39 1   

gdp 0.92 0.34 0.95 1  

pop 0.89 0.08 0.88 0.76 1 

 

Table 5 reports the Ridge regression results. In all of these five regressions, 

international oil price plays a statistically significant role in explaining the changes 

in China’s carbon emission. International oil price affects China’s carbon emission 

in a positive way. In other words, a 1% increases in international oil price leads to 

an increase of around 0.12% in China’s carbon emission. This is driven by the 

substitution of coal and crude oil in certain industrial sectors. Specifically, when 

crude oil price increases, Chinese industrial users of crude oil have a stronger 

motivation to switch to coal, which is a relatively cheaper but carbon intensive fuel. 
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As the use of coal rises, total carbon emission in a specific year also trends up.  

This finding is different from the relationship between oil price and a region’s 

carbon emission from available literatures. Existing literatures document a negative 

relationship between oil price and a region’s carbon emission as already reviewed 

in previous section.  
 

Table 5: Brent oil prices and China’s carbon emission 

  (1) (2) (3) (4) (5) 

lngdp     0.0103 
     (0.45) 

lnpop  0.8714***  0.5498*** 0.5776 
  (1.97)  (1.86) (1.49) 

lnpe   0.8936*** 0.8453*** 0.7939*** 
   (76.34) (22.54) (16.57) 

OP 0.0121* 0.0043*** 0.0009* 0.0011*** 0.0012*** 
 (6.32) (5.89) (4.69) (5.18) (5.29) 

Control years Y Y Y Y Y 

Adj.R2 0.57 0.94 0.93 0.95 0.97 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1) is OLS regression; Regression (2)-(5) are ridge regressions. The dependent 

variables in all regressions are lnCO2 

 

6.2 Control other variables 

6.2.1 Control economic variables 

Environmental Kuznet hypothesis holds that there is a negative U-shape 

relationship between a region’s economic development level and its carbon 

emission. That is, the extent to which GDP has an influence on carbon emission 

falls gradually as GDP rises. Therefore, this study introduces the square of lngdp in 

order to see whether inclusion of this factor will change the relationship between 

international oil price and China’s carbon emission.  

Existing literature shows that improvement in economic structure will have an 

influence on carbon emission. Economic structure refers to the share of industry in 

GDP or the share of secondary industry in GDP. Industrial sectors and secondary 

sector are mainly composed of energy intensive fields. Theoretically speaking, a 

decrease in the share of either secondary industry in GDP or the share of industrial 

sectors in GDP, may help lead to less carbon emission in the economy. Therefore, 

this paper controls the impacts of economic structure on China’s carbon emission.  

Table 6 reports empirical results. The fourth column of table 6 shows that the square 

of economic size is not a significant variable. It also shows that controlling 

economic size does not change the estimated relationship between international oil 

price and China’s carbon emission. The estimated coefficient of international oil 

price is still a significantly positive number, without any noticeable change in its 
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size. This evidence indicates that the explanation power of oil price remains strong 

even after controlling the impacts of the square of the economic size.  

The fifth column and the sixth column of table 6 shows that the economic structure 

is a statistically significant variable in forecasting China’s carbon emission. 

Improvement in economic structure can help reduce carbon emission in China. 

Meanwhile, the estimated coefficient of international oil price is 0.11 in both 

regressions, suggesting that controlling the economic structure does not change the 

relationship between international oil price and China carbon emission.  

 

Table 6: Control the square of GDP and economic structure 

  (1) (2) (3) (4) (5) (6) 

lngdp    0.0413* 0.0619** 0.0637** 
    (2.46) (2.93) (3.27) 

lnpop    0.5787 0.0033 0.0636 
    (1.59) (0.36) (0.17) 

lnpe    0.7801*** 0.7673*** 0.7553*** 
    (16.06) (17.49) (17.11) 

OP 0.0031*** 0.0110*** 0.0100*** 0.0013*** 0.0011*** 0.0011*** 
 (5.34) (6.53) (6.23) (5.52) (4.33) (4.53) 

(lngdp)2 0.0142***   -0.0011    

 (23.47)   (1.57)   

industry_share   0.0182**   0.3369* 
   (4.15)   (1.99) 

second_share  0.0018***   0.3817*  

  (4.35)   (2.19)  

Control years 是 是 是 是 是 是 

Adj. R2 0.98 0.69 0.73 0.91 0.95 0.96 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1) is OLS regression; Regression (2)-(6) are ridge regressions. The dependent 

variables in all regressions are lnCO2 

 

6.2.2 Control the structure of energy consumption 

The structure of energy consumption is relevant for carbon emission. If the share of 

low carbon energy consumption in total energy use is relatively small, the amount 

of carbon emission from the same amount of energy use is smaller. This is because 

the consumption of low carbon energy (eg. hydro, wind power, solar power, 

geothermal power and biomass) produces much less emission, compared to that of 

fossil fuels. Therefore, this study also takes into account of the impact of energy 

consumption structure. I use two variables to measure the change in China’s energy 

consumption structure, one is “nff_share” (i.e. the share of non-fossil fuel in total 

primary energy consumption); the other one is “power_mix” (i.e. the share of coal-

fired power generation in total power generation).  
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The data source of the former variable is China’s Energy Statistics (2021 version). 

The data source of the later variable is bp World Energy Statistical Review (2021 

version).  

 
Table 7: control the structure of energy consumption  

  (1) (2) (3) 

lngdp 0.0103 0.0481*** 0.0321* 
 (0.45) (3.37) (2.32) 

lnpop 0.5776 0.2718 0.3044 
 (1.49) (1.09) (1.18) 

lnpe 0.7939*** 0.8121*** 0.8759*** 
 (16.57) (25.25) (28.31) 

OP 0.0012*** 0.0007*** 0.0005*** 
 (5.29) (3.78) (3.12) 

nff_share  -1.1961***  

  (4.88)  

power_mix   0.5317*** 
   (5.91) 

Control years Y Y Y 

Adjusted R2 0.95 0.97 0.97 

Note: Numbers in ( ) are t values of the estimates. *,**,*** represents significance at 10%,5% and 

1% levels. Regression (1)-(3) are ridge regressions. The dependent variables in all regressions are 

lnCO2 

 

According to the second column of table 7, the share of non-fossil fuel in primary 

energy consumption has a statistically significant negative effect on China’s carbon 

emission. A 1% increase in the nff_share leads to a 1.2% decrease in carbon 

emission. This is consistent with theoretical analysis. According to the third column 

of table 7, the share of coal fired power generation in total power generation has a 

statistically significant and positive effect on China’s carbon emission. A 1% 

increase in the power_mix leads to a 0.53% increase in carbon emission. This 

mainly reflects the carbon intensive characteristics of coal-fired power generation. 

The estimated coefficients of international oil price in both regression 2 and 

regression 3 in table 7 shows that controlling the effects of energy use structure does 

not change the previous conclusion. Despite the fact that the coefficients of oil 

prices are now smaller compared to the benchmark regression, both coefficients are 

still statistically significant and positive, which is same as before. These evidence 

supports the view that the forecasting capability of international crude oil prices 

cannot be completely diluted by information contained in China’s energy 

consumption structure.   
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6.2.3 Control urbanization rates 

Existing literature finds that urbanization rates help explain carbon emission. 

Increasing urbanization rates means a greater portion of the whole population is 

moving to and living in urban areas. In the period of 1978-2019, China’s 

urbanization rate rose from less than 18% to 61%, with urban population expanding 

from 172 mn to 848 mn in 2019.  This has led to steadily increasing demand for 

energy in urban areas, which boosts carbon emission. Thus, this paper controls the 

change in urbanization rate. The data source is the official website of NBS.  

Table 8 summarizes key empirical results. According to the first column and the 

third column of table 8, we can see that an increasing urbanization rate does help 

boost carbon emission. This is consistent with the findings in Zhang Tengfei (2016), 

but is in exactly the opposition of Li Xiangmei (2014).  

After controlling urbanization rates, the size of the coefficient of oil price remained 

unchanged, and the sign is still significantly positive. It says that the information 

contained in urbanization rates is not completely overlapped with that of 

international oil prices. 
Table 8: control urbanizations 

  (1) (2) (3) 

lngdp  0.0103 0.0351* 
  (0.45) (1.72) 

lnpop  0.5776 0.6712* 
  (1.49) (2.01) 

lnpe  0.7939*** 0.8222*** 
  (16.57) (17.78) 

OP 0.0034*** 0.0012*** 0.0012*** 
 (5.59) (5.29) (5.51) 

urbanization 0.0384***  0.0047* 
 (21.69)  (2.12) 

Control years Y Y Y 

Adj. R2 0.93 0.95 0.98 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1) is OLS regression; Regression (2)-(3) are ridge regressions. The dependent 

variables in all regressions are lnCO2 

 

6.2.4 Control other energy prices 

This study also takes into account of the prices of other fossil fuels, including 

international gas prices, Chinese coal prices and international coal prices. In order 

to better measure the impacts of international gas prices, this study adopts three gas 

price series as control variables, including NBP gas price, Henry Hub gas price, and 

Japan imported LNG price. In order to fully capture the impacts of coal prices on 

China’s carbon emission, this study adopts four coal price indices, which are 

northwestern Europe steam coal prices, Japan imported steam coal prices, the U.S. 
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Appalachia steam coal prices and China’s Qinhuangdao port steam coal prices. 

Energy prices for 1985-2019 is from bp World Energy Statistical Review (2021 

version). Energy prices for 1978-1984 is from the pink sheet of World Bank. Table 

9 reports variable descriptions. Table 10 reports description statistics of these 

control variables.  

Table 11 reports empirical results. According to column 1, column 2 and column 3, 

the coefficients of international coal prices are not significant at all, indicating that 

international coal prices may not be the key drivers of China’s carbon emission. 

During the period of 1978-2019, imported coal only accounts for less than 10% of 

China’s annual coal consumption. Domestic production can meet the majority of 

domestic demand. This could be the key reason why international coal prices has 

no significant influence on China’s carbon emission. According to the fourth 

column of table 11, domestic coal price is not a significant variable either. This 

could be a consequence of the fact that Chinese coal market is still tightly regulated 

by Chinese authorities and coal prices in domestic market could not reflect market 

dynamics in time. These numbers tell us that neither international coal prices nor 

domestic coal prices have any capability to forecast China’s carbon emission.   

Noticeably, in all these regressions in table 11, the coefficient of crude oil prices are 

still positive and significant. In addition, the size of the estimates does not change 

significantly. It shows that the influence of international oil price on China’s carbon 

emission is independent of the trends of other fuel prices. 

 

Table 9: description of other energy prices  

Variable 

name 
Data series Code Unit Frequency Source 

Sample 

period 

International 

coal prices 

Northwestern coal 

price 
coal_eu usd/ton year bp,World Bank 1978-2019 

 Japan imported coal coal_japan usd/ton year bp,World Bank 1978-2019 

 U.S. Appalachia 

coal price 
coal_us usd/ton year bp,World Bank 1978-2019 

Domestic 

coal prices 

Qinhuangdao steam 

coal prices 
coal_china usd/ton year bp,World Bank 1978-2019 

International 

gas prices 
NBP gas nbp usd/mmbtu year bp,World Bank 1978-2019 

 Henry Hub gas hh usd/mmbtu year bp,World Bank 1978-2019 

  
Japan imported 

LNG 
lng_japan usd/mmbtu year bp,World Bank 1978-2019 
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Table 10: descriptive statistics of other energy prices  

 
Table 11: Control other energy prices 

Note: Numbers in () are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1)-(7) are ridge regressions. The dependent variables in all regressions are 

lnCO2 

  coal_eu coal_us coal_japan coal_china nbp hh lng_japan 

n 42 42 42 42 42 42 42 

mean 56.08 44.17 66.43 54.86 4.35 3.29 6.57 

sd 26.38 21.34 30.07 28.28 2.68 1.88 3.94 

median 43.54 32.46 50.74 41.43 3.3 2.68 5.14 

trimmed 52.28 41.81 62.89 51.06 4.01 2.99 5.87 

mad 17.37 13.81 18.14 15.34 2.09 1.36 2.57 

min 28.79 20.5 34.58 27.15 1.5 0.91 3.04 

max 147.67 117.42 136.21 127.27 10.79 8.85 16.75 

range 118.88 96.92 101.63 100.12 9.3 7.94 13.71 

skew 1.44 1.15 0.91 1.01 0.9 1.42 1.3 

kurtosis 1.91 1.2 -0.56 -0.36 -0.36 1.54 0.6 

se 4.07 3.29 4.64 4.36 0.41 0.29 0.61 

  (1) (2) (3) (4) (5) (6) (7) 

lngdp 0.0069 0.0183 0.0177 0.0036 0.0072 0.0007 0.0021 
 (1.05) (0.94) (1.17) (0.23) (0.45) (0.05) (0.13) 

lnpop 0.6251*** 0.4313 0.6477*** 0.6487*** 0.6411** 0.4651** 0.6669** 
 (3.61) (1.53) (3.61) (3.81) (3.27) (2.93) (4.01) 

lnpe 0.8075*** 0.7987*** 0.7752*** 0.8387*** 0.7922*** 0.8487*** 0.8386*** 
 (21.64) (18.67) (21.63) (22.35) (19.82) (25.97) (22.77) 

OP 0.0007** 0.0010*** 0.0008*** 0.0005*** 0.0010*** 0.0006*** 0.0011*** 
 (2.95) (4.65) (3.42) (1.87) (2.78) (3.69) (3.99) 

coal_eu 0.0004       

 (1.27)       

coal_japan  -0.0003      

  (1.04)      

coal_us   0.0004     

   (0.91)     

coal_china    0.01     

    (0.37)    

nbp     0.0049   

     (1.22)   

hh      0.0071**  

      (3.27)  

lng_japan       0.0025 
       (0.97) 

Control years Y Y Y Y Y Y Y 

Adj.R2 0.93 0.95 0.93 0.94 0.95 0.98 0.97 
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6.3 Robustness tests 

In this section, I run a series of robustness tests. First, I change the measurement of 

independent variable, using carbon emission per capita and carbon intensity to 

replace carbon emission. I find that changes in international crude oil prices can 

lead to changes in carbon emission per capita and changes in carbon intensity in the 

same direction. Secondly, I split the sample period into two sub-period: 1978-1998 

and 1999-2019. I find that international oil prices have forecasting capability in both 

periods. Thirdly, I use the real oil prices to replace nominal oil prices in the 

regression. I find that the conclusion remains unchanged.  

 

6.3.1 Different measurements of carbon emission 

Existing literature often use three indicators to measure a region’s carbon emission. 

They are the total volume of carbon emission, carbon emission per capita, and 

carbon intensity. Specifically, the carbon emission per capita is defined as the total 

volume of carbon emission divided by total population; carbon intensity is defined 

as the total volume of carbon emission divided by GDP.  

For robustness test, I use carbon emission per capita and carbon intensity to be the 

dependent variable, and use GDP per capita, primary energy consumption per capita, 

international oil prices and other control variables as independent variables. Table 

12 and table 13 reports key results. Despite a slightly smaller size of estimates, 

international oil prices still show statistically significant power in explaining 

changes in carbon intensity and carbon emission per capita.  

 
Table 12: use carbon emission per capita to measure carbon emission 

  (1) (2) (3) (4) 

ln_gdp_percapita  0.3003***  -0.0004 
  (20.19)  (0.03) 

ln_pe_percapita   0.8773*** 0.8756*** 
   (71.23) (18.02) 

OP 0.0111* 0.0031*** 0.0010* 0.0011* 
 (6.59) (5.44) (5.21) (4.84) 

controls Y Y Y Y 

Adj.R2 0.59 0.87 0.94 0.94 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 
1% levels. Regression (1) is OLS regression; Regression (2)-(4)are ridge regressions. The dependent 

variables in all regressions are Ln_CO2_percapita 
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Table 13: use carbon intensity to measure carbon emission 

  (1) (2) (3) (4) 

log_gdp_percapita  -0.0354***  -0.0766*** 
  (9.21)  (6.50) 

log_pe_percapita   0.1854*** 0.0312 
   (15.39) (0.92) 

OP 0.0018* 0.0011*** 0.0013*** 0.0009*** 
 (2.60) (5.51) (5.67) (4.98) 

controls Y Y Y 
 

Y  
Adj. R2 0.27 0.82 0.93 0.93 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1) and regression (2) are OLS regression; Regression (3)-(4) are ridge 

regressions. The dependent variables in all regressions are carbon intensity. 

 

6.3.2 Split into two sub-sample periods 

Before 1998, the prices of domestic oil products were set directly by Chinese 

authorities. Moreover, the prices usually remained unchanged for a long time. Thus, 

the connection between international oil prices and domestic oil products before 

1998 may not be as strong as that in the period after 1998. Starting from June 1998, 

the prices of domestic oil products have been linked with the average prices of 

international crude oil indices and have been updated on a monthly basis. Therefore, 

I split the dataset into two subsets, composed of the sample period of 1978-1998 

and the period of 1999- 2019 and examine the impacts of international oil prices on 

China’s carbon emission in two periods respectively.  

Table 14 reports key findings. In both sub-periods, the coefficients of international 

oil prices are both statistically significant and positive, suggesting that international 

oil prices still have explanatory power in other periods.  
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Table 14: split into two samples 

  1978-1998 1978-1998 1999-2019 1999-2019 

  (1) (2) (3) (4) 

lngdp   0.0211   0.0452 
  (1.25)  (1.61) 

lnpop  0.1615  0.1852 
  (0.59)  (1.35) 

lnpe  0.8530***  0.7078*** 
  (16.39)  (8.46) 

OP 0.0137** 0.0012* 0.0093* 0.0005** 
 (3.04) (2.36) (4.82) (3.22) 

controls Y Y Y Y 

Adj.R2 0.35 0.95 0.51 0.94 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1) and regression (3) are OLS regression; Regression (2) and regression (4) 

are ridge regressions. The dependent variables in all regressions are lnCO2. 

 

6.3.3 Measurement of different oil prices 

In the previous section, I use Brent spot oil nominal price to measure international 

oil price. In this section, I conduct similar empirical analysis using different 

measurements of international oil prices, including Brent spot oil real price, WTI, 

and Dubai. These alternative oil price data come from bp’s World Energy Statistical 

Review (2021 version).  

Table 15, table 16 and table 17 report key findings. According to table 15, we can 

see that changing nominal oil price to real oil prices (in USD 2019) does not change 

the main finding.  Table 16 shows that replacing Brent spot oil price with WTI 

futures prices does not change the main finding. Table 17 shows that changing Brent 

spot oil price to Dubai oil price has no impact on the main finding. Results in these 

three tables indicate that the impact of international oil price on China’s carbon 

emission does not change as the measurement of oil price changes.  
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Table 15: real crude oil prices to measure oil price 

  (1) (2) (3) (4) (5) 

lngdp     0.0146 
     (0.54) 

lnpop  0.6388***  0.4586 0.5247 
  (13.74)  (1.45) (1.24) 

lnpe   0.8864*** 0.8246*** 0.8556*** 
   (57.49) (20.21) (15.68) 

OP_real 0.0135*** 0.0049*** 0.0010*** 0.0012*** 0.0012*** 
 (8.39) (5.88) (3.76) (4.34) (4.09) 

controls Y Y Y Y Y 

Adj.R2 0.71 0.92 0.91 0.92 0.93 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1)-(3) are OLS regression; Regression (4)-(5) are ridge regressions. The 
dependent variables in all regressions are lnCO2. 

 
Table 16: use WTI to measure oil prices  

  (1) (2) (3) (4) (5) 

log_gdp     -0.0067 
     (0.26) 

log_pop  0.6411***  0.4886 0.4722 
  (13.87)  (1.71) (1.21) 

log_pe   0.8806*** 0.8162*** 0.8372*** 
   (63.06) (22.09) (16.25) 

wti 0.0152*** 0.0056*** 0.0013*** 0.0015*** 0.0015*** 
 (8.34) (5.92) (4.68) (5.29) (4.95) 

controls Y Y Y Y Y 

Adj.R2 0.71 0.91 0.91 0.92 0.96 

Note: Numbers in () are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1)-(3) are OLS regression; Regression (4)-(5) are ridge regressions. The 

dependent variables in all regressions are lnCO2. 
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Table 17: use Dubai spot crude prices to measure oil prices 

  (1) (2) (3) (4) (5) 

lngdp     -0.0021 
     (0.13) 

lnpop  0.0454***  0.4616*** 0.4923** 
  (22.83)  (3.42) (2.24) 

lnpe   0.9231*** 0.8338*** 0.8332*** 
   (111.87) (31.44) (20.51) 

OP_Dubai 0.0176*** 0.0071*** 0.0005*** 0.0011*** 0.0011*** 
 (7.49) (9.19) (2.51) (4.49) (4.61) 

controls  Y Y Y Y 

Adj. R2 0.57 0.94 0.96 0.98 0.98 

Note: Numbers in ( ) are t values of the estimates. *, **, *** represents significance at 10%, 5% and 

1% levels. Regression (1)-(3) are OLS regression; Regression (4)-(5) are ridge regressions. The 

dependent variables in all regressions are lnCO2. 

 

7. Conclusions 

This study extends the standard STIRPAT model by introducing an energy price 

factor and uses the extended STIRPAT model to examine the effects of international 

crude oil prices on China’s carbon emission. This paper uses Ridge regression to 

conduct empirical analysis. The study finds that changes in international crude 

prices have a significantly positive impact on China’s carbon emission. A one 

percent increase in international crude oil price leads to a 0.12 percent increase in 

China’s carbon emission. This finding remains unchanged when a set of control 

variables are included in the analysis and survives all the robustness tests.  

This finding provides an important reference for Chinese policy makers. As China 

announced its pledge to achieve carbon neutral by 2060, fully understanding how 

to decarbonize its carbon intensive economy will be of importance. This paper 

provides a different angle for policy makers. It tells us that energy prices and relative 

cost of different fuels should also be considered in energy policy making in the 

future.   
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