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Abstract 
 

This study adopts the smooth transition Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) model to depict the influences of the Novel Coronavirus 

Disease (COVID-19) on the dynamic structure of the broad-based indices volatility 

in Taiwan. The empirical results show that the episode of the COVID-19 switches 

the volatility structure for the most of indices volatilities except two industrial sub-

indices, the building materials and construction index and the trading and consumer 

goods index. Furthermore, we obtain the transition function for all indices 

volatilities and catch that their regime adjustment processes start prior to the 

outbreak of COVID-19 pandemic in Taiwan except two industrial sub-indices, the 

electronics index and the shipping and transportation index. Additionally, the 

estimated transition functions show that the broad-based indices volatilities have U-

shaped patterns of structure changes except the trading and consumer goods sub-

indices. This study also calculated the corresponding calendar dates of regime 

change about dynamic volatility pattern. 
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1. Introduction  

For the recent decade, global financial markets have suffered several dramatic 

shocks including the 911 attacks in 2001, subprime crisis in the fall of 2007, 

Lehman Brothers collapse on September 2008, 2009 European sovereign-debt crisis 

and 2018-2019 US-China trade war etc. Most of these financial shocks could be 

directly attributed to equities or capital market decline. However, it is rare to 

observe that the infectious disease episodes cause the financial market turmoil. In 

addition, the volatility is widely used in asset pricing and hedge, risk management, 

portfolio selection and the other financial events. For this reason, we attempt to 

detect whether the COVID-19 pandemic incident will trigger the dynamic volatility 

changes. 

The COVID-19 pandemic distribute from a regional disease in East Asia to a global 

infectious disease. According to the outbreak situation from the World Health 

Organization (WHO) website, the confirmed cases are about 4 million, and 

confirmed deaths are about 300 thousand as of 10th May 2020. In the face of this 

serious infection, many governments adopt entry restrictions, social distancing 

mandates and put on lockdown. However, the above containment policy might 

directly decrease the labor inputs and further harm the economic, as argued by 

Baldwin and Tomiura (2020). The characters of infectious disease episodes are 

dissimilar to that of economic crisis. Governments usually use the containment 

policy bringing economic damage to deal with the former mishap, but take the 

quantitative easing policy stimulating economic growth to handle the latter incident. 

Therefore, it is reasonable to comprehend the influences of the containment policy 

promulgated by infectious disease on dynamic volatility structure are significant or 

not. 

In this study, firstly, we apply the modified GARCH model with threshold variable 

to fit the broad-based indices volatility in Taiwan, since this model is easy to use as 

the break time is certain.4 To avoid the biased estimates of regime-switching date, 

we further employ the smooth transition GARCH model (ST-GARCH for short) to 

capture the broad-based indices volatility. By the specification of the ST-GARCH 

model, we could effortlessly explore the regime break date for broad-based indices 

as the volatility structure change is truly being.  

Generally speaking, the grave epidemic might lead to stocks plummet and market 

volatility surges. However, we discover that the COVID-19 pandemic switches the 

dynamic volatility from the high level to low case for the most of indices during our 

sample period. We conjecture that this phenomenon could be attributed to two 

factors. Firstly, the government seems succeeded in increasing the COVID-19 

treatment efficiency and diminishing the spillover effect to economy. The relative 

evidences refer to the statistical data from Deep Knowledge Group website. 

Secondly, the event of US-China trade war dominated the indices volatility in 

Taiwan. According to the official statistical data, Taiwan gains the most trade 

 
4 We assume the threshold variable as the time of outbreak of the COVID-19. In Taiwan the date of 

outbreak of COVID-19 is 21th January 2020. 
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diversion effects about 4.2 billion from the US-China trade war. For this reason, the 

impact of the US-China trade war drives the dynamic volatility in high regime. 

The rest of this paper is arranged as follows. In section 2 we introduce the related 

GRACH models and ST-GARCH model. The empirical analysis is reported in 

section 3. Finally section 4 summarizes the results and presents the concluding 

remarks. 

 

2. Methodology 

2.1 Related GARCH models 

One of the noted dynamic volatility model is the GARCH model that developed by 

Engle (1982) and Bollerslev (1986). The GARCH(1,1) model could be used to 

depict the dynamic volatility process, that is,  
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where Rt denotes the underlying asset returns at time t, ht denotes the conditional 

volatility at time t, 2

1−t  denotes the square residual at time t-1, and Ωt-1 denotes the 

information set at time t-1. The parameters, α0, α1 and β1, can be regarded as the 

inherent uncertainty level, short-run impact of volatility shocks, and long-run effect 

of volatility shocks, respectively. The specification of standard GARCH(1,1) model 

could not detect the nonlinear structural changes for dynamic volatility process. In 

this study, we concern about the influence of COVID-19 pandemic on the indices 

volatility process, therefore it is nature to incorporate a threshold variable into the 

equation (1).  

That is, 
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where Dt represents a threshold variable taking the value 1 post-outbreak and 0 pre-

outbreak. We consider three threshold terms, including a single threshold term and 

two cross-product terms, in the variance equation for capturing the complete 

processes. On the condition that the given break date contains correct and full 

information, the exogenous adjustment could be explored the data structure change. 

It means that inaccurate definition of break date could cause estimating results 

insignificant and biased.  
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2.2 The smooth transition GARCH model 

From past study, using the endogenous variable to nonlinear volatility model is 

better to capture the structure change. The smooth transition model proposed by 

Granger and Teräsvirta (1993) and Lin and Teräsvirta (1994) can diagnose the break 

point by itself. A series of recently literature consider that combining the smooth 

transition method with GARCH model can obtain many benefits in parameter 

estimates of dynamic volatility model. 5  The ST-GARCH  model provides 

relatively flexible approach to widen the volatility process with nonlinear regime 

changes. Furthermore, the ST-GARCH model could explicitly point out the true 

date of structure changes in the data generating process for volatility process. The 

generalized framework for examining the appropriateness of an estimated ST-

GARCH type model is built by Lundbergh and Teräsvirta (2002). The ST-GARCH 

model can be illustrated as, 

 

yt = f(wt; φ) + εt , 
2/1)( tttt ghz += ,                                                  (3) 

where ht = η′st, gt = λ′stF(τt;γ,c), wt is a regressor vector in mean, φ is the coefficient 

vector, 
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In particular, 
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where t  denotes the transition variable at time t,   denotes the slope parameter 

( 0 ), ),...,,( 21 kccc=c  denotes a location vector in which kccc  ...21 , and 

k is the number of transitions. This specification implies transitions between two 

regimes, 0),;( =cF t   and 1),;( =cF t  . 

Lundbergh and Teräsvirta (2002) consider that the ST-GARCH model contains 

some vantages. Firstly, the timing decision for regime change in parameters is 

endogenesis in estimation and this decisive manner is more adaptable than 

artificially given a priori. Secondly, the specification of GARCH model with 

threshold variable belong to a special case as the slope parameter ( ) reaches to 

infinity. Finally, the transition function in equation (4) provides another flexible 

specification in modeling to determine the patterns of structural changes. For 

example, equation (4) reduces to a special case of a chow’s structural change as 

 
5 Also see Hagerud (1997), Gonzalez-Rivera (1998), Anderson et al. (1999), Lee and Degennaro 

(2000), Lundbergh and Teräsvirta (2002), Lanne and Saikkonen (2005), Medeiros and Veiga (2009), 

Chou et al. (2012) and Chen et al. (2017). 
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→  and k = 1. In another case, if the slope parameter →  and k = 2, 

equation (4) turn out to be a double step function. 

On the basis of the suggestion from Lundbergh and Teräsvirta (2002), we examine 

the hypothesis of parameter constancy in GARCH model before estimation of the 

ST-GARCH model. Assuming the null model is gt = 0 and let ηx = − /ˆˆ 1

t tt hh  

under the null. Furthermore, we consider the transition variable to be time, tt = , 

in order to take an evaluation for the impacts of COVID-19 pandemic for the broad-

based indices volatility in Taiwan. Let, t

i

it t s=v , t

i

it t ŝˆ =v , and )ˆ,ˆ,ˆ(ˆ
321
= tttit vvvv  

for i = 1, 2, and 3. 

The procedure of statistical test can be executed by an artificial regression as below. 

First, estimate the parameters of the conditional model under the null. Let 
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0 )1ˆ/ˆ( , and then regress )1ˆ/ˆ( 2 −tt h  on tx , tvˆ  and collect the 

sum of squared residuals, 1SSR . The LM-version test statistic can be computed by 

010 /)( SSRSSRSSRTLM −= . On the other hand, the F-version test statistic can be 

calculated by ))1/(//)(( 110 kqpTSSRkSSRSSRF −−−−−= . We adopt the 

statistics to ascertain an appropriate k to specify the ST-GARCH models. The 

choosing criterion of k value is the smallest p-values. 

 

3. Data and empirical results 

In this article, we concern about the broad-based indices volatility for the COVID-

19 pandemic in Taiwan. We select several broad-based indices including TAIEX, 

Electronics (ELEC), Plastic and chemical (CHEM), Food (FOOD), Iron and steel 

(STEEL), Building materials and construction (BUILD), Tourism (TOUR), Finance 

and insurance (FIN), Trading and Consumer goods (TRAD), Biotechnology and 

medical care (BIO) and Shipping and transportation (SHIP). Daily data of 11 broad-

based indices for the period 2 April 2015 to 1 April 2020 are adopted and collected 

from Taiwan Stock Exchange (TWSE). In Figure 1, the daily closing prices for all 

broad-based indices are respectively graphed. The daily indices returns are 

calculated by taking the first difference of the logarithmic prices. Descriptive 

statistics for these daily indices returns are reported in Table 1. We separate the 

whole period into two sub-sample periods by the infections disease outbreaks of 

COVID-19. Most of the items of summary statistics for the pre- and post-outbreak 

phase seem different.  It is necessary for us to check whether the difference is 

significantly existence or not. According to the significance of the Ljung-Box Q2 

statistics for all indices returns, we can infer that the GARCH family model is proper 

to fit them.  
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Figure 1: Daily closing prices for broad-based indices over the period 2 April 

2015 to 1 April 2020 
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Table 1: Descriptive Statistics 

Before COVID-19 pandemic (2 April 2015 to 20 January 2020) 

 Mean St.D Skewness Kurtosis Maximum Minimum Q2(10) 

TAIEX  0.020 0.830 -0.870 6.358 3.518 -6.521 317.75* 

ELEC  0.028 1.000 -0.547 3.904 4.449 -6.868 273.76* 

CHEM  0.004 0.887 -0.881 7.783 4.085 -7.661 250.05* 

FOOD  0.031 0.941 -0.479 3.525 3.816 -6.611 247.41* 

STEEL  0.002 0.912  0.073 5.686 4.927 -5.613 242.22* 

BUILD  0.004 0.808 -1.340 14.291 4.197 -7.962 382.23* 

TOUR -0.016 0.978 -0.212 3.635 3.844 -6.768 309.68* 

FIN  0.018 0.834 -0.429 5.338 4.547 -5.062 287.92* 

TRAD  0.006 1.050 -0.986 6.803 3.873 -7.614 293.37* 

BIO -0.012 1.150 -1.044 6.467 4.081 -8.206 262.35* 

SHIP -0.031 0.939 -0.588 7.452 4.064 -8.076 271.37* 

After COVID-19 pandemic (21 January 2020 to 1 April 2020) 

TAIEX -0.515 2.370  0.041 1.077 6.173 -6.005 13.277 

ELEC -0.491 2.508  0.162 0.965 6.782 -6.173 11.907 

CHEM -0.622 2.460 -0.194 1.045 5.231 -7.105  46.364* 

FOOD -0.292 1.811  0.175 1.285 5.039 -4.480  9.188 

STEEL -0.500 1.866 -0.365 2.378 5.383 -5.443 11.382 

BUILD -0.468 2.326 -0.690 2.416 4.907 -8.168 10.137 

TOUR -0.776 2.873 -0.654 1.071 5.277 -8.435 11.124 

FIN -0.509 2.297 -0.128 1.759 6.300 -7.053 14.659 

TRAD -0.162 1.532 -1.193 1.781 2.583 -4.617  6.295 

BIO -0.464 2.711 -1.139 1.780 4.431 -9.280 19.563 

SHIP -0.685 2.368 -0.796 1.267 4.219 -7.683 12.627 
Notes: This table reports the descriptive statistics for the logarithmic stock returns before and after 
the starting of the COVID-19 pandemic. Q2(10) is the Ljung-Box test for serial correlation up to 
10th order in the squared standardized residuals. Return is defined as 100×[log(pt)-log(pt-1)]. 
Significant at the 1% level is denoted by *. 

 

In order to handle more easily for volatility data with structure change in it, we 

employ the modified GAHCH model with threshold variable. The threshold 

variable is embedded respectively in the intercept term, lagged squared residual 

term and lagged conditional variance term for the adaptability of model 

specification. Table 2 expresses the parameter estimation results of this model. 

According to the significance of parameter estimates and Ljung-Box Q2 statistics, 

we can infer that the impacts of COVID-19 pandemic change the most of the indices 

volatilities except the TRAD industrial sub-indices. For the reason of explicitly 

point out the true date of volatility structure changes of COVID-19 pandemic, it is 

intuitive to employ an endogenous deciding framework, the ST-GARCH model. 
 

 



268                                          Day-Yang Liu et al.  

Table 2: The estimation of modified GARCH(1,1) model with threshold variables 
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 0̂  
1̂  

1̂  0̂  
1̂  2̂  Q(10) Q2(10) LogL 

TAIEX 0.060 0.097 0.827 0.294 0.184 -0.311 6.281 1.556 -1512.101 
 [<0.001] [<0.001] [<0.001] [0.034] [0.073] [0.008] [0.791] [0.999]  

ELEC 0.101 0.083 0.815 0.488 0.135 -0.281 7.317 2.106 -1738.132 

 [<0.001] [<0.001] [<0.001] [0.059] [0.121] [0.029] [0.695] [0.995]  

CHEM 0.052 0.089 0.853 0.255 0.199 -0.350 5.130 1.556 -1571.540 

 [<0.001] [<0.001] [<0.001] [<0.001] [0.019] [<0.001] [0.882] [0.999]  
FOOD 0.031 0.040 0.926 0.404 0.207 -0.567 19.428 2.745 -1658.020 

 [<0.001] [<0.001] [<0.001] [0.015] [0.023] [0.016] [0.035] [0.987]  

STEEL 0.016 0.070 0.915 0.189 0.200 -0.355 14.238 2.353 -1543.541 

 [<0.001] [<0.001] [<0.001] [<0.001] [0.001] [<0.001] [0.162] [0.993]  

BUILD 0.055 0.155 0.783 0.260 0.345 -0.411 21.992 2.105 -1426.792 

 [<0.001] [<0.001] [<0.001] [<0.001] [0.002] [<0.001] [0.015] [0.995]  

TOUR 0.131 0.097 0.782 0.424 0.221 -0.437 5.266 5.507 -1730.938 

 [<0.001] [<0.001] [<0.001] [0.004] [0.098] [0.016] [0.873] [0.855]  

FIN 0.037 0.125 0.834 0.173 0.200 -0.283 6.061 2.861 -1459.292 

 [<0.001] [<0.001] [<0.001] [0.004] [0.020] [0.001] [0.810] [0.985]  
TRAD 0.107 0.117 0.793 0.119 -0.160 0.225 8.800 3.204 -1756.537 

 [<0.001] [<0.001] [<0.001] [0.568] [0.030] [0.214] [0.551] [0.976]  

BIO 0.080 0.162 0.791 0.277 0.257 -0.298 16.478 6.144 -1817.726 

 [<0.001] [<0.001] [<0.001] [0.010] [0.012] [<0.001] [0.087] [0.803]  

SHIP 0.552 0.138 0.405 0.244 0.275 -0.172 16.844 12.581 -1693.704 

 [<0.001] [<0.001] [<0.001] [0.173] [0.038] [0.039] [0.078] [0.248]  
Notes: The number in brackets is p-value. Normality tests are based on the Bera-Jarque statistics. Q(10) is the 
Ljung-Box (1978) testfor serial correlation up to the 10th order in the standardized residuals, Q2(10) is the Ljung-
Box test for serial correlation up to 10th orderin the squared standardized residuals. Before 20, Jan., 2020, the 
threshold variable Dt is 0. After 21, Jan., 2020, the threshold variable Dtis 1. 

 

Before using the ST-GARCH model to estimate, we have to test the parameter 

constancy by the LM test developed by Lundbergh and Teräsvirta (2002). We 

calculate the LM statistics for k = 1, 2, and 3. Furthermore we assume that the null 

model is standard GARCH(1,1) model. Table 3 reports that the parameter constancy 

is violated for all broad-based indices. That is to say the regime change in dynamic 

volatility process is certainly being against the corresponding GARCH model. In 

addition, we also detect that the parameter, k = 2, has the smallest p-value for the 
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most of broad-based indices except the TRAD sub-indices. Theses empirical results 

can support us to adopt the ST-GARCH(1,1) model with k =2 to diagnose the 

dynamic volatility process. Our detailed model specification is given by, 

 

ttR = , 
2/1)( tttt ghz += ,                                                  (5) 
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the ST-GARCH(1,1) model in Table 4. Meanwhile, the estimated results for the 

GARCH(1,1) model are provided in Table 5 for the purpose of comparison. 
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Table 3: LM tests of parameters constancy for k=1, 2, and 3 

( )

0
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SSR

SSRSSR
TLM

−
=  

 k 

      1 2 3 

TAIEX      1.917 8.632 11.029 

      [0.590] [0.195] [0.472] 

ELEC      3.231 9.989 12.870 

      [0.357] [0.125] [0.351] 

CHEM      1.115 5.632 8.721 

      [0.774] [0.466] [0.776] 

FOOD      1.281 4.749 5.146 

      [0.733] [0.576] [0.856] 

STEEL      1.786 6.393 11.195 

      [0.618] [0.381] [0.700] 

BUILD      0.054 6.345 7.561 

      [0.997] [0.386] [0.705] 

TOUR      1.963 5.093 6.196 

      [0.580] [0.532] [0.826] 

FIN      4.116 14.180 15.826 

      [0.249] [0.028] [0.116] 

TRAD      0.659 1.893 4.414 

      [0.883] [0.929] [0.993] 

BIO      1.910  6.940 8.258 

      [0.591] [0.326] [0.643] 

SHIP      0.271  6.724 8.292 

      [0.965] [0.347] [0.666] 

Note: The number in brackets is p-value. 

 

 

 

 

 

 

 

 

 



 

 

Table 4: The estimation of the ST-GARCH model 
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 0̂  
1̂  

1̂  k̂  ̂  1̂c  2ĉ  0̂  
1̂  0̂  Q(10) Q2(10) LogL Regime 1 Regime 2 

TAIEX 0.059 0.147 0.760 2 17519.77 0.094 0.355 0.291 0.002 -0.167 6.051 2.948 -1497.197 0.907 0.742 

 [<0.001] [<0.001] [<0.001]  [0.937] [<0.001] [<0.001] [0.009] [0.961] [0.156] [0.811] [0.983]    

ELEC 0.162 0.052 0.814 2 1310.840 0.556 0.978 -0.121 0.049 0.042 7.829 3.320 -1733.604 0.957 0.866 

 [0.017] [0.002] [<0.001]  [0.915] [<0.001] [<0.001] [0.083] [0.061] [0.563] [0.645] [0.973]    

CHEM 0.029 0.093 0.868 2 17704.82 0.061 0.652 0.843 0.238 -0.665 5.806 1.454 -1541.703 0.961 0.534 

 [0.764] [0.295] [<0.001]  [0.103] [<0.001] [0.999] [0.011] [0.085] [0.010] [0.831] [0.999]    

FOOD 0.023 0.034 0.937 2 1492.512 0.027 0.357 0.406 0.148 -0.331 17.646 4.193 -1651.251 0.971 0.788 

 [0.001] [<0.001] [<0.001]  [0.725] [0.001] [<0.001] [0.086] [0.160] [0.078] [0.061] [0.938]    

STEEL 0.017 0.049 0.915 2 13299.46 0.151 0.357 0.279 0.184 -0.336 13.180 5.169 -1534.114 0.964 0.812 

 [0.005] [<0.001] [<0.001]  [0.826] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [0.214] [0.880]    

BUILD 0.345 0.220 0.566 2 6543.094 0.006 0.076 -0.229 0.029 0.017 23.812 1.525 -1422.122 0.786 0.832 

 [0.091] [0.013] [0.007]  [0.517] [0.365] [<0.001] [0.263] [0.746] [0.936] [0.008] [0.999]    

TOUR 0.016 0.017 0.951 2 3477.490 0.267 0.361 0.495 0.297 -0.655 7.187 5.427 -1720.584 0.968 0.610 

 [0.062] [0.157] [<0.001]  [0.027] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [0.708] [0.861]    

FIN 0.071 0.191 0.666 2 15799.67 0.094 0.357 0.321 -0.030 -0.053 7.459 3.365 -1426.526 0.857 0.774 

 [<0.001] [<0.001] [<0.001]  [0.878] [<0.001] [<0.001] [0.022] [0.644] [0.694] [0.682] [0.971]    

TRAD 0.184 0.147 0.703 1 238.701 0.672  -0.141 -0.067 0.182 7.392 2.910 -1755.774 0.965 0.850 

 [<0.001] [<0.001] [<0.001]  [0.744] [<0.001]  [0.007] [0.054] [0.016] [0.688] [0.983]    

BIO 0.170 0.249 0.595 2 20387.97 0.086 0.409 0.586 0.018 -0.103 20.027 6.859 -1799.619 0.844 0.759 

 [0.008] [0.036] [<0.001]  [0.975] [<0.001] [0.964] [0.097] [0.897] [0.606] [0.029] [0.739]    

SHIP 0.20 0.207 0.622 2 4697.755 0.067 0.366 0.557 -0.055 -0.091 9.560 0.797 -1587.503 0.829 0.683 

 [<0.001] [<0.001] [<0.001]  [0.982] [<0.001] [0.978] [0.292] [0.333] [0.754] [0.480] [0.999]    

Note: The number in brackets is p-value. Normality tests are based on the Bera-Jarque statistics. Q(10) is the Ljung-Box (1978) test for serial correlation up to the 10th order in the 

standardized residuals, Q2(10) is the Ljung-Box test for serial correlation up to 10th order in the squared standardized residuals. The regime 1 and 2 shows the upper and lower regime 

individually. 
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Comparing the figures of parameter estimates in Table 4 and 5, we find that the 

existence of serial correlation up to the 10th order in the standardized residuals and 

residuals squared for both models exhibit almost insignificant for all broad-based 

indices. In Table 4, the volatility persistent effect for regime 1 is stronger than that 

for regime 2 except the BUILD sub-indices. This finding indicates that the episode 

of the COVID-19 pandemic weaken the persistence of shocks for volatility. In 

addition, we observe that the volatility persistent effect of the GARCH model is 

relatively excessive than that of the ST-GARCH model. Figure 2 plots the estimated 

transition function, F(t). Apart from F(t) for the TRAD sub-indices, the others 

display the U-shaped. In terms of regime specification, we define the upper regime 

as F(t) = 1, and the lower regime as F(t) goes to its minimum value. The minimum 

values of estimation of smooth transition function are zero for all broad-based 

indices.  
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Table 5: The estimation of GARCH(1,1) model 
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 0̂  
1̂  

1̂  Q(10) Q2(10) LogL Persistence 

TAIEX 0.057 0.128 0.810 6.800 1.850 -1520.700 0.938 
 [<0.001] [<0.001] [<0.001] [0.744] [0.997]   

ELEC 0.050 0.098 0.864 7.643 2.979 -1744.309 0.962 

 [0.001] [<0.001] [<0.001] [0.664] [0.982]   

CHEM 0.073 0.125 0.800 7.310 1.076 -1581.951 0.925 

 [<0.001] [<0.001] [<0.001] [0.696] [0.999]   
FOOD 0.064 0.071 0.863 16.568 2.863 -1665.322 0.934 

 [<0.001] [<0.001] [<0.001] [0.084] [0.984]   

STEEL 0.027 0.107 0.872 15.108 3.513 -1556.743 0.979 

 [<0.001] [<0.001] [<0.001] [0.128] [0.967]   

BUILD 0.075 0.213 0.715 24.751 1.824 -1434.666 0.928 

 [<0.001] [<0.001] [<0.001] [0.006] [0.998]   

TOUR 0.221 0.155 0.649 6.208 4.298 -1739.621 0.804 

 [<0.001] [<0.001] [<0.001] [0.797] [0.933]   

FIN 0.042 0.163 0.801 6.578 2.920 -1468.427 0.964 

 [<0.001] [<0.001] [<0.001] [0.795] [0.983]   
TRAD 0.118 0.129 0.775 7.754 3.291 -1758.215 0.904 

 [<0.001] [<0.001] [<0.001] [0.653] [0.974]   

BIO 0.101 0.213 0.739 18.784 5.163 -1825.177 0.952 

 [<0.001] [<0.001] [<0.001] [0.043] [0.880]   

SHIP 0.066 0.114 0.828 14.341 0.711 -1650.804 0.942 

 [<0.001] [<0.001] [<0.001] [0.158] [0.999]   
Notes:The number in brackets is p-value. Normality tests are based on the Bera-Jarque 
statistics. Q(10) is the Ljung-Box (1978) test for serial correlation up to the 10th order in the 
standardized residuals, Q2(10) is the Ljung-Box test for serial correlation up to 10th order in the 
squared standardized residuals. 

 

 

 

 

 

 

 

 



274                                          Day-Yang Liu et al.  

 

 

 

 

Figure 2: Estimated smooth transition functions for broad-based indices 
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We use the persistence coefficients reported in Table 4 and 5 to measure the 

dynamic volatility half-life. This could be explained as the time taken for the 

dynamic volatility to move halfway back to its own unconditional volatility. All in 

all, the period of the outbreak of COVID-19 pandemic contains low volatility half-

life. This finding implied that the impact of shocks has been rapidly reflected in 

unconditional volatility after the COVID-19 pandemic. 
 

Table 6: The estimation of volatility half-life for different regimes of ST-GARCH 

model 

 ST-GARCH model GARCH model 

Board-based indices   Regime 1 half-life Regime 2 half-life Half-life 

TAIEX 

ELEC 

CHEM 

FOOD 

STEEL 

BUILD 

TOUR 

FIN 

TRAD 

BIO 

SHIP 

 7 

16 

17 

24 

19 

 3 

21 

 4 

19 

 4 

 4 

2 

5 

1 

3 

3 

4 

1 

3 

4 

3 

2 

11 

18 

9 

10 

33 

9 

3 

19 

7 

14 

12 
Notes: The half-life could be calculated by )ln(5.0 = ye . 

 

Our article also uses the estimation of location parameters, 1c  and 2c , to point out 

the relatively objective structure change date for the dynamic volatility process, 

which is shown in Table 7. The responses of volatilities changes for half of broad-

based indices (TAIEX, CHEM, FOOD, STEEL, FIN and BIO) are happening before 

the episode of the COVID-19 in Taiwan. This finding indicates that employing the 

modified GARCH model with threshold variable to fit the volatility process might 

use a subjective and biased determination in break time. In addition, Table 7 also 

reports some intriguing phenomena that the impacts of the outbreak of COVID-19 

pandemic seem inexistence for BUILD and TRAD. 
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Table 7: The estimation of location parameters and corresponding calendar dates 

Board-based indices 
1c  Date 

2c  Date 

TAIEX 

ELEC 

CHEM 

FOOD 

STEEL 

BUILD 

TOUR 

FIN 

TRAD 

BIO 

SHIP 

0.094 

0.556 

0.061 

0.027 

0.151 

0.006 

0.267 

0.094 

0.672 

0.086 

0.067 

July 6, 2016 

January 5, 2018 

January 22, 2016 

August 12, 2015 

April 14, 2017 

May 6, 2015 

October 29, 2018 

July 11, 2016 

August 8, 2018 

May 31, 2016 

March 1, 2016 

0.355 

0.978 

0.652 

0.357 

0.357 

0.076 

0.361 

0.357 

 

0.409 

0.366 

January 3, 2020 

February 25, 2020 

January 17, 2020 

January 15, 2020 

January 14, 2020 

April 13, 2016 

February 12, 2020 

January 13, 2020 

 

January 20, 2020 

January 31, 2020 

 

Figure 3 further shows the time varying unconditional volatility for all broad-based 

indices. We could explicitly displays the shifting pattern of volatility structure by 

this illustration. The dynamic unconditional volatilities for most of broad-based 

indices switch from a lower level to a higher case and then it goes back to a lower 

one. As to the graphs for the TRAD sub-indices in Figure 3, the switching pattern 

obviously differs from that of others. We infer that the unconditional volatility 

structure change for the TRAD could be attributed to the economy slowing during 

the period from August, 2018 through March, 2020. Furthermore, the TRAD sub-

indices have high connection to the business indicators. In Table4 the large 

coefficients of slope parameter,  , could lead to all of the switching pattern 

experience sharper shifts. We clarify that the dynamic volatility process goes 

upwards by the US-China trade war during our sample period. Afterward, the 

outbreak of COVID-19 pandemic should rocket downwards the volatilities for 

broad-based indices including the TAIEX, ELEC, CHEM, FOOD, STEEL, TOUR, 

FIN, BIO and SHIP. The structure change of unconditional volatility for BUILD 

industrial sub-indices could be attributed to the adjustment of housing tax policy 

from government. 
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Figure 3: Estimated unconditional variance under ST-GARCH model for 

broad-based indices 
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The estimation of ST-GARCH model in this study also has some valuable 

implications. Firstly, the modified GARCH model with threshold variable seems 

appropriate for fitting the dynamic volatility process. However, using the ST-

GARCH model to fit dynamic volatility process can obtain more precise estimates 

of the break time dating. Lastly, the impacts of the outbreak of COVID-19 pandemic 

are really being and can switch the volatility structure of broad-based indices. 

 

4. Conclusion 

In this study, we document that the impact of the outbreak of COVID-19 pandemic 

triggered structure change in volatility process for broad-based indices in Taiwan. 

This study employs the standard GARCH model, the modified GARCH model with 

threshold variable, and the ST-GARCH model to depict the dynamic volatility 

process, respectively.  

From the empirical results, we demonstrate statistically significant volatility 

structure change in Taiwan’s broad-based indices by the parameter estimates of both 

modified GARCH and ST-GARCH model. We find that the estimates of volatility 

persistent effect from the standard GARCH model could show the relatively higher 

value, as the dynamic volatility structure contains a regime change. The outbreak of 

COVID-19 pandemic weakens the persistence of shocks for volatility process and 

brings lower volatility half-life. Moreover, the estimates for the modified GARCH 

model with threshold variable might provide biased regime-switching date in the 

same situation. We also illustrate that the dynamic volatility structure for the most 

of broad-based indices embedded two regime change points by the LM test 

presented by Lundbergh and Teräsvirta (2002).  

This article uses the estimation results of ST-GARCH model to graph the time 

varying unconditional volatilities and to calculate the calendar day of break time for 

all broad-based indices. The patterns of unconditional volatility for the most of 

broad-based indices appear the similar inverted U-shaped. We infer that the 

upwards switching in volatility could be attributed to the US-China trade war, and 

the declines in volatility could be triggered by the outbreak of COVID-19 pandemic. 

The empirical results show that the dynamic volatility switching dates are earlier 

than the outbreak of COVID-19 pandemic for the most of broad-based indices. 
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