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Abstract 
The increasing death rate from lung cancer for women and the small hope of a cure attract 
attention. The declining death rate at old ages causes surprise and is here called the 
Holford puzzle. 
The present model shows protective and detrimental cohort effects in relation to the 
incidence of and death rate from lung cancer, and shows how diagonally calculated cohort 
effects can be used as susceptibility variables in age-specific models. 
The applied method solves the Holford puzzle about why the risk of death from lung 
cancer seemingly does not continue to increase from the age of 70-74. The method can 
thus turn the conclusions on the development in health upside down.  
This study gives an optimistic picture of the future development in women’s death rate 
from lung cancer. A turnaround is on its way and must be expected from 2018 for all age 
groups. 
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1  Introduction 
Lung cancer for women is an important disease seemingly without any significant 
progress in outlook. This article compares the results of Holford [1] for incidence rates of 
lung cancer for women with results for death rate from lung cancer for women (and men) 
based on Danish data. 
In Holford’s data, in simple or plain figures, the number of lung cancer (diagnostic) cases 
for women in Connecticut was 1,439 for the period 1970-74, and 3,199 for the period 
1980-84. 
In simple or plain figures, the total number of deaths from cancer for Danish women grew 
from 1,354 in 1995 to 1,649 in 2005. 
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In 2009-2011 the survival rate in Denmark five years after the diagnosis for lung cancer 
was 11% for men and 14% for women, which is the lowest survival rate for the 15 biggest 
cancer categories.  
There is a high degree of similarity between the development in lung cancer in 
Connecticut and Denmark. This similarity in developed countries is further underlined in 
the study of Bosetti et al. [2], which shows an (almost) parallel development in 33 
European countries. See also Bray and Møller [3].   
The purpose of this article is to develop a model which comprehends different time 
periods and different national cultures by including a cohort effect as an explanatory 
variable.  
The method is based on Kristensen [4] on secular cohort effects. For a discussion of the 
age-period-cohort models, see also Clayton and Schifflers [5], [6], Holford [1], Osmond 
and Gardner [7], Rostgaard et al. [8], and Kristensen [9], [10]. 

 
1.1 The Holford Puzzle 
Holford’s data give a highly pessimistic picture of the rate of lung cancer incidence for 
women. However, more specifically he mentions a certain characteristic in his data, which 
in this article will be discussed as the Holford puzzle. With the words of Holford ([1], pp 
426-427), the Holford puzzle can be defined as:  
”… rates tend to reach a plateau or even decline in the oldest age groups. 
The pattern in the age distribution for lung cancer might seem inconsistent with the 
expectation that lung cancer risk, like the risk of epithelial tumors in general, would 
continue to increase with age.”   
The Holford data shown will for pedagogical reasons start from the age group 35-39. The 
age group 35-39 is in Figure 1 indicated by 35. Similarly, 40 indicates the age group 40-
44. The peak in incidence is reached for the age group 70-74.   
Holford’s data for the rate of lung cancer incidence for women can now be compared to 
the Danish data for the death rate from lung cancer for women, shown in Figure 2. 
The Danish data are available for 1977-2012. To underline the Holford puzzle, Figure 2 
only shows the empirical data from 1977 to 2005. For practical purposes, the patterns in 
the Figures 1 and 2 are identical. Both peak for the age group 70-74. 
As the periods cover five-years in Holford’s data versus one year in the Danish data, 
Holford’s curves are smoothed out compared to the curves for Danish data  
Holfords article is about “incidence”, while this article is about “death rates” from lung 
cancer. Nevertheless, the similarity between the two data sets is striking. The “Holford 
puzzle” that “rates tend to decline in the oldest age” is the same in the two datasets. The 
peak is reached in the age group 70-74 in Holford’s data but in the age group 75-79 in the 
Danish data. 
However, what is peculiar about the Holford puzzle is that if we for the Danish data 
include the observations from 2006 to 2011, we get a slightly different picture as shown 
in Figure 3.  
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Figure 1: The incidence of lung cancer. Shown by Holford’s data for women in 

Connecticut for each age group over the period 1940-1984. 
 

 
Figure 2: The death rate from lung cancer shown by data for Danish women for each age 

group over the period 1977-2005. 
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Figure 3: The death rate from lung cancer shown by data for Danish women for each age 

group over the period 1977-2011. 
 
We see that the Holford puzzle is maintained. In Figure 3, however, the decline in death 
rates starts after the age of 75-79, not after the age of 70-74. Including the data from 
2006-2011, we see that the top has now moved forward to the age group 75-79. What will 
happen if we move the data forward to 2022? 
This opens for a discussion of what creates the Holford puzzle. We are here in line with 
Holford’s use of the Age-Period-Cohort model. 

 
 
2  Method 
In line with Robinson and Jackson [11] the age-period-cohort effects are defined as 
follows: Cohort effects indicate that each new birth cohort enters (adult) life with a 
distinctive value of the dependent variable –  in this case a detrimental cohort effect 
change with protective cohort effects over age in relation to lung cancer (see also Ryder 
[12]). 
Cohort effects are not linearly related to time, and the cause of changing protective and 
detrimental effects is in general unknown. 
 
The identification problem 
The basic assumption in most age-period-cohort studies is that cohort effects develop over 
age and period. 
The identification problem caused by linearity between age, period, and cohort is well 
described elsewhere (Glenn [13]; Osmond and Gardner [7 ]; Breslow et al. [14], Clayton 
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and Schifflers [5], [6]; Holford [1]; Robertson and Boyle [15]; Rostgaard et al. [8]; 
Kristensen [4]).   
Clayton and Schifflers discuss and exemplify the identification problem and also mention 
the “spurious cohort effects”, which can result from a sudden change in birth rates. This 
effect is not included in this paper, but can be shown for age groups from the age of 75 
(Kristensen, [9]). 
The numbers of deaths from a certain disease are count data. Estimations on count data 
are often based on Poisson regression (Clayton and Schifflers [5], [6]; Robertson and 
Boyle [15]; Rostgaard et al. [8]) and theoretically well founded (Brillinger [16]). Clayton 
and Schifflers argue that Weighted Least Squares and Poisson maximum likelihood might 
be equally efficient.   
In empirical work, the Poisson regression seems less obvious to apply. Death rates (e.g. 
per 100,000 persons) have rounding errors, especially when rounded down to zero. 
Besides, there can be omitted explanatory variables as well as errors connected to the 
explanatory variables. 
Likewise, it is difficult to test whether the assumptions for the Poisson regression are 
fulfilled; see for example Wooldridge ([17], p 646): “The variance-mean equality has 
been rejected in numerous applications, and later we show that assumption [19.2   Var(y|x) 
= E(y|x)] is violated for fairly simple departures from the Poisson model.” 
Consequently, this study applies Weighted Least Squares regression.  

 
 
3  Data 
Holford’s dataset with: Period “five years”, Age “five years” is held up against a Danish 
dataset with: Period “one year”, Age “five years”. The “death rate” is here applied instead 
of “mortality” to underline that the data are age specific. 
Holford’s data are on the incidence of lung cancer for women in Connecticut. The Danish 
data on the death rate from lung cancer (women and men) are obtained from: The Danish 
Health and Medicines Authority (Statens Serum Institut [18]): Causes of death from 
cancer in trachea, bronchi, lung B-016 - here referred to as lung cancer. In principle, the 
present article is based on the total dataset for deaths from lung cancer in Denmark 1977-
2012. 
 
The explanatory variables: age (Age), period (T), and cohort (CohBorn).  
T period (or year), 1970 = 1 
Age age at death 
DLCw actual death rate from lung cancer for women (Denmark) 
DLCm calculated death rate from lung cancer for men (Denmark)  
CohBorn cohort indicated by a dummy (CohBorn = 1) following diagonal a cohort 
over period and age. “Born” is the year of birth of the youngest person(s) in an age group.  
Applied age groups are 35-39 to 80-84 for the Holford data, and from 35-39 to 85+ for the 
Danish data. As the Danish empirical data runs 1977-2012, we see that 1977+35=2012. 
Accidentally the last included cohort is born in 1977. 
Cohort coefficients express protective and detrimental effects according to year of birth 
that are supposed to influence the death rate over the entire life. 
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4  The Model 
The Gompertz-Makeham equation is generally known and recognized as being very 
effective in describing death rates. Simplified and in the present notation the Gompertz-
Makeham equation for death rates from apoplexy would be Gompertz (from 1825), and 
Gavrilova and Gavrilov [19]: 
 
DLCw = αe 1Ageβ                                                                                                                   (1) 
Log(DLCw) = α 0  + α 1  Age                                                                                               (2) 
 
However, no simple exponential function could match the death rate from lung cancer. 
The “new mortality trend”, which lets the death rate curve at all ages decline with almost 
the same percentage, was added to the Gompertz-Makeham equation: 
 
Log(DLCw) = α 0  + α 1  Age - α 2  T                                                                                    (3) 
 
To this almost classical model we now add what Manton and Stallard [20] call a 
“susceptibility parameter s [here called B] as systematically vary with birth cohorts”.   
 
Log(DLCw) = α 0  + α 1  Age - α 2  T + α 3 B                                                                         (4) 
 
This formula was the basis for developing equation (5) into an Age-Period-Cohort model. 

 
4.1 Modeling the Danish Death Rate from Lung Cancer 
The unequal groupings are of Periods (one year) and Age (five years). For example, the 
earliest groups of two “different” cohorts start in 1892 and 1893.  
In total 1892-1977 = 85 cohorts are represented by 85 diagonal dummy variables. Each 
dummy for a five-year age group in principle covers a diagonal across 12 age groups. 
In the empirical estimations the youngest included cohort (where the youngest member 
was 35 years old) started in 1977. 
The equation including the cohort effects is: 
Log(DLC)=α 1 /Age+ α 2 Age + α 3 Age 2 +α 4 /T +α 5 Age/T 2 +α 6 Age 2 /T 3 +β 1 Coh1892+ 
β 2 Coh1893 +…..+ β 85 Coh1977                                                                                        (5) 
 
The creation of B will be explained in details below.  
There is no constant element (origo regression), and therefore we can use dummies for the 
entire period 1892-1977. The equation was estimated by WLS using Age as weight. 
 
Log(DLC)*Age =         α 1   + α 2 Age 2   + α 3 Age 3   

 + α 4 Age/T + α 5 Age 2 /T 2  + α 6 Age 3 /T 3   
 + β 1 Coh1892*Age + β 2 Coh1893*Age +…..+ β 85 Coh1977*Age            (6) 
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The time series formed by the beta coefficients (β 1  - β 85 ) are shown for women in Figure 
4 and for men in Figure 5. 
 

 
Figure 4: The beta coefficients 1892-1977 from the estimation of equation (5) for women. 
 

 
Figure 5: The beta coefficients 1892-1977 from the estimation of equation (5) for men. 
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In themselves, the beta coefficients form a time series so that the discussion involves two 
time series: The time series for death rates and the time series for the cohort coefficients. 
The beta coefficients show that women become weaker when born from 1907 to 1933 in 
relation to lung cancer. Born after 1933 they grow stronger. The top for men (the worst 
year) is in 1908. The top for women is 25 years later in 1933. 
There is no solid biological explanation for the period of deterioration. This study takes it 
as a historical fact and looks at the consequences. An educated guess, however, is that 
women born in the period 1907 to 1933 will about 18 years later enter a period in their 
life where cigarette smoking becomes more and more popular in society among teenage 
girls.   

 
4.2 Age-specific Estimations 
Reorganizing the beta coefficients to explanatory variables in age-specific models 
improves the discussion on age-specific development in incidence and death rate. The β 
coefficients can be seen as variables when estimating incidence or death rate for the 
individual age groups and can be made in the following way: 
 
Step 1. In order to get the information in the data diagonals the model must be estimated 
on the form given in equation (5) for the Danish data.  
 
                  + β 1 Coh1892 + β 2 Coh1893 +…..+ β 85 Coh1977                                            (7) 
 
The β coefficients can for the respective age groups be presented as shown in Table 1.  
 
Step 2. For a given age group we have the model: 
 
Log(DLC) = [α 1 /Age  + α 2 Age + α 3 Age 2 ] 

                   + α 4 /T + [α 5 *Age]/T 2  +[ α 6 *Age 2 ]/T 3  + B Age                    (8) 
 
Insertion of Age gives: 
 
Log(DLCwAge) =  γ 0,Age  +  γ 1,Age /T +   γ 2,Age /T 2   +   γ 3,Age /T 3  +   B Age                       (9) 
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Table 1: The β coefficients seen as time series variables 
          
Age 35 40 45 ::: 65 70 75 80 85+ 
          
Year\B Age   B 35   B 40   B 45   ::: B 65  B 70    B 75  B 80    B 85   
          
1977 β 51  β 46  β 41  ::: β 21  β 16  β 11  β 6  β 1  
1978 β 52  β 47  β 42  ::: β 22  β 17  β 12  β 7  β 2  
1979 β 53  β 48  β 43  ::: β 23  β 18  β 13  β 8  β 3  
1980 β 54  β 49  β 44  ::: β 24  β 19  β 14  β 9  β 4  
::: ::: ::: ::: ::: ::: ::: ::: ::: ::: 
2011 β 85  β 80  β 75  ::: β 55  β 50  β 45  β 40  β 35  
2012 β 86  β 81  β 76  ::: β 56  β 51  β 46  β 41  β 36  
          
Forecast          
          
2013 β 87   β 82  β 77  ::: β 57   β 52  β 47  β 42  β 37  
2014 β 88  β 83  β 78  ::: β 58  β 53  β 48  β 43  β 38  
2015 β 89  β 84  β 79  ::: β 59  β 54  β 49  β 44  β 39  
2016 β 90  β 85  β 80  ::: β 60  β 55  β 50  β 45  β 40  
::::          
2018 β 92  β 87  β 82  ::: β 62  β 57  β 52  β 47  β 42  
::::          
2022 β 96  β 91  β 86  ::: β 66  β 61  β 56  β 51  β 46  

 
Step 3. As CohBorn is a dummy equal to one, the form of the models in practical 
estimation (or forecast) for women in the age group 80-84 becomes (remember that T=1 
for 1970):  
Log(DLCw80 1977 ) =  γ 0,80  +  γ1,80 /7 +   γ 2,80 /7 2   +   γ 3,80 /7 3  +  β 6  

Log(DLCw80 1978 ) =  γ 0,80  +  γ1,80 /8 +   γ 2,80 /8 2   +   γ 3,80 /8 3  +  β 7  

Log(DLCw80 1979 ) =  γ 0,80  +  γ 1,80 /9 +   γ 2,80 /9 2   +   γ 3,80 /9 3  +  β 8                                 (9) 
 :::: 
Log(DLCw80 2011 ) =  γ 0,80  +  γ1,80 /41 +   γ 2,80 /41 2   +   γ 3,80 /41 3  +  β 40  

Log(DLCw80 2012 ) =  γ 0,80  +  γ1,80 /42 +   γ 2,80 /42 2   +   γ 3,80 /42 3  +  β 41  
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Forecast 
Log(DLCw80 2013 ) =  γ 0,80  +  γ1,80 /43 +   γ 2,80 /43 2   +   γ 3,80 /43 3  +  β 42  

Log(DLCw80 2014 ) =  γ 0,80  +  γ1,80 /44 +   γ 2,80 /44 2   +   γ 3,80 /44 3  +  β 43  
 ::: 
 
The β i  is thus (in this form) an element in an extra explanatory variable B with an 
expected coefficient of one. Having estimated β i  with equation (5), we can apply B Age  to 
estimate  
the age-specific death rate for the period 1977-2012. The age-specific cohort effects are 
calculated on the entire dataset by equation (5).  
For all age groups there are two methods to form a model for forecast: 
a. Re-estimate the coefficients with the model used in Table 1. 
 
Log(DLC)=α 1 /Age+α 2 Age+α 3 Age 2 + α 4 /T+α 5 Age/T 2 +α 6 Age 2 /T 3 + α 7 B Age       (10) 
 
b. Or apply the estimated coefficients from equation (5) together with B Age setting α 7 = 1. 
 
 
5  The model forecast 
The model forecast calculated by method b is shown in Figure 6. 
The calculated death rates for the individual age groups are reported from 1977 to 2022. 
By following the 1977 death rates you will see the Holford puzzle, and likewise if you 
follow the tops. When you follow the 2022 calculated values of death rates, the Holford 
puzzle has disappeared. Figure 7 shows the same pattern for men.   
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Figure 6: Death rates for women 1977-2022 calculated by method b. 

 
5.1 The Death Rate from Lung Cancer for Men and Women 
The focus will now be on the turning points in the death rates for men and women. Only 
the age groups from 55-59 to 85+ will be included. 
Figure 7 shows how the tops of the detrimental cohort effect shown in Figures 4 and 5 are 
mirrored in the tops of the death rates for men and women, which is the very reason for 
the origin of the Holford puzzle. After 2018 the present model predicts a decline in the 
death rate from lung cancer for all age groups (even) without medical progress. 
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Figure 7: Calculated death rates for women and men 1977-2022 for the age groups 55-59 

to 85+. 

 
 
6  Discussion 
The year of birth is here applied as the “starting points”, but other starting points could 
also be relevant. Cigarette smoking is associated with birth cohorts even if a cohort does 
not start smoking before the age of 15-19. Similarly, lung cancer is usually reported by 
year of diagnosis and age. 
A weakness in the above estimations is that the results are quite sensitive to the 
specification of the models before inclusion of the cohort effect, especially of course 
when the data set is of limited size. Different specifications were tried for the Danish data. 
The differences in the results, however, were small, and in all cases the general picture 
could be maintained. Comparing Holford’s data with the Danish, we find is a surprisingly 
high similarity between the incidences of lung cancer in Connecticut and the death rate 
from lung cancer in Denmark. 
The increasing death rate from lung cancer for women was created in 1907-1933, and for 
men in 1892-1908.  
Due to the vintage effect (Kristensen [9]), which involves that the old age groups are 
growing and their average age thereby declining, the model gives a too optimistic picture 
of the development of the death rate in those age groups. The death rates for age groups 
80-84 and 85+ are therefore slightly underestimated. 
Similar to lung cancer the basis for the death rate from COLD was laid down in the 
human body 30-40 years ago, see Lykkegaard et al. [21]. Using the cohort effects in the 
here described way the future development in the death rates for COLD can therefore, 
similar, be predicted. 
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7  Conclusion 
This study shows that period, age, and cohort effects are dominating in a regression model 
for the death rate from lung cancer. Each cohort is traced by dummies following five-year 
age groups for each year of birth of the youngest group member. 
The model shows protective and detrimental cohort effects in relation to the incidence of 
and death rate from lung cancer, and shows how diagonally calculated cohort effects can 
be used as variables in age-specific models. 
The cohort effect is a powerful confounder which should be taken into account in 
describing health situations for a given age group. 
The difference between using data with groupings into Periods (five years) and Age (five 
years), and data with groupings into Periods (one year) and Age (five years), is important 
but not destructive. 
This study shows that more comparative cross-country studies on the same subject could 
be useful due to the striking parallel development between Connecticut and Denmark. 
The applied method solves the Holford puzzle, about why the risk of death from lung 
cancer seemingly does not continue to increase from the age of 70-74. 
This study gives an optimistic picture of the future development in death rates from lung 
cancer; a turnaround to the better for all age groups must be expected from about 2018.  
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