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Abstract 

This paper presents general approaches and numerical models of solving seismic dynamic 
parameters and determining medium’s quality factor. The methods presented here can be 

extensively applied to investigate characteristics of existing seismic waves so as to obtain 

correct prediction of forthcoming earthquakes and judgment of seismic tendency in 
certain regions. Errors in estimating different seismic parameters are also discussed, 

which may be caused by different reasons. 
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1  Introduction  

Seismic source dynamic parameters carried by seismic waves have received growing 
research interests because the variation of those parametric values not only reflect the 

characteristics of current seismicity but also reveal the future seismic tendency in certain 

regions. Therefore, those parameters have wide applicability in earthquake prediction. In 
order to correctly estimate those seismic source parametric values, different physical 

models and approaches have been developed. This paper reviews approaches and models 

that are commonly used for calculating seismic parametric values such as hypocentral 

radius, stress drop, ambient shear stress, medium’s Q value, and rupture characteristics. 
General physical models and approaches discussed in this paper include circular 

dislocation model, Brune model, explosive source model, uni- and bilateral finite moving 

source model, instrumental and medium calibration, and directional function. Methods for 
earthquake selection, sampling and Fourier analysis are also introduced in this paper. In 

addition, error analysis is performed to discuss the errors that are generated in estimating 

those parameters. It is accepted that error estimation must be provided along with the 
earthquake prediction in order to make the predictions more reliable and convincing. 
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2  Solve Hypocentral Radius, Stress Drop, and Ambient Shear Stress 

2.1 Using Circular Dislocation Model  

There two equivalent approaches to regress the hypocenter from seismic record using 
earthquake source model. Here we use P wave for an example. One way is to compose the 

seismogram based on parameters of the given hypocentral and medium models, which is 

performed within time domain (Eqn. (1)).  

       tutBtItR                                                   (1) 

where “*” represents convolution; Rα(t) is theoretical displacement diagram of seismic 

body waves; I(t) and B(t) are instrumental and medium impulse response functions, 

respectively; uα(t) is displacement of seismic body waves of hypocentral radiation. The 

parameters of hypocentral and medium models can be adjusted so that the theoretical 
seismogram will be consistent with the recorded seismogram and the hypocentral 

parameters then can be estimated. In doing this, several masks is first made for the used 

instrumental parameters and then the quality factor of medium Q can be solved from the 
masks according to the minimum half period of P waves of a large amount of local small 

earthquakes. Hypocentral radius a can be found from the masks based on the half period 

of initial motion of the studied earthquake, t2α. From a and the amplitude of initial motion 

of the earthquake uαm, the seismic moment m0 will eventually be found. For more details 
about this method, please refer to [1]. 

The other method is performed within frequency domain, which is to first find Fourier 

transformation of the recorded seismogram and to obtain the displacement spectrum of 
earthquake source radiation (Eqn. (2) and Figure 1) after removing the influences of 

medium and instrument.  
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Figure 1: Spectrum of earthquake source 
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Based on the two eigenvalues of the spectral curve, intersection between the 

low-frequency asymptote and the vertical axis  0ˆ
u , and the corner frequency fcα, the 

seismic moment m0 and hypenctral radius a can be determined as: 
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where  uses the mean value on the focal sphere (at 45º), (4/15)
1/2

. For an S wave, that 

mean value  is (2/15)
1/2

. 

Finally, stress drop, average dislocation and maximum dislocation can be determined 

based on m0 and a as: 
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where A is the area of dislocation surface, η and η’ take different values with respect to 

different dislocation surface. 
For example, if we use Keilis-Borok mode for circular shear dislocation model, then we 

have: 
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Based on classic theory of fracture mechanics we can have: 
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From above equations the ambient shear stress τ0 can be solved. 
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2.2 Instrumental and Medium Calibration 

Instrumental calibration 

 Î  in Eqn. (2) is frequency characteristic of the instruments. For an analog 

seismograph, its frequency characteristic equals the product of the frequency 

characteristics of seismometer pier  1Î , amplifier  2Î , and pen point  3Î  

             ieWIIII 321
ˆˆˆˆ                                  (7) 

where W(ω) is amplitude-frequency characteristic, ϕ(ω) is phase-frequency characteristic.  

SK seismograph and VGK seismograph had been the two primary seismometers used in 
China until last 70’s. In 1970’s, large-scale local seismic networks were established in 

China and short-period seismographs such as model 64, 65, 63A, 67 (linear amplifier) and 

micro seismographs such as DD-1 and DK-1 seismographs were successively used since 

then. Since end of the 20
th
 century and beginning of the 21

st
 century, digitized 

seismographs have emerged and gradually replaced the traditional analog seismographs, 

and most seismic data were recorded by model 64(65) and DD-1(DK-1) seismographs. 

This section provides fundamental parameters for those instruments.   
(1) Horizontal SK seismograph: period of pendulum T1 = 12.0 sec, its damping ratio D1 = 

0.45, period of amperemeter T2 = 11.1 sec, its damping ratio D2 = 5.5, coupling 

coefficient σ
2
 = 0.079, and the impulse response is: 

       tteee
l
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where 
0l

k
 = 1 for calculation. 

(2) VGK seismograph: T1 = 1.0 sec, D1 = 0. 5, T2 = 0.1 sec, D2 = 8.0, σ
2
 = 0.4, and the 

impulse response is 

       tteee
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(3) DD-1 and DK-1 seismograph: amplitude-frequency characteristic is: 
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Phase-frequency characteristic is:  
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For more parameters about DD-1 and DK-1, please see Table 1, where ωs,B = 2πfs,B 

 

Table 1: Instrumental parameters of DD-1 and DK-1 seismograph 

Model type τ τ1 τ2 Fs Ds fB DB 

DD-1 0.22 0.84 0.80 1 0.45 20 0.707 

DK-1 5.0 16.0 8.0 0.067 0.45 20 0.707 
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(4) Short-period seismograph: amplitude-frequency characteristic is: 

       BBBGs fSfQfQfKfW                                     (12) 

where  
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and 

      2222 /1/4/1 BBBBG ffffDfQ                               (14) 

Phase-frequency characteristic is: 
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In above equations, GB is electric constant and JB is moment of inertia. Other parameters 

are listed in following table.  

 
Table 2: Instrumental parameters for short-period seismographs 

Model type fs Ds fB DB 

Model 64 1/(1.0 ~ 1.5) 0.5 5 ~ 7 Hz JFB-2 

Model 65 1 0.5 1/0.14 1.5 ~ 3 

 

Medium calibration 
Medium has influences on three facets: absorption, frequency dispersion, and free surface. 

Assuming the reflected wave of a free surface equals to its incident wave, the medium 

influence can be represented as the source displacement spectrum being multiplied by a 
scale factor 2. The influence on absorption can be expressed as the source displacement 
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spectrum being multiplied by a factor
cQ

r

e 2




, where c is the velocity of body wave. The 

influence on frequency dispersion is similar to that on absorption except that the velocity 

c is replaced by the phase velocity cP, which is: 
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where ω0 is the low cutoff frequency. Thus, the overall medium influence on absorption, 

dispersion and free surface should be: 
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2.3 Earthquake Selection, Sampling and Fourier Analysis 

In preparing analog seismograph, appropriate seismic data is required. The selected 

earthquake samples can neither be too big nor too small. If an earthquake is too big, its 

record may exceed space of seismograph. On the contrary, small earthquakes will lead to 
high error and may be seriously influenced by instruments and medium. Meanwhile, 

epicentral distance of the selected earthquakes cannot be too short; otherwise the recorded 

seismic waveforms will be too close to be discretized. In addition, usable seismograph has 
to be clear, no breakage, and a wave band has to be recorded in a single line. Because of 

those constraints, only less than half of the analog seismic records can be used for spectral 

analysis while digital seismic records do not have such problems.  
There are two important sampling parameters: step size Δt and window length T. Nyquist 

frequency is dependent on the step size as fn/2 = 1/(2Δt). If seismic data has frequency 

components higher than the Nyquist frequency, those frequency components cannot be 

detected. Even worse, the existence of the high frequency components will cause 
remarkable error, called as high frequency aliasing. Therefore, in selecting Δt, we need to 

make sure that fn/2 is higher than the highest frequency component fmax of the seismic data. 

Meanwhile, in order to correctly identify high frequency progressiveness, fmax should be 
evidently higher than the corner frequency fc.   

Fundamental frequency of spectrum can be determined as fmin = 1/T, where T = NΔt is the 

window length and N is total number of sampling points. Spectral analysis is then 

performed on seismic data F(t) during the time period T, which is:  
f(t) = F(t)W(t)                                                        (19) 
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W(t) is the time window, which is also called rectangular window in here (Fig. 2). Fourier 

spectrum of f(t) is the convolution of the Fourier spectra of F(t) and W(t). 
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Figure 2: Rectangular window and its spectral window 

 

In Figure 2, the peak width in the middle of the spectral window is called bandwidth and 

the small undulations on both sides are called sideband. From Eqn. (21) it is known that 

the smaller the bandwidth and sideband are, the more accurate spectrum will be solved. 
Therefore, the rectangular window is not an ideal window for Fourier analysis because of 

its comparatively large sideband. In practice, the two most frequently-used windows in 

Fourier analysis are Hanning window (Eqn. (22)) and Hamming window (Eqn. (23)). 
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From above equations it can be found that in order to reduce the bandwidth, a large 

window length T should be used. Based on our experience, it is agreed that an ideal T 
should be as 8 to 10 times as reciprocal of the corner frequency fc without mixing with 

other waves (T ≈ 8-10(1/fc)).  

Sampling can be performed on a stereocomparator but it will be much easier to use a 

scanner for sampling with the help of the seismogram digitization and database 
management system (SDDMS) [2]. Generally the basic axis of sampling does not overlap 

with the baseline of the recording chart, so the inclining and zero-frequency components 

have to be firstly removed after digitalization. Also, since the recorded data are arcs, the 
large amplitude radians have to be modified. In order to do that, large amplitudes between 

t1 and t2 are measured every equal amplitude-space, then interpolation are performed 

among these measurements and t1 and t2 to obtain an unequal time-space sampling. Next, 
connecting those samples through lines and redo an equal time-space sampling. (These 

steps are not needed if using digital record.)  Afterwards, fast Fourier transformation 

(FFT) is performed using Hanning window to obtain all samples and the total number of 

the samples must be two of integral power (2
n
). Finally, the seismic spectrum radiated 

from the hypocenter can be acquired after instrumental and media calibration.  
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2.4 Solve for Hypocentral Radius and Stress Drop 

2.4.1 Brune model 

Based on the recorded displacement response spectrum of S-wave and eliminating the 

influences of instruments and medium, the S-wave spectrum at hypocenter can be 

obtained as:  
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From the low-frequency level of the S-wave spectrum, m0 can be determined as 

    /0ˆ4 3

0 urm                                               (25) 

where  choose the average value on the focal spherical surface (at 45º), (2/5)
1/2

. The 

radius of rupture plane a can be calculated from the corner circular frequency ωc as:  

c

a


34.2
                                                            (26)            

The stress drop, average dislocation and other focal parameters can then be solved from 

Eqn. (27).  
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2.4.2 Explosive source model 

The hypocentral radius and stress drop can also be solved in frequency domain using two 

ways. The first way is to use the displacement response spectrum of P-wave and 

removing the influences of instruments and medium to obtain the P-wave spectrum at the 
hypocenter.   
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Next, plot the spectrum in a logarithmic chart and calculate the hypocentral radius a from 

the corner frequency fc, the stress drop Δσ can be eventually solved from a and the 

low-frequency level  0ˆ
u . 

An alternative method is to directly plot a logarithmic chart for the recorded P-wave 

displacement spectrum and eliminate the instrumental influence to have: 



General Approaches of Solving Seismic Source Dynamic Parameters              9 

 

 

 
 PS ttv

Q

e

r

u

I

R
 












2

lgˆlg

ˆ

ˆ

lg                              (29) 

In above equation vυ is virtual wave velocity, tS and tP are arrival times of S- and P-wave, 
respectively. In the diagram, the low-frequency part (< fc) are fitted using a straight line 

and the medium quality factor Q then can be obtained from its slope. The low-frequency 

level  0ˆ
u  is estimated from the intercept of that fitting line. Based on those results, 

the hypocentral radius a and stress drop Δσ finally can be solved. 

 

 

3  Methods for Solving Rupture Characteristics  

3.1 Unilateral Finite Moving Source Model 

The far-field P-wave displacement spectrum of unilateral finite moving source can be 

described as: 
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Its low-frequency asymptote is the same as that of the shear dislocation circle. There are a 

series of local minimums. The period corresponding to the first local minimum T1 is: 





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

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
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

cos1
1

fv
LT                                                    (31) 

Seismic moment m0 can be obtained from the low-frequency level  0ˆ
u  of the source 

P-wave displacement spectrum.  

    /0ˆ4 3

0 urm                                               (32) 

Length of rupture plane L and rupture speed vf can be determined from the slope and 
intercept of T1-cosψ lines recorded by multiple seismic observatories. Rupture 

propagation direction is the direction along which the period decreases.  

Based on m0 and L, the average dislocation u , maximum dislocation maxu , average 

strike-slip dislocation and stress drop    ssu  , , and average dip-slip dislocation and 

stress drop    ddu  ,  can be obtained. 
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where W is the width of the fault plane which can be assumed as double focal depth (W = 
2h); S is the area of the fault plane (S = W × L); λ is the slip angle of the fault plane; 

subscripts (s) and (d) denote the strike-slip and dip-slip components, respectively. 

 

3.2 Bilateral Finite Moving Source Model [3] 

Focal P-wave displacement spectrum in frequency domain can be obtained from Eqn. 

(34) 
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Figure 3 plots local minimums of the P-wave spectrum, which is obtained from 

theoretical displacement spectrum of P-wave.  
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Figure 3: Relationships of 1/c of the first and second minimum to b 

 
In above figure, a, b, c, and f are defined as 
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Figure 3 shows that:  
(1) Periods of the first and second minimums are linearly related to cosψ 
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(2) 1/c reduces to disappear with d increases and the point of disappear is the inflexion. 
Beyond the inflexion, 1/c reappears with the increasing d while the correlation between 

1/c and b is changed.  

The steps of solving for m0, L0, Lπ, vf, u , Δσ are 

(1) Determine m0 from low-frequency asymptote,     /0ˆ4 3

0 urm . 

(2) Determine L from the slope of Tmin
1
-cosψ curves in spectra obtained from multi 

observatories. 

(3) Compare the spectra of multi observatories to find the inflexion and determine its ψc 

and fc, and calculate Z using Eqn. (37) 
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(4) Find a from Z according to Table 3. 

(5) Find n1, n2 from a according to Table 4. 

(6) Calculate L0 and Lπ from L and a using Eqn. (35). 
(7) Determine vf from the interception of Tmin

1
-cosψ curves obtained from multi 

observatories. 

(8) Calculate the average dislocation u , maximum dislocation maxu , average strike-slip 

dislocation and stress drop    ssu  , , and average dip-slip dislocation and stress drop

   ddu  ,  from m0 and L using Eqn. (33). 

 

Table 3 

a 0.5 0.6 0.7 0.8 

b -0.5 -0.2 0.1 0.4 

1/c 0.76 0.69 0.59 0.46 

Z -1.52 -3.45 5.9 1.15 

 

Table 4 

a 1 0.9 0.8 0.7 0.6 0.5 

n1 1 0.97 0.87 0.699 0.508 0.24 

n2 0.5 0.46 0.4 0.31 0.2 0.07 

 

3.3 Determine Rupture Characteristics Using Directional Function [4] 

Earthquake’s rupture characteristics include unilateral rupture or bilateral rupture, and the 
primary rupture direction for unilateral rupture. Considering an asymmetric bilateral 

rupture (Fig. 4), whose rupture propagation velocity is vf, rupture lengths of two sides are 

L0 and Lπ, focal depth h = 0, and the seismic observatory’s epicentral distance is r . The 
far-field radiation’s P-wave spectrum on the seismic observatory is 
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Figure 4: Asymmetric bilateral rupture  

 

If an earthquake was recorded by seismic observatory 1 and 2, and the epicentral 
distances of the two observatories were equal to each other. Assuming the two stations 

located on two lines emanated from the hypocenter along reverse directions, the ratio 

between the amplitude spectrums obtained from the two observatories can be defined as 
the directional function D: 
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Obviously, D is a function of ω with parameters L0/L and θ. 

If the field angle between the lines from both observatories to the epicenter is denoted as 

ϕ (ϕ ≠ π), then the ratio between the two amplitude spectrums can be defined as the 
generalized directional function DG  
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Similarly, DG is a function of ω with parameters ϕ, L0/L and θ. 

In determining the primary rupture direction based on 2 observatories’ records, we first 

measure the field angle α. Next, we choose 6 L0/L values from 0.5 to 1.0 with increment 
0.1 and 12 θ values from 0º to 180º with equal increment 15º. Based on these parameters, 

6 × 12 = 72 generalized directional function curves can be obtained. The calculated 

curves are then compared with the curve recorded by the observatory 1 to find the closest 

calculated curve and corresponding L0/L and θ values. Two candidate primary rupture 
directions can be obtained by adding/subtracting the θ to/from the observatory 1’s 

geographic azimuth, one of which must be the true primary rupture direction. If more than 

3 observatories’ records are available, we will be able to obtain more than 2 generalized 
directional functions DG and more than 4 candidate primary rupture directions following 
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the same method. These candidate directions and rupture azimuths are counted based on 4 

quadrants, and the quadrant where most rupture azimuths are located is selected. The 
average value of these selected rupture azimuths is then calculated and specified as the 

earthquake’s primary rupture direction. Fig. 5 plots the generalized directional function 

curves with different L0/L and θ values, which were calculated for the Ms3.3 earthquake 

occurred at 4:44 on October 2
nd

 in 1986 based on records from Nanjing and Bengbu 
observatories. Theoretical curves are also shown in that figure and compared to the 

calculated curves to determine that θ = 60º and L0/L = 0.90. 

 
Figure 5: Comparison of calculated generalized directional function curves DG and its 

theoretical curves 

 

 

4  Methods for Solving Q Value of Medium 

The quality factor of medium, Q, is a dimentionless parameter that describes the seismic 

wave absorption capability of the medium. It is defined as reciprocal of the ratio of the 
energy loss within a distance of one wavelength and the total energy. In laboratory, it is 

measured as: 





2

1 
Q                                                           (42) 

In that equation Δω is the sample’s energy loss during a stress cycle; ω is the stored 

elastic energy when the sample’s strain reaches maximum. The seismic wave’s amplitude 

attenuates with respect to distance r with attenuation coefficient α. 
rieAA  0                                                           (43) 

Q is related to α, frequency f, and wave velocity c as: 
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Several ways of solving Q from the seismic wave are presented here.  
Method 1: Based on Eqn. (29), Q can be calculated as: 
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where K is the slope of high-frequency asymptote, e is the base of the natural logarithm, 

vυ is the velocity of virtual wave, and 
PS

tt , are the arrival time of S and P wave, 

respectively.  

Method 2: The frequency spectrum of body wave is     
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 , for a 

recorded earthquake, we find frequency spectrum ratio of two frequencies ω1 and ω2 as: 
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That ratio can be assumed as a constant if these earthquakes occurred in the same area 
with magnitudes were close to each other, the average Q in that area then can be 

determined from the slope K of the curve ln(|A(ω1)|/ |A(ω2)| ~ t.  

K
Q

2

21  
                                                          (47) 

Method 3: If an earthquake is recorded by two observatories then Q value can be 

determined from travel times of the two observatories t1, t2 and the frequency spectrum 
ratio defined in Eqn. (46), which is:  
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Method 4: Q can also be estimated from the attenuation of the seismic surface wave 

between two observatories as [5]: 
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where A is the calibrated amplitude; Δ is the epicentral distance (in degree); v is the group 
velocity of the seismic wave; subscripts 1 and 2 represent the observatories; subscript j 

means that it is related to the surface wave with angular frequency ωj. It can be seen from 

Eqn. (49) that the calculated Q is related to the frequency of selected surface waves. 
Surface waves with different frequencies can penetrate the Earth’s crust with different 

depths and some waves can even reach the upper mantle. Thus, the variation of Q with 

respect to frequency also reflects its variation with respect to the depth.  

Method 5: Using attenuation characteristics of S and SS waves which are recorded by 
same observatory to evaluate the Q value as [6]:  

KTQ 2/4343.0                                                     (50) 

In above equation, ΔT is the difference of arrival times of S and SS waves; K is slope of 

the line 
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where A(ω) and A’(ω) are amplitude spectra of S and SS wave in that observatory. 

Method 6: Evaluate Q using fp ~ t* of seismic coda wave [7]. For small earthquake, by 
neglecting its source, the amplitude of its coda wave is: 

   
  tfefIKtfA , and Qrt /*                                   (52) 

The maximum amplitude can be found from above equation by setting ∂A/∂f = 0, where 

the frequency f is the predominant frequency fp, from which the fp ~ t* relationship can be 
obtained as: 
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From above equation, the theoretical fp ~ t* plot of the used instruments can be drawn. 

From the diagram of a coda wave to evaluate an fp by counting the number of time that 

the waveform passes through zero line within a specified time period (such as 10 seconds) 
from the origin time and dividing that number by double time period, an observation fp ~ t 

curve then can be plotted. That observation curve is then matched with the theoretical 

curve obtained from Eqn. (53), the Q value becomes the value of t on the observation 
curve at t* = 1.  

Method 7: Alternatively, the fp ~ t* relationship can be determined from the coda wave’s 

shape function C(fp, t*) of the used instrument, which is calculated as: 
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The Q value then can be determined following the approach presented in method 6. 

Method 8: The Q value can also be evaluated using attenuation coefficient of the coda 
wave, α. The shape of envelope curve of attenuation of the coda wave A(t) is defined in 

Eqn. (55), and from α, the quality factor Q of the coda wave can be calculated using Eqn. 

(56).  
lgA(t) = C – 0.5lgt – αt                                                  (55) 

where: 
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5  Error Analysis 

Error analysis is an indispensable step in a complete study, without which obtained 

solutions cannot be used for any further analyses. In seismic analysis, the error is caused 

by various reasons and affected by different factors. 
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5.1 Error caused by Digitization 

Digitization is the representation of the original analog curve f(t) with a discrete set of its 

points sampled at equal time intervals. The maximum error caused by the discretization 

Δf is: 

28

2 A
|)x("f|

)t(
f max 


                                            (57) 

where A is the digitization precision. Resolution ratio of a scanner is 300 dpi and the dot 

pitch is 0.085 mm. Compared to the thickness of the recorded curve, it is the secondary 

factor that affects the precision of digitization. Given a thickness is 0.1mm and A is 

assumed to be half of the thickness, which is 0.05 mm. The acceleration at a distance of 
200 km from epicenter of the earthquakes with magnitude about Ms3 will not exceed 10 

mm/s
2
. Assuming |f”(t)|max = 2.5, the sampling rate is 300 dots during 12.7 seconds, and 

Δt = 0.085 mm, Δf can be calculated as 0.052 mm from above equation. Meanwhile, 
errors caused by large amplitude have to be calibrated in pretreatment process. 

 

5.2 Error caused by the Simplified Source and Medium Model 

In general source models, it is always assumed that the focal depth is 0. Therefore the 

radiation pattern factor Rα is simplified as Rα = sin2θcosϕ = sin2θ. If the actual focal 

depth is 15 km and the epicentral depth is 200 km, we have Rα = sin2θcos[arctan(15/200)] 
= 0.9972sin2θ. The relative error is only 0.28%. Also, other factors such as the uneven 

distribution of the medium’s Q value, assumption of the reflection coefficient of the 

earth’s surface as 2, and incomplete instrumental calibration may also cause the error. 

 

5.3 Errors Generated in Making Theoretical Template 

For example, in plotting generalized directional function curves, we used to plot a 
theoretical curve for θ values from 0º to 180º every 15º. This means that the maximum 

error generated in that process could be 15°.  

 

5.4 Errors Influenced by Distribution of the Local Observatories 

If the used data was recorded by a number of observatories, the more evenly the 

observatories distribute and the larger the larger the field angles are, the smaller the error 
will be. Here we discuss the influence of the distribution of local observatories on the 

error of measured ambient shear stress τ0 [8].  

In evaluating the ambient stress, it is assumed that the average stress field reduced to zero 

in a large range after the earthquakes (which means that the friction between the fault 
planes can be neglected) and the yield strength of crust is 200 MPa, which value was 

measured in lab. The reliability of above assumptions still needs to be verified and in this 

paper we only discuss the relative accuracy of τ0 obtained for different earthquakes.  
According to [8] and take constant values υ = 0.252, η = 0.05, μ = 33GPa, we have: 

 
77.0)2lg(5.175.0

0 10



aM s                                                 (58) 

Since the allowable error in measuring Ms is 0.3, therefore the error of τ0 is: 

 7.11010)( 3.075.077.0)2lg(5.1)3.0(75.0
  ams                         (59) 
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which shows that the relative error Δτ0/τ0 can reach 70%. 

If the error of focal radius a is k, from Eqn. (58) the induced error in τ0 will be k
1.5

. The 
error in a is composed of two errors. The first error is caused by the using of mean value 

of sinθ on the focal sphere for evaluating the radiation pattern factor: 
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By using the mean value of sinθ on the focal sphere, above equation becomes: 
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Let vf = 0.775β and assume that β = 3.38 km/s, one can have: 
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In above equation, vp is taken as 5.7 km/s in order to estimate the extreme error. Also we 

use a  to denote the focal radius evaluated using the average sinθ on the focal sphere, 

amax to denote the radius evaluated using the maximum sinθ = 1, and amin to denote the 
radius evaluated using the minimum sinθ = 0. It can be calculated that when sinθ = 1, the 

error of τ0 is 0.073
1.5 

≈ 2.0%, while sinθ = 0, the error becomes 0.265
1.5 

≈ 13.7%. Thus, the 

relative error caused by neglecting θ ranges from 2.0% to 13.7%.  

Another error is measurement error. As demonstrated in previous sections, a can be 
determined based on the corner frequency fcα.  In measuring fcα, if sampling step Δt is 

0.0425 seconds, the folding frequency (23.5 Hz) is well above fcα, therefore the influence 

of high frequency aliasing can be neglected. Next, we chose the window length T = 4s 
and then the resolution is 1/4Hz. For an earthquake whose magnitude is about M3.0 and 

whose epicentral distance is 200km, the corner frequency fcα will be around 2.5Hz. Thus, 

the relative error of fcα may reach 0.1. Substituting this value into Eqn. (61) and (64), it 
can be found that the resulted relative error in a is 1/(1 + 0.1) × 100% ≈ 9.1%. The 

consequent relative error in τ0 is 0.091
1.5

 = 2.7%. Based on above discussion, it can be 

concluded that the errors in evaluating ambient stress τ0 are mainly caused by the error in 

earthquake magnitude Ms and that error can reach 70%. 
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6  Conclusions 

A number of physical models and approaches are presented to solve for seismic source 

dynamic parameters as well as the medium’s Q value. Errors in calculating those 

parameters are also discussed and methods for error analysis are illustrated as well. The 
paper shows that hypocentral radius, stress drop, and ambient shear stress can be solved 

using circular dislocation model, Brune model, explosive source model, or through 

instrumental and medium calibration. This paper also explains techniques used for 

earthquake selection, sampling and Fourier analysis. As for determining earthquake’s 
rupture characteristics, the paper illustrates three methods: unilateral finite moving source 

model, bilateral finite moving source model, and directional function. Besides that, this 

paper also presents seven methods for computing Q value of medium. The methods and 
models demonstrated in this paper can be extensively used for investigating seismic wave 

parameters and therefore have wide prospect in earthquake prediction.  

 

 

References 

[1] J.D. Byerlee, “Static and Kinetic Friction of Granite at High Normal Stress”, 

International Journal of Rock Mechanics and Mining Science & Geomechanics 

Abstracts, 7(6), 1970, 577-582. 

[2] Z.-K. Liu, W. Wang, R. Zhang, N.-H. Yu, T.-Z. Zhang, J.-Y. Pan, “A Seismogram 
Digitization and Database Management System”, ACTA Seismologica Sinica, 23(3), 

2001. 

[3] J.N. Brune, “Tectonic Stress and the Spectra of Seismic Shear Waves from 
Earthquakes”, Journal of Geophysical Research, 75(26), 1970, 4997-5009. 

[4] B.-H. Liu, S.-F. Wu, Z.-M. Gao, “On the Lowering of the Epicentral Intensity of the 

Ninghe Aftershock of May 12, 1977”, Chinese Journal of Geophysics, 22(1), 1979, 
14-24. 

[5] W.-L. Liu, P.-Z. Wu, Y.-W. Chen, “Determination of Seismic Rupture 

Characteristics Using Directional Functions”, Earthquake Research in China, 12(1), 

1996, 93-99. 
[6] R. Feng, Z.-Q. He, “Q Value of Surface Waves in Eastern Region of Xizang 

Plateau”, Chinese Journal of Geophysics, 23(3), 1980, 291-297. 

[7] L.-M. Zhang, Z.-X. Yao, “The Q-Value of the Medium of the Tibetan Plateau 
around Lasa Region”, Chinese Journal of Geophysics, 22(3), 1979, 299-303. 

[8] R.B. Herrmann, “Q Estimates Using the Coda of Local Earthquakes”, Bulletin of 

Seismological Society of America, 70(2), 1980, 447-468. 

 
 


