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Abstract 
 

The assessment of soil parameters in construction holds significant importance for 

refining building information modeling (BIM). Our study aimed to investigate the 

adaptive utilization of pressure sensor data as a dynamic and computationally 

efficient tool for this purpose. The results reveal a significant correlation between 

the pressure sensor readings of the hydraulic cylinder in the excavator bucket and 

the total load during static-dynamic penetration tests conducted in both 

homogeneous and heterogeneous soil. This correlation holds true across a 100% 

range of torque, with values recorded at 0.60 and 0.93, respectively. A key strength 

of this methodology lies in that it enables near real-time detection of verified 

boundary levels. This feature streamlines the adoption and development of BIM-

based excavation methods that seamlessly align with current practical conditions. 
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1. Introduction  

Enhanced machine designs are imperative to address the growing demands placed 

on construction equipment, aiming for heightened functionality, productivity, and 

efficiency (Du et al., 2018). The interaction between excavators and model-based 

design is developed on machine control modeling, which derives information from 

soil models. These soil models are built on the initial information gathered from 

ground investigation methods. They give point-specific knowledge of the ground 

being investigated. Soil models of an entire construction area are then either 

interpolated from said points or by using estimation methods calculated to form an 

educated conclusion of soil conditions.  

As the objective of ground investigations is to map and identify soil layers and 

constitutive soil parameters, the amount of information available for a mapped area 

dictates the reliability of the information. Complete mappings of a construction area 

are very rarely made, and if conducted, tools for such are very scarce. The most 

common method used is non-destructive testing, such as ground-penetrating radar 

mapping. These methods all are conducted as a pre-construction phase.  

Modern determination of soil parameters in automated construction is effectively 

simulated using finite element method (FE) modeling. A recent study by Guan et al. 

(2023) reviewed the considerable success achieved by FE modeling but recognized 

the limitation of soil constitutive models as they are only applicable to limited soil 

types or stress paths (Zhang et al., 2021b). They additionally identified the need for 

extensive and complex computations to further develop this information into 

workable models. As a solution to this problem, Guan et al. (2023) created a deep 

learning (DL) incorporated FE model to solve the limitation issues of FE soil models. 

This DL incorporation does not resolve the need for extensive computational 

requirements. The challenge of FE modeling and the complexity of calculations 

create an information and hardware gap between mathematical modeling 

capabilities and the needs of implementations in the field, as reviewed by Zhang et 

al. (2021a). These computational requirements limit the adaptive utilization of 

ground investigation data during construction.  

As FE models create viable information for soil parameter detection, to understand 

the entire ground mapping of a construction site we must recognize that ground 

conditions are heterogenic. For this, You et al. (2024) combined random field 

models (RFM) with discrete element method (DEM) models to account for the 

granular particle properties of heterogenic soil. This is an effective tool to examine 

the mechanical properties of granular soil particles, which considers spatial 

variability and coefficient variance. As Mak et al. (2012) concluded in their study, 

these DEM models are elaborated from soil–tool interaction. This is a model 

developed from the original universal earth moving equation first presented in 

studies by Reece (1965), transforming pressure sensor data into force prediction 

data (Luengo et al., 1998). DEM modeling can numerically propagate soil 

parameters but needs large amounts of calculation data (effectively a soil library) to 

determine the correct parameters. 
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As mentioned in the study of Ma et al. (2023), excavator development is focusing 

strongly on the aspects of productivity and safety. Development to tackle these 

challenges is through automation of excavation. The abilities of automation rely 

strongly on information derived from velocity and pressure sensors. The soft 

sensors used in the autonomous control of excavators rely on computation and 

further elaboration of pressure sensor readings. The use of hydraulic pressure in 

model-based prediction requires further development for workable models and 

reliable automation.  

While contemporary determination of soil parameters in construction is adeptly 

simulated through discrete element method (DEM) modeling, its effectiveness 

diminishes when aiming for adaptive information in near real-time applications. 

The extensive computational requirements of DEM modeling have constrained its 

practical use. Furthermore, existing research lacks instances where model-based 

prediction or autonomous excavation is executed solely through the utilization of 

excavator hydraulic pressure data without additional computations. This paper 

outlines a method aimed at addressing these challenges.  

The aim of our study was to investigate the potential of the adaptive utilization of 

pressure sensor data in excavation by comparing the correlation between pressure 

readings of a smart excavator and a soil surveying machine. Essentially, the pressure 

sensor data comparison is used to find changes in soil layers by verifying the depths 

of soil boundaries during excavation, creating a verified soil boundary throughout 

an excavated area. Field tests were conducted to simulate various infrastructure 

conditions commonly found in Scandinavia. Data collection from our test subject 

smart excavator was made using current tools and the latest wireless network 

technology. 

Based on the main aim, the following questions were set in our study: 

1. What are the variations of correlation between penetration test results and 

excavator pressure sensor readings 

a. in heterogeneous soil? 

b. in homogeneous soil? 

2. What are the effects of torque range limitations on the correlation results? 

3. What are the effective uses and potential limitations of pressure sensor 

correlation to penetration test results? 
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2. Materials and methods 

2.1 Smart excavator specifications 

The smart excavator used in this study was developed by Oulu University’s Civil 

Engineering Research Unit from a standard Bobcat E85 Compact excavator. It is 

fully automated and can be operated with four different control methods (Immonen, 

2014 and Heikkilä et al., 2019 and Mehmood et al., 2021). The first is typical 

manual operation mode, whereby a pilot operates the controls of the excavator from 

inside the cockpit. All readings from the pressure sensors and G2 inclination sensors 

can be read and recorded in this mode (see Section 2.2). This was the operation type 

used in our study. Second, the excavator can be operated with a teach-in method, 

where the movements of the excavator pilot are recorded and repeated by the 

excavator. Third is an automated method, where the trajectories of the excavator are 

generated from a machine control model. Lastly, the excavator can be operated via 

remote control. Here, using an Ubiquiti antenna, readings from all the outfitted 

lidars, cameras, and sensors can be obtained over the same local network. 

Connection can be established locally with Wi-Fi-based Ubiquiti or from further 

distances by Rajant kinetic mesh or 4G/5G broadband. Rajant kinetic mesh is 

connected to the network either wirelessly or by wired connection (Figure 1). 

 

Figure 1: Layout of the smart excavator used in this study, developed by 

Oulu University’s Civil Engineering Research Unit (Immonen et al., 2021). 
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2.2 Pressure sensors and data collection 

The Oulu University smart excavator was equipped with Gefran KHC pressure 

transmitters with digital CANopen protocol outputs. These monitor the hydraulic 

push and pull force parameters of hydraulic pressure from three hydraulic cylinders 

on the excavator: boom, arm, and bucket. All had monitors for both push and pull 

force. These transmitters registered the pressure changes during excavation as push 

force pressure (labeled “A” readings) and pull force pressure (labeled “B” readings). 

Signal output of the Gefran pressure transmitters was transmitted via controller area 

network (CAN) to the motor control center (MCC) and EthCan Kvaser and from 

here via RJ45 cable to the ethernet switch and Ubiquiti antenna on the excavator.  

The pressure readings were then recorded with MATLAB/Simulink on a laptop 

from the Ubiquiti control booth antenna via RJ45 cable (Figure 2). Novatron G2 

inertial measurement unit (IMU) data were collected parallel to the pressure sensors 

through the same protocol. This provided the 3D orientation information on the 

smart excavator needed for the comparison to soundings results of a static-dynamic 

penetration test (see Section 2.5). 

 

 

 

Figure 2: Signal output sequence of Gefran pressure transmitters. 

 

 

 

 

 

 

 

 

 

Figure 2: Signal output sequence of Gefran pressure transmitters. 
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Information from the excavator engine, including RPM and fuel consumption, was 

recorded via CAN by the EthCan Kvaser CAN USB and transmitted via USB cable 

to the Beckhoff Industrial PC on the excavator. These readings were downloaded 

from the Beckhoff Industrial PC to the control booth laptop via Ubiquiti antenna 

and RJ45 cable (Figure 3). 

Figure 3: Signal output sequence of excavator engine data. 

 

The Gefran KCH pressure transmitter model B04C has a pressure measurement 

range of 0–400 bar and operates at a 10 msec (1000 Hz) measuring rate. Accuracy 

at room temperature is <± 0.5% FS. This effects over the compensated range ± 

0.01% FS/°C typical (± 0.02% FS/°C max) (Gefran KHC, 2015). 

 

2.3 Data processing and analyses 

The data collected from the pressure and G2 IMU sensors during excavation were 

processed using MATLAB into two separate tables. The data from the pressure 

sensors were divided into timestamped readings from all three hydraulic cylinders, 

namely the push and pull force readings from the boom, arm, and bucket. The 

readings gave a per 10 msec account of the whole excavation. The bucket tip’s 

location with timestamp during excavation can be obtained by using forward 

kinematics from the recorded IMU data. 

From the per 10 msec timestamped location of the excavator bucket’s tip, the 

vertical time stamp z gave the location of the bucket in relation to the ground. From 

this vertical location data, all readings that were recorded above ground level were 

discarded. The remaining below ground level location readings were then cross 

referenced with the timestamped pressure sensor readings, producing a table with 

excavation pressure readings per 10 msec of each pressure sensor.  
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From this data, a subtotal average was calculated for each 1 cm of the excavation 

for all pressure sensor readings (both push and pull forces). This average pressure 

data was then compared to the static-dynamic penetration test data for the same soil 

depths. 

Excavator engine data, including RPM and fuel consumption, were directly 

recorded with a timestamp from the ECU to the Beckhoff Industrial PC. 
 

2.4 Study area and soil type 

We compared the changes in pressure sensor readings of the smart excavator to the 

static-dynamic penetration test results when digging in an adhesive soil 

environment. A set of test pits were dug in two separate locations during November 

of 2022 and May of 2023. The two test locations represented:  

1. homogeneous soil in a sand pit in Jääli, Oulu, Finland. 

2. heterogeneous soil in a constructed parking area in Arkala, Oulu, Finland, 

comprising: 

a. course layers of crushed rock, 0–56 mm in depth, on top of a fill layer 

consisting of sandy moraine and large rocks 

b. moraine subsoil  

The Oulu region of Finland has a freezing zone frost protection depth of 1.9 m. At 

the sand pit site in Jääli, ground water was reached at a depth of 2.9 m below ground 

level. At the Arkala test site, all test pits were above ground water level. All 

activities were conducted outside of the freezing period of the year. In both locations, 

a set of six excavations were conducted with a series of six test pits, respectively. 

Each series was repeated with the same test pit scheme (Table 1). All test pits were 

dug at a proximity of < 3 m from the closest static-dynamic penetration test location.  

Six static-dynamic penetration tests were conducted to map out the soil condition 

of a 30 m x 30 m area at each site. These results were then verified with soil 

samplings (granulation, soil type, and water content) of the same location. This is 

in line with the ground investigation requirements set by the European 

Commission’s CEN technical committee in NCCI 7. 
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Table 1: Test pit characteristics of both test areas and individual test pits 

Test area  

Heterogeneous soil Slope 
Torque 

range 

Dimensions 

(l x w x h) 
Bucket type 

Test pit 1 1:1.5  100% 2 x 4 x 1.8 m slope bucket           

w = 1.5 m, V = 800 l 

2 1:1.5 75% 2 x 4 x 1.8 m slope bucket           

w = 1.5 m, V = 800 l 

3 1:1.5 50% 2 x 4 x 1.8 m slope bucket           

w = 1.5 m, V = 800 l 

4 1:2 100% 2 x 4 x 1.8 m trenching bucket                

w = 0.5 m, V = 400 l 

5 1:2 75% 2 x 4 x 1.8 m trenching bucket                

w = 0.5 m, V = 400 l 

6 1:2 50% 2 x 4 x 1.8 m trenching bucket                

w = 0.5 m, V = 400 l  

Homogeneous soil  

Test pit 1 1:1.5 100% 2 x 4 x 3 m slope bucket           

w = 1.5 m, V = 800 l 

2 1:1.5 75% 2 x 4 x 3 m slope bucket           

w = 1.5 m, V = 800 l 

3 1:1.5 50% 2 x 4 x 3 m slope bucket           

w = 1.5 m, V = 800 l 

4 1:2 100% 2 x 4 x 3 m trenching bucket                

w = 0.5 m, V = 400 l 

5 1:2 75% 2 x 4 x 3 m trenching bucket                

w = 0.5 m, V = 400 l 

6 1:2 50% 2 x 4 x 3 m trenching bucket                

w = 0.5 m, V = 400 l 

 

2.5 Soil parameters and soundings 

We limited our test range of soil types to adhesive soil parameters. This decision 

was made for two reasons. First, we wanted to create a test environment where the 

studied sensor readings emulated conditions that are represented in a road structure 

rehabilitation project—a typical example of an infrastructure project. Second, 

cohesive soil types are not commonly represented in road structures. 

Static-dynamic penetration testing was chosen as the comparison to the readings 

produced by the pressure sensors of the smart excavator. This is a common 

soundings test administered to map out the condition of the ground’s structure. The 
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penetration test in question creates a condition map by combining a cone penetration 

test with a dynamic probing test. In the cone penetration phase of the test, rods are 

compressed and rotated simultaneously. In this phase, the compressive force and 

torque are recorded either with hydraulic pressure or electronically. Compression 

force is recorded as a total static load of the cone (qc) at the end of the probing rod 

(Equation 1).  

     qc = 
𝑄𝑡𝑜𝑡

1000 ∗ 𝐴𝑐
        (1) 

 

where Qtot = Qmeasured + Qrods 

 qc = total static load (MPa) 

 Qtot = total compression force (kN) 

 Ac = area of penetration cone cross section (m2). 

 

Torque is taken into consideration with net statistic load qn (Equation 2); however, 

in our case where soundings depth was < 10 m, these are approximately the same 

(qn ≈ qc): 

     qn = 
𝑄𝑡𝑜𝑡

1000 ∗ 𝐴𝑐
 – kp * (Mtot – μ1 – Qtot)    (2) 

  

where qn = net static load (MPa) 

 Qtot = total compression force (kN) 

 kp = constant (kp = 1/Ac * r * 106) = 0.039 (l/m3) 

 Mtot = total torque (Nm) 

 μ1 = constant made by the soundings rig type  

 (GM-75 = 1 Nm/kN). 

 

The cone penetration test reaches its maximum compressive force at 30 kN, from 

which the static-dynamic penetration test switches into dynamic probing. Here the 

rotation of the rod is kept at a steady pace whilst a drop hammer is used on the 

soundings rod. The result is recorded as net driving amount Nn/0.2 m (Equation 3) 

(Halkola et al., 2001). 
 

     Nn = N20 – 0.040 * Mtot       (3) 
  

where Nn = net driving amount 

 N20 = total driving amount (N/0.2 m) 

 N = driving amount 

 Mtot = total torque (Nm). 

 

Dynamic probing is changed back to cone penetration when total driving amount 

drops to < 5/0.2 m. The net driving amounts of dynamic probing can be translated 

into total static load with Equation 4: 
 

     qc = 0.83 (MPa/(N/0.2 m)) * Nn      (4) 
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3. Results 

3.1 Pressure sensor readings and ground investigation results in 

heterogeneous soil  

The results of the test pit excavations show that pressure sensor readings of the push 

force pressure in the bucket’s hydraulic cylinder correlate with the total static load 

of the static-dynamic penetration test (Figure 4 and Table 2). These results were 

achieved by comparison to slope correlation from multiple test pits with an effective 

-1.2 m of excavated course layering. In the test pits, first 0.6 m of crushed rock gave 

a cone penetration reading in total static load until a verified soil boundary depth of 

-0.60 m below ground. Below the soil boundary, a fill layer consisting of sandy 

moraine and large rocks was translated from net driving amounts into total static 

load for a consecutive 0.6m in depth (Equation 4). 

The most accurate correlation was reached with 100% range of torque. With the full 

range of torque in use, the mean slope of hydraulic pressure correlated with total 

static pressure to an accuracy of 0.93. A limited 75% range of torque reached 0.71 

accuracy in mean slope correlation, and 50% limitation in range of torque was the 

most inaccurate with 0.68 accuracy (Figure 4). In general, the mean correlation 

results improved with the increasing range of torque available; however, there is 

some overlap in the correlation results to be expected as the fill layer had large rocks 

unevenly distributed between the various test pits (Table 2). Standard deviations 

between the results followed the same trend in result accuracy as the mean slope 

correlation of each torque range.  

The soil boundary level was registered within a 4 cm tolerance of the depth 

indicated by the static-dynamic penetration test and verified with soil sampling. 

This tolerance is inside the grain size distribution of the 0–56 mm crushed rock. 

Both bucket types registered similar readings inside each torque range. The push 

force pressure in the bucket’s hydraulic cylinder was the only pressure reading that 

gave correlating results. The boom and arm hydraulic cylinders did not register 

pressure changes that could be accurately compared with the static-dynamic 

penetration test results. No significant difference was found between the results of 

excavating a test pit with slope angles of 1:1.5 to the results of slope angles of 1:2. 

In general, the cone penetration readings displayed a smaller variation in slope 

correlation across the measured test pits. Standard deviation increased slightly when 

excavating in looser soil parameters (Figure 4). Perhaps the most significant result 

was discovered in correlation to translated driving amounts, which had a clear 

increase in accuracy when moving up from smaller driving amounts to denser soil 

parameters. More specifically, the hydraulic pressure readings of the excavator not 

only correlated with net driving amount slope changes but were able to be registered 

per 1 cm of excavated ground. This showed a clear increase as net driving amounts 

are regularly viewed at 0.2 m intervals. 
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Figure 4: Correlation results of heterogeneous soil test area per torque 

limitation range. 
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3.2 Pressure sensor readings and ground investigation results in 

homogeneous soil 

As with the results in heterogeneous soil, the results of the test pit excavations in 

homogeneous soil show that the pressure sensor readings of the push force pressure 

in the bucket’s hydraulic cylinder correlate with the total static load of the static-

dynamic penetration test. The accuracy follows the same trends on the torque 

limitations set on the excavator engine as with heterogeneous soil. Here, however, 

the correlations are not as precise as in heterogeneous soil, where soil boundaries 

are accurate (Table 2). As homogeneous soil represents layers of different 

compaction, the changes are more subtle. When viewing the changes in soil 

compaction in the first 1.8 m of each test pit excavation, the most accurate 

correlation was reached with the 75% range of torque, where the readings correlated 

with 0.63 accuracy. The full range of torque reached 0.60 accuracy, and the 50% 

range of torque was the most inaccurate with 0.57 accuracy (Figure 5). Standard 

deviations between the results followed the same trend in result accuracy as the 

mean slope correlation of each torque range. As with the results of the 

heterogeneous soil, standard deviation increased when excavating in looser soil 

parameters. 

It was noted that large variations in compactness within a small distance was not 

registered with the same correlation as with a static-dynamic penetration test. As an 

example, a total static load reading of 3.06 MN/m2 decreased to 1.86 MN/m2 and 

increased back up to 4.80 MN/m2 inside a 36 cm distance in depth. This represents 

a maximum change in static load of 258.1%. The smart excavator, using the same 

amount of torque for looser and denser soil, could not react to such quick changes 

back and forth in such a short distance in depth. The excavator registered this as a 

141.7% maximum change in pressure. Only changes into either direction of 

compactness were registered more precisely. As with heterogeneous soil, these 

pressure changes were registered within a 4 cm tolerance of the depth indicated by 

the static-dynamic penetration test. Readings registered below ground water level 

did not correlate with the static-dynamic penetration test results. 
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Figure 5: Correlation results of homogeneous soil test area per torque 

limitation range. 
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Table 2: Correlation of pressure sensors to soundings results. 

Torque range % Heterogenous soil 

Correlation (r) 

Homogenous soil 

Correlation (r) 

100 0.93 0.60 

75 0.71 0.63 

50 0.68 0.57 

 

3.3 Effects of torque range limitation to fuel consumption 

During the test pit excavations, fuel consumption was recorded for all three torque 

ranges. The results of fuel consumption were noted as an isolated feature of the 

results and therefore are not considered time and production rate changes to the test 

pit excavations. The results of limiting torque range gave a 9% decrease in fuel 

consumption from full torque to the 75% limited range. Limiting torque to 50% 

demonstrated a 22% decrease in fuel consumption from full torque and a 14% 

decrease from the 75% torque range. No notable difference was recorded between 

the types of buckets used. 
 

4. Discussion 

4.1 Potential and limitations of pressure sensor data in correlation to 

ground investigations     

As the study results demonstrate, excavator pressure sensors can detect soil 

boundaries in frictional soil. The larger the torque range in use, the more accurately 

the soil borders can be detected using correlation to soundings results. As the 

compaction varies between soil types, the amount of torque required varies as well. 

Variance in more subtle compaction levels inside homogenous soil is not as precise. 

As the effects of torque range limitation clearly affect the amount of fuel 

consumption, torque range should be limited as much as possible during excavation. 

With model-based excavation where soil boundary detection is crucial, excavation 

in homogeneous soil can be executed with torque limitations and full range should 

be used only when needed or near estimated soil border levels. 

Dependable real-time information regarding soil parameters stands as a pivotal 

factor in construction sites, planning, and decision-making. From an economic 

perspective, the accuracy of data capture and analysis plays a crucial role in 

predicting outcomes. The present study demonstrated that that the excavator’s 

pressure sensor data can be used in excavation. The study has several important 

implications. First, utilizing pressure sensor data in soil parameter detection should 

be focused on distinct borders or constitutive soil parameters in a pre-investigated 

environment. As the overall accuracy of correlation varies between soil types and 

densities, this is not a tool for precise ground investigation. The potential of pressure 

sensor data is in creating a simple and effective tool to verify depths of borders 

through slope variations in total active pressure. Compared to derived soil–tool 

models (Luengo et al., 1998 and Mak et al., 2012) where soil parameters (Gill and 
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Berg, 1967, Hettiaratchi, 1988 and Du et al., 2018) require prediction of forces and 

exhaustive estimation calculations, direct comparison of pressure sensor correlation 

is less exhaustive and site oriented.  

A site-specific calibration of soil border correlation between the excavator and 

ground investigation results is needed for reliable results. The calibration must be 

repeated per ground investigation point if soil parameters change significantly from 

one investigation point to another. 

The use of pressure data instead of acting forces during excavation cuts down on 

the amount of estimation and calculations for results. The measurement of forces in 

an excavation uses the same pressure sensor data but requires additional conversion 

for reliable outcomes. As the contact forces focused on the bucket are calculated 

from multiple pressure sensors distributed along boom, arm, and bucket, soil–tool 

interaction must be considered as well (Luengo et al., 1998). These are reformulated 

from Reece’s fundamental earth moving equation (Reece, 1965), adding remolding 

forces of the payload in the bucket during excavation. The original equations 

considered excavation on a horizontal plane. This has been developed through 

estimation tools to a combined method of identification and estimation (Guan et al., 

2023), creating a developed Powell’s tool that accounts for terrain slopes (Mak et 

al., 2012). The latest studies have developed soil parameter detection in soil–tool 

interactions to utilize finite element methods to model outcomes and parameters. 

Where estimation through forces supersedes pressure data is in the case of more 

detailed parameter detections as well as saturated soil interaction. A more detailed 

study into saturated soil must be made to evaluate the potential of pressure sensor 

readings. 

Total active pressure readings recorded on field computers could be adjusted to 

record pressure sensor readings of excavators. Translated with current ground 

investigation software, both pressure readings can be compared in parallel. As our 

study was limited to frictional soils representing common soil types in road 

structures, more comprehensive field tests are required in the future to test the 

hypothesis in other prevailing soil conditions. 

Additionally, the pressure sensor data produced during an excavation is limited to 

the amount of pressure that the hydraulic cylinders and pressure sensor models are 

equipped to withstand. If the soil type requires large forces for excavation, the 

pressure of the hydraulic cylinder can exceed the threshold of the overflow valves 

or the maximum capacities in the pressure sensors, creating an imbalance of 

correlation. This requires that the equipment used for excavation has large enough 

tolerances for pressure to record all required results. 
 

4.2 Pressure sensor data in future research 

Ground investigations give a point-specific account of prevailing soil conditions in 

a certain area. To create an understanding of the full area in question, the soil 

boundaries and parameters of investigated points are interpolated to create an 

estimate of the whole area. As the interpolation is commonly conducted by simply 

triangulating boundary depths from point to point, the estimation is perfunctory.  
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A model-based excavation plan for automated excavators using interpolated 

boundary levels can be developed further if the amount of information fed into the 

model is dynamic. This can develop a boundary-based excavation model where 

excavations are conducted to a preset depth or discontinued earlier if a certain 

boundary is reached. Through such development in soil modeling, we can provide 

more precise excavations and volume calculations and develop soil models and 

emission calculations during a project. Developed boundary detection using 

dynamic information during excavations can allow us to tackle unplanned events 

during excavation more precisely and in near real-time. The detection of pressure 

sensor reading correlations with ground investigations could be developed by 

implementing a detection scheme algorithm, such as the differential detection 

scheme presented by Tarokh and Jafarkhani (2000), to detect slope changes in 

penetration test results with site-specific calibration of results to excavator pressure 

readings. 

 

5. Conclusion 

This work proposed a new estimation method for determining soil boundary levels 

utilizing hydraulic pressure data of excavators. The experimental results indicate 

that pressure sensor readings of the push force pressure in an excavator bucket 

hydraulic cylinder correlate with the total static load of a static-dynamic penetration 

test. Correlation analysis confirmed the inaccuracy of the pressure data estimation 

error level of approximately 7%. The main benefits of the method are in the use of 

pressure data instead of acting forces during excavation, thereby cutting down on 

the amount of estimation and calculations for results and offering new potential in 

precise, boundary-based autonomous excavation, the near real-time detection of 

verified boundary levels and adopting model-based excavation methods with 

prevailing conditions of practice. 

At present, practical challenges for the proposed method include the prevailing 

conditions and equipment commonly in use. Hydraulic pressure sensors, data 

collection, and their implementation with model-based design are not commonly in 

use. Also, the utilization of soundings drilling rig field computers for the recording 

of excavator pressure data is not common practice.  

In future studies, the correlation between hydraulic pressure in excavation and the 

soundings results of cohesive soil types as well as saturated soils should be studied. 

Soil boundaries in cut and fill excavations of clay soils are as common as in 

frictional soil. 
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