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Abstract 
 

        The quest to have a model that will be better at approximating market prices and produce fit 

better than Heston’s Stochastic model motivated us to combine jump components to 

Heston’s Stochastic model which we called Heston’s Stochastic-Jump model (HSJ).  

Complete derivation of the Heston’s Stochastic-Jump model was presented. Simulation 

studies were conducted. Pricing performances of Heston’s Stochastic and Heston’s 

Stochastic-Jump models were empirically analysed using the NASDAQ index call option 

price quotations.  Results show that Heston’s Stochastic-Jump model performed better than 

Heston’s Stochastic model by about 18% reduction in error. 

    

Keywords: Heston’s Stochastic Model, Heston’s Stochastic-Jump Model, Calibration, Fast   
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1  Introduction 
 

Financial models are needed in the financial market for the pricing and estimation of fair 

values of various securities, estimate their risks and show how to control these risks. Since 

the introduction of the Black Scholes model which was developed for the pricing of 

financial options, many complex models have been developed such as stochastic volatility 

models which are used mainly by traders and quantitative analysts for pricing and hedging 

financial assets.  These models were developed with contributions from [1], [2], [3], [4]. 

Volatility measures the unexpected changes in the value of a financial asset in a certain time 

period. Volatility is used as a measure of risk of certain financial assets. Therefore, 

stochastic volatility models treat volatility of the underlying asset as a random process rather 

than a constant as in the case of Black Scholes model. By calibrating the parameters of a 

stochastic process, it can be used to estimate prices close to the market values. The 

assumption of constant volatility in Black-Scholes model has led to numerous attempts of 

developing new models that would fit the empirical option prices better. In financial 

markets, the implied volatilities often represent a “smile” or “skew” instead of a straight 

line. The “smile” reflects higher implied volatilities for in- or out-of-the money options and 

lower implied volatilities for at-the-money options. It was observed from the work of [6] 

that Heston’s model which is one of the stochastic volatility models is problematic when it 

comes to fitting short maturities. Reference [7] reported that incorporating both stochastic 

volatility and jumps in equity returns dynamics makes the short maturity returns less 
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Gaussian, so the implied volatilities will fit better. However, the quest to have a model that 

will be better at producing lowest pricing errors and produce fit better than Heston’s 

Stochastic model motivated us to incorporate jump components to Heston’s Stochastic 

model which we called Heston’s Stochastic-Jump model (HSJM). We will present a 

complete derivation of the Heston’s Stochastic-Jump model, empirically analyse its pricing 

performances and compare it with the original Heston’s Volatility model. Fast Fourier 

Transform (FFT) pricing formula proposed by [8] will be used for calculation of option 

prices and Euler Monte Carlo simulation for simulating the price paths of the models.  

 

 

2  Option Pricing Models 
 

In this section, a brief introduction to the Black Scholes model will be given which will help  

in  understanding the Heston model. 

 

The Black-Scholes model 

Many of the techniques and option pricing models used in financial theory and practice are 

derived from the ideas and methods presented by [9]. The following formulas give Black-

Scholes price of a European call at time t: 
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The stock price follows the Geometric Brownian Motion which has the following dynamics 

in the risk neutral world:  

  t t t tS r q S dt S B       (2) 

where 

tS : the stock price at time t, t: current time, r : the risk-free interest rate,  q   : the dividend 

yield, assumed to be constant, σ:  the volatility of the asset’s price, which is constant in this 

case, tB : Brownian Motion, K  : the strike price,  T t : the time to maturity. 

 

Heston’s Model 

This section presents the Heston’s Stochastic Volatility option pricing model, which is a 

type of stochastic volatility model developed by [4] for analysing bond and currency 

options. The Heston’s model is a closed-form solution for pricing options that seeks to 

overcome the shortcomings in the Black-Scholes option pricing model related to return 

skewness and strike-price bias. The Heston’s model is a tool for advanced investors. It 

assumes that the underlying stock price tS follows a Black-Scholes type of stochastic 

process, but with a stochastic variance tv  

   1t t t tdS S dt S v dB    (3) 
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   2t t tdv v dt v dB       (4) 

where 

, , 0     are constant parameters. The two Brownian motions, 1B  and 2B  are correlated, i.e 

 1 2corr ,dB dB dt .The dynamics of the stock price tS  in (3) is a geometric Brownian 

motion with time varying volatility. The variance tv  in (4) follows a square root process. 

The parameter   corresponds to the long-run average of tv and controls the speed by 

which the process returns to its long-run mean. The parameter   is the correlation between 

the underlying and the volatility while   is the volatility of volatility (i.e. the volatility of 

the variance of returns).  

 

Jump Process 

       A jump process is a type of stochastic process that has discrete movements, called 

jumps, with random arrival times, rather than continuous movement, typically modelled as a 

simple or compound Poisson process. Reference [10] introduced a jump process to model 

dynamics as follows 
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where   and   are the drift and volatility respectively, tB  is a standard Wiener process, tN  

is a Poisson process with jump intensity  and 2( , )~iY N    is the jump size. Reference 

[10] shows how to price European options with the proposed model. The two basic building 

blocks of every jump-diffusion model are the Brownian motion (the diffusion part) and the 

Poisson process (the jump part). The Brownian motion is a familiar object to every option 

trader since the appearance of the Black-Scholes model. 

 

 

3   Methodology 
 

               Combining Heston’s Stochastic Model (HSM) with Jump  

The quest for a model that will be better in the approximation of market prices and produce 

a better fit than the Heston’s Stochastic model motivated us to combine jump components to 

Heston’s model which we called Heston’s Stochastic-Jump model (HSJM). Adding jump 

components to the previous specification of Heston Stochastic model gives 

   1t t t t t t tdS r R S dt S v dB R S dN      (6) 

   2t t tdv v dt v dB       (7) 

where the process 
tN represents a Poisson process under the risk neutral measure, with jump 

intensity 0  . 
tN  is independent of the two Brownian motions in the stock price and 

variance processes. The percentage jump size of the stock price is dictated by the random 

variable tR ,  

r  is the riskless rate, 

R  is the expected jump size, 

 r R    ie drift term, 

 is the rate of reversion of the variance tv , 1B and 2B are Brownian motions with correlation

  

                    1 2ov , ,c dB dB dt  

https://en.wikipedia.org/wiki/Stochastic
https://en.wikipedia.org/wiki/Jump_discontinuity
https://en.wikipedia.org/wiki/Poisson_point_process
https://en.wikipedia.org/wiki/Poisson_point_process#Compound_Poisson_point_process
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                     Pr 1tdN dt    

                      E t tR R   
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log 1 log 1 ,
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 
N  which defines 1 tR as a log-normal 

jump with mean S and variance 2

S . 

           is the mean level of tv  and   is the volatility of tv . 

         Derivation of Heston’s Stochastic-Jump Valuation Equation 

Assuming that the stock price and the variance satisfy equations (6) and (7), deriving the 

Heston’s Stochastic-Jump partial differential equation requires forming a riskless portfolio. 

Setting up a portfolio   which contains the option being priced with its value denoted by

 , ,M M S v t ,  units of the stock S,  units of another options  , ,N N S v t  which 

hedges the volatility.  

 M S N       (8) 

The change in the portfolio in time dt  is given by: 

 d dM dS dN       (9) 

Applying ˆIto's Lemma to dM  and dN differentiating with respect to the variables 

, , andS v t . Following [11], ˆIto  formula for the jump process is given as: 
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  (10) 

Applying (10) to our case of option price function  , ,M S v t ,we have  
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  (11) 

The term    , , tM RS t M S t dN    describes the difference in the option value when a jump 

occurs. Applying ˆIto's  Lemma again to dN  and differentiating with respect to the variables 

, , andS v t , to obtain: 

 

   

2 2
2 2

2 2

2

1 1

2 2

, , t

N N N N N
dN dt dS dv vS dt v dt

t S v S v

N
v S dt N RS t N S t dN

v S



 

    
    
    


     

  (12) 

Inserting equations (11) and (12) into (9), the change in the value of portfolio d  will now 

be written as: 
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Rearranging equation (13),so that dt  terms for M , dt  for N , dS , dv  and tdN  terms are 

grouped together to have 
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The two terms ds and dv  in (14) contribute to risk in the portfolio according to [4]. 

However, for the portfolio to be risk free dS and dv  must be eliminated by equating their 

coefficients to zero. The hedge parameters now become 
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which lives (14) as  
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The portfolio should also earn a free risk rate, thus: 

  d r M S N dt       (17) 

Equating the right hand side of (16) to right hand side of (17), dividing both side by dt ,  



84                                                Option pricing within Heston’s stochastic and stochastic-jump models 
 

 

          

2 2 2
2 2

2 2

2 2 2
2 2

2 2

1 1

2 2

1 1

2 2

, , , ,t t t t

M M M M
vS v v S

t S v v S

N N N N
vS v v S

t S v v S

M R S t M S t N RS t N S t dN r M S N

  

   

 

    
    

     

    
    

     

             

  (18) 

Plugging the values of and   from (15), we have 
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         When equation (19) is rearranged, such that M  terms will be on one side and N terms will 

be on other side, then divide both sides by 
M

v


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
 respectively, we take their 

expectations over the probability distribution of jumps to obtain:  
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   Note that: 
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Equation (21) is the expected value of the change in the option price with respect to the 

jump probability distribution function. 

Equation (20) now becomes 
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The expression in terms of M and that in terms of N in (22) are the same but represent 

different options. This means that each of the two expressions can be written as a function 

 , ,M S v t   of , , andS v t . Following [4], this function can be specified as 

     , , , ,M S v t v S v t      ,that is 
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Multiplying both sides of (23) by 
dM

dv
 and rearranging to obtain 
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  (24) 

As written in [4], the market price of risk is a linear function of the volatility, such that: 

  , ,S v t v  .  

Therefore, equation (24) can be written as 
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  (25) 

Equation (25) is the Heston’s Stochastic-Jump Partial Differential Equation with the 

inclusion of jump component tR which must be satisfied by the value of an option. 

Following [12], the boundary and initial conditions that are imposed are the following: 

   , , max ,0M S v t S K    

 , , 0M S v t  , this means that when the stock price is 0, the call price will also be 0. 

 , , 1
M

v t
S


 


, this means that as the stock price increases, delta gets closer to 1. 

 , ,M S t S  , this means that as the volatility increases, the call value gets equal to the 

stock price. 

 

 

4  Pricing Methods 
 

       This section describes some of the pricing techniques that can be used to produce option 

prices from our models. However, the Fast Fourier Transform (FFT) and Monte Carlo 

methods will be used in this paper. 

 

Fast Fourier Transform (FFT) 

This section, therefore introduces a popular method called Fast Fourier Transform (FFT)  
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proposed by [8]. This method will be used for calculation of option prices in this paper. The 

price of a European call option using Fourier Transform is given by: 

  
2 20

( ( 1) )

(2 1)

k rT

T
T

e e u i
C k du

u i u

  

  

 
   

  
     
   (26) 

      

       Monte Carlo Simulation  

       Monte Carlo simulation is a generic algorithm that generates a large number of sample paths 

according to the model under consideration, then computes the options’ payoff for each path 

in the sample. The average is then taken to find an approximation to the expected present 

value of the option. The Monte Carlo result converges to the option value in the limit as the 

number of paths in the sample goes infinity. Monte Carlo simulation has the advantage of 

being easy to implement and can be used to evaluate large range of European options. 
 

 

5  Calibration of Model Parameters 
 

       Calibration means determining the model parameters to match the market prices of a set of 

options. A model can only be useful in practice if it returns, at least approximately, the 

current market prices of European options. The purpose of the calibration is to make the 

model prices fit as closely as possible with the market prices, by reducing the error margin 

between the estimated model prices and the observed market prices, i.e. is to find the 

parameter set that minimizes the distance between model predictions and observed market 

prices. In particular, using the risk-neutral measure, the Heston Stochastic model has five 

unknown parameters  0, , , ,v        (defined in section 2) which need to be calibrated 

or estimated while Heston’s Stochastic-Jump model has eight unknown parameters 

 0, , , , , , ,j jv          which also need to be calibrated. Therefore, by calibrating these 

parameters values, we seek to obtain an evolution for the underlying asset that is consistent 

with the current prices of European options. This is called an inverse problem. The most 

popular approach to solving this inverse problem is to minimise the error or discrepancy 

between model prices and market prices. This usually turns out to be a non-linear least-

squares optimisation problem.  

         In order to find the optimal parameter  , we need to 

(i) define a measure to quantify the distance between model and market prices, 

(ii)  run an optimization scheme to determine the parameter values that minimize such 

distance. A simple and straightforward approach is to minimize the sum of squared 

differences. 

There are many calibration methods but we will use the Adaptive Simulated Annealing 

(ASA) method in this paper. 

 

Adaptive Simulated Annealing (ASA) 

Adaptive Simulated Annealing (ASA) is a calibration method that statistically find the best 

global fit of a non-linear constrained non-convex cost function over a D-dimensional space. 

According to [13], Adaptive Simulated Annealing (ASA) can be implemented in MATLAB 

by downloading the function asamin, written by Shinichi Sakata. asamin is a MATLAB 

gateway function to ASA. Detailed instructions of installing and the use ASA on one’s 

computer and asamin into MATLAB can be found in [14]. According to [15] in [6] the way 

the algorithm works is by conducting a guided search, where new iterations are generated by 

not only considering the previous information, but also by making use of randomization. 

The main advantage of this optimization method is that it does not exhaust its search on the 
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first minimum attained. It includes stochastic movements in their search pattern, which 

makes it possible to overcome local minimums and continue searching even if a potential 

solution has already been found.  

 
 

6  Results 
 

Calibration of Heston Stochastic Model to Real Market Prices 

Here, we will calibrate Heston Stochastic model to data obtained from real market. The data 

used was extracted from Bloomberg. The data consists of option market data observed on 

NASDAQ (National Association of Securities Dealers Automated Quotations) index Call 

Option Price Quotations on 20
th

 of October 2017. To reduce the absolute errors in the model 

parameters and consequently to determine whether the model is stable, we run a series of 

optimization runs and use the values obtained at the end of each run as the initial values for 

the run which immediately follows thus resetting the optimization until the model 

parameters converge to the true values used for generating the model prices. 

 

 Table 1:   Results Obtained with ASA in Heston’s Stochastic Model 

 

 

 

 

 

          

 

 

 

Table 1 shows the values of the Heston Stochastic model parameters after having run the 

calibration five times on the given set of data.  

          

Testing the Fit of Heston Stochastic Model  

In testing how well, the Heston’s Stochastic model fits the observed market data, we use the 

5th parameter set obtained in Table 1. The prices from the Heston’s Stochastic model are 

obtained by using the FFT pricing method. We will require that the difference between 

model and market prices fall within the observed bid-ask spreads. We will also consider the 

following set of acceptable solutions: 

  
1 1

1 1
|( ) | | |

2

N N

i i i i

i i

Mid Model bid Ask
N N 

      (27)   

where iMid  are the mid-market option prices (the average of the current bid and ask prices 

being quoted) , iModel  are the model prices,
iBid  are the market bid prices and iAsk  are the 

market ask option prices. 

Using the 5th parameter set in Table 1, the Heston’s Stochastic model predicted values and 

its comparison with the market prices are shown in Table 2. 

 

 

 

 

 

 

Parameters 
0v             Elapsed time 

Initial Estimate 0.050 0.050 0.20 -0.40 1.40  

   Run1 0.048 0.48 0.20 -0.36 1.37 153.57  seconds 

   Run2  0.067 0.067 0.20 -0.33 1.34 153.57  seconds 

   Run3 0.054 0.054 0.20 -0.31 1.33 153.57  seconds 

   Run4 0.041 0.041 0.20 -0.30 1.31 153.57  seconds 

   Run5 0.04 0.04 0.20 -0.30 1.30 153.57  seconds 
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Table 2: Comparison of the Heston’s Model Predicted Values and the Market Prices 

Option id Strike Bid Ask Mid HSM 

1 500 486.05 487.00 486.525 486.6032 

2 510 476.05 477.00 476.525 476.6013 

3 520 464.80 468.10 466.450 467.2368 

4 530 454.80 458.18 456.490 455.9568 

5 560 424.90 428.35 426.625 426.4991 

6 570 414.85 418.20 416.525 415.5201 

7 590 394.90 398.00 396.450 395.547 

8 600 384.75 388.10 386.425 385.5653 

9 605 379.75 383.20 381.475 380.5697 

10 610 374.75 378.20 376.475 375.577 

11 620 364.75 368.20 366.475 366.6009 

12 630 354.70 358.20 356.450 355.6086 

13 650 334.75 338.15 336.450 335.6402 

14 660 324.75 328.20 326.475 325.6638 

15 665 319.90 323.20 321.550 320.6653 

16 670 314.90 318.00 316.450 315.6723 

17 675 309.75 313.20 311.475 310.6855 

18 680 304.90 308.15 306.525 305.6915 

19 690 294.85 297.90 296.375 295.7068 

20 700 284.75 288.15 286.450 285.7198 

 

As can be observed from the Table 2, all Heston’s Stochastic model’s values have the 

predicted values that fall within the observed bid-ask spread. Also, when evaluated 

considering the stated acceptance criterion in equation (27), the Heston’s Stochastic model’s 

average distance from the mid-market price is 1.1004, which is less than the average 

deviation in the bid-ask spreads that yields 3.104. 

         

Calibration of Heston’s Stochastic-Jump Model to Real Market Prices 
Here, we will calibrate Heston’s Stochastic-Jump model to the same data using the same 

procedure used for Heston’s Stochastic model. The result obtained is shown in Table 3. 

 

Table 3:  Results Obtained with ASA in Heston’s Stochastic -Jump Model 

 

 0           
j  

j    Elapsed Time 

Initial Estimate 0.05 0.05 0.20 -0.40 1.40 -0.04 -0.3 0.05 179.32 seconds 

Run1 0.05 0.48 0.20 -0.36 1.37 -0.03 -0.3 0.05 179.32 seconds 

Run2 0.07 0.07 0.20 -0.33 1.34 0.2 -0.12 0.02 179.32 seconds 

Run3 0.05 0.05 0.20 -0.31 1.33 0.2 -0.10 0.02 179.32 seconds 

Run4 0.04 0.04 0.20 -0.30 1.31 0.2 -0.10 0.02 179.32 seconds 

Run5 0.04 0.04 0.20 -0.30 1.03 0.2 -0.10 0.02 179.32 seconds 

 

       Table 3 shows the values of the Heston’s Stochastic-Jump model parameters after having    

run the calibration on the given set of data five times. 

        

Testing the Fit of Heston’s Stochastic-Jump Model  

        In testing the fit of the Heston’s Stochastic-Jump model to the observed market data, we 

follow the same method, procedure and same data as was used in that of Heston’s Stochastic 
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model. Using the 5th parameter set on Table 3, the Heston’s Stochastic-Jump model 

predicted values and its comparison with the market prices are shown in Table 4: 
 

Table 4: Comparison of the Heston’s Stochastic-Jump Model Predicted Values and the Market Prices 

Option id Strike Bid Ask Mid HSJM 

1 500 486.05 487.00 486.525 486.6032 

2 510 476.05 477.00 476.525 476.6037 

3 520 464.80 468.10 466.450 467.4368 

4 530 454.80 458.18 456.490 456.5568 

5 560 424.90 428.35 426.625 427.4991 

6 570 414.85 418.20 416.525 416.5201 

7 590 394.90 398.00 396.450 396.547 

8 600 384.75 388.10 386.425 386.5653 

9 605 379.75 383.20 381.475 381.5697 

10 610 374.75 378.20 376.475 376.577 

11 620 364.75 368.20 366.475 366.6009 

12 630 354.70 358.20 356.450 356.6086 

13 650 334.75 338.15 336.450 336.6002 

14 660 324.75 328.20 326.475 326.5471 

15 665 319.90 323.20 321.550 322.7023 

16 670 314.90 318.00 316.450 317.5431 

17 675 309.75 313.20 311.475 312.0443 

18 680 304.90 308.15 306.525 307.4100 

19 690 294.85 297.90 296.375 297.0050 

20 700 284.75 288.15 286.450 287.6250 

 

It can also be observed from Table 4 that all the prices produced by Heston’s Stochastic-

Jump model fall within the observed bid-ask spread. Also, when evaluated considering the 

stated acceptance criterion in equation (27), the Heston’s Stochastic-Jump model’s average 

distance from the mid-market price is 0.99699, which is less than the average deviation in 

the bid-ask spreads that yields 3.104. It could be observed from Table 4 that adding jumps to 

the underlying price process improved the overall fit to market prices. Graphical 

representation of the fits of Heston’s Stochastic and Heston’s Stochastic-Jump models is 

shown in Figure 1. It could be seen that the prices produced by HSJ model gives better fit 

when compared with the mid prices (market prices) than that of HS model. Also, when the 

performances of the two models are compared in terms of time to maturity, we observed that 

their performances are similar at short maturity but HSJ begins to give higher prices as time 

to maturity increases. Price comparison in terms of maturity time is shown in Figure 2. 

Therefore, we can say that the new proposed HSJ model is better at pricing options in a 

long-time maturity than the HS model. 
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Figure 1: Price Comparison Among Mid, Heston and Heston Jump Model 

 

 
Figure 2: Price Comparison in Terms of Maturity Time 

   

Error Measurement Comparisons for the Heston’s Stochastic and Heston’s Stochastic-

Jump    Models 
       In order to measure the accuracy of the model compared to the market prices, we employ 

error measure statistic as a criterion for comparison. A value closer to 0 indicates that the 

model has a smaller random error component, and that the fit will be more useful for 

prediction. The error measure that will be used in this paper is Root-Mean-Squared Error 

(RMSE) given as: 

 
2

PRM
1

odE PrS r
N

i

M el ice Market ice
N

    

Root Mean Squared Error (RMSE) measures the average magnitude of the error. It is the 

square root of the average of squared differences between prediction and actual observation. 

    Table 5: Measured Errors of Heston’s Stochastic Model and Heston Stochastic-Jump 

Model  

Error Measure HSM HSJM 

RMSE 0.734884 0.603298 

 

         Table 5 shows the pricing errors produced by Heston Stochastic and Heston Stochastic- 

Jump models. Heston Stochastic model has the RMSE as 0.7349 while Heston Stochastic-

Jump model has its RMSE as 0.6033. This shows that HSJM has approximately 18% 

reduction in error. It could be observed that the Heston’s Stochastic-Jump model performs 

significantly better than the Heston Stochastic model as indicated by low values of Root-

Mean-Squared Error produced by Heston’s Stochastic-Jump model.  
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7   Conclusion 
 

         We proposed a modified Heston’s Stochastic model incorporating Poisson Jump process. 

Monte Carlo simulations and goodness-of-fit tests were used in the comparison of 

performances of the two models. Results show that Heston’s Stochastic-Jump model 

performed better than Heston’s Stochastic model by about 18% reduction in error.    
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