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1 Introduction

The Black-Scholes partial differential equation [4] laid the foundations for

modern derivatives pricing. However, the assumptions made in the Black-

Scholes model are now known to be overly restrictive. The assumption of a

fixed volatility in the Black-Scholes model over the tenure of the derivatives

is not realistic. In particular, the aftermath of the 1987 global financial crisis

was the empirical evidence and economic reasoning which revealed that the

distribution of stock return exhibits skewness, kurtosis, and always possesses a

negative relationship with implied volatility. This conflicts with the normality

assumption made in the Black-Scholes model. Consequently, many deriva-

tive pricing models that use the stochastic process for the underlying asset

have been developed. These result in a better match to empirically observed

results [23]. Examples of more realistic stochastic processes include the jump-

diffusion [28], Lévy [21], stochastic volatility (SV) [15], SV jump-diffusion [8],

and also the combinations of those that exhibit SV as well as jumps in both

the asset price and volatility [9].

The focus of this paper is the Heston stochastic volatility model which

has been widely used as the best alternative to the Black-Scholes model be-

cause of its analytical tractability for European options. For the American

options written on the Heston model, analytical solutions are rarely available.

Thus, approximate numerical solutions are often used. Prominent among nu-

merical valuation methods include the tree methods [29], the Fourier-Cosine

method [10] and the finite difference methods [17]. The alternating direction

implicit (ADI) schemes [33, 11] which are favorite numerical tools to handle

multidimensional pricing problems are a direct offshoot of the finite difference

methods.

This paper will contribute to the broader field of mathematical finance

by extending the applications of the inverse finite element method (iFEM)

to the two-factor problem of pricing American put options under the Heston

model. Although iFEM was initially used for the treatment of non-linear

problems associated with phase change as known in mechanics [13, 3], it has,

however, been successfully used to price American option problems written

on Black-Scholes framework under different formulations [2, 34]. Apparently,

the applications of iFEM in quantitative finance have not fully been explored.
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In the current work, we develop a hybrid algorithm to determine the optimal

exercise prices and fair price of American options under the Heston stochastic

model. Our technique is similar in some respects to Alexandrou [3], although

with additional finite differences to discretize the volatility derivative terms.

The method is implemented using the fact that the nodal locations along the

volatility direction are fixed while working out the motion of the nodes along

the underlying axis.

The rest of the paper is organized as follows. Section 2 reviews the Heston

stochastic volatility model, the corresponding PDEs describing American op-

tion prices, and the associated boundary conditions. In Section 3, we discuss

the hybrid approach in details. Section 4 studies the convergence property of

the proposed scheme. While numerical examples and some analyses are pre-

sented to demonstrate the efficiency of the scheme in Section 5, concluding

remarks are given in the last section.

2 Mathematical formulation

This section introduces the Heston stochastic volatility model and the as-

sociated boundary conditions for American put options. Although some au-

thors [19, 33], have studied the Heston model, we still describe it in details,

for the sake of completeness of the paper and ease of reference for the readers.

Furthermore, the section contains a brief discussion of the implementation is-

sues concerned when a nonlinear PDE system is solved using the inverse finite

element method.

2.1 Heston
′
s stochastic volatility model

The Heston stochastic model is formally defined as the system of stochastic

differential equations 
dSt = µStdt+

√
vtStdW1

dvt = κ(η − vt)dt+ ξ
√
vtdW2

dW1dW2 = ρdt,

(2.1)

where St denotes the spot process at time t, vt the variance at time t, µ the

drift rate, and κ the mean reversion speed for the variance. Also, η denotes
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the mean reversion level for the variance, ξ the volatility of the variance, and

Wi, i = 1, 2, two Brownian motions with correlation ρ ∈ [−1, 1]. The model for

the volatility vt is known in the financial literature as the Cox-Ingersoll-Ross

(CIR) process and mathematical statistics as the Feller process.

Let P (S, v, t) denotes the value of an American put option, with S being the

price of the underlying asset with no dividend payment, v being the variance

and t is the time. Under the Heston model and using the risk-neutral argument,

it can be shown that the value of an American put option, P satisfies the

following PDE [12]):

∂P

∂t
+

1

2
vS2∂

2P

∂S2
+ ρξvS

∂2P

∂S∂v
+

1

2
ξ2v

∂2P

∂v2
+ rS

∂P

∂S
− rP

+

(
κ(η − v)− λξ

√
v

)
∂V

∂v
= 0, (2.2)

where λ is the market price of risk, and r is the risk-free interest rate. In this

paper, we set λ to zero for simplicity and the extension to the case that λ is

non-zero should be straightforward. The parameters ρ, ξ, and κ provide the

ability to capture observed features of the market and to produce a wide range

of distributions [27]. For examples, the parameter ρ, affects the skewness of

the distribution and hence the shape of the implied volatility surface. Also,

the parameter ξ, affects the kurtosis of the distribution and the parameter κ

can be interpreted as representing the degree of volatility clustering. These

phenomena have repeatedly been observed in the financial market, and a good

number of studies have suggested that Heston
′
s model is consistent with the

real market.

Notably, Heston [14] derived an analytical solution for the price of Euro-

pean options satisfying Equation (2.2) with associated terminal and boundary

conditions. However, the approach adopted could not easily be extended to

the case of American options. Therefore, this paper concentrates on the valu-

ation of American put options satisfying Equation (2.2) for which there is no

closed-form solution available.

2.2 Boundary conditions

For the parabolic differential equation (2.2) to be solved backward in time,

additional constraints/conditions are needed. Because the focus of this work
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is to provide an efficient solution algorithm for American option problems un-

der the Heston framework, we require the contract set-up to admit a specific

solution. Thus, a particular choice of constraints/boundary conditions or pa-

rameters would not affect the design of the scheme.

To this end, we denote G(S) := max(K−S, 0), the so-called payoff function

which is independent of v. If at final time T , the value of the stock S is above

the strike price K, the option is without value and thus, one would not execute

the option. On the other hand, if the value of S is below K, the value of the

option is K−S. Therefore, at the final T , the value of the option (the terminal

condition) reads:

P (S, v, T ) = max(K − S, 0) = G(S) (2.3)

The boundary conditions with respect to S are easy to justify, in fact, they

are similar to those in the Black-Scholes model. The value of an American put

option should satisfy the far-field boundary condition

lim
S→∞

P (S, v, t) = 0, (2.4)

which means that when the price of the underlying becomes exceedingly large,

a put option becomes worthless. Following the reasoning of Black-Scholes

model where similar condition exists, there is a critical asset price, below or

equal to which it is optimal to exercise the put option. It can be shown

that under the no-arbitrage argument, the boundary conditions at the optimal

exercise boundary S = Sf are

P (Sf , v, t) = K − Sf ,
∂P

∂S
(Sf , v, t) = −1. (2.5)

Next, we discuss the boundary conditions along the v direction. Although this

is an issue which still remains unclear in the literature, an extensive treatment

from both the mathematical and financial points of view was recently pro-

vided in [33]. We remark that through consideration of the Fichera function,

a boundary condition at v = 0 is required when the Feller condition κη ≥ ξ2/2

is violated. It was argued in [7] that, when required, the appropriate bound-

ary condition to use at this boundary is the payoff function. Moreover, Zhu

and Chen [33] advanced that even when the Feller condition is not violated,

the solution should converge to the payoff function at this boundary. There-

fore, without loss of generality, in the current work, we adopt the boundary
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conditions along the v direction as stated in [33]. For v → 0, we choose the

boundary condition

lim
v→0

P (S, v, t) = max(K − S, 0). (2.6)

The discussion in [7] supported the above choice. In fact, Zhu and Chen [33]

proposed limv→0 P (S, v, t) = 0 as a simplified version of Equation (2.6) after

they successfully established that limv→0 Sf (v, t) = K.

Finally, one expects that for v → ∞ the value of an American put option

reaches the strike price K asymptotically, i.e.,

lim
v→∞

P (S, v, t) = K. (2.7)

In summary, the properly-closed PDE system for pricing American put options

under the Heston model can be written as

∂P

∂t
+

1

2
vS2∂

2P

∂S2
+ ρξvS

∂2P

∂S∂v
+

1

2
ξ2v

∂2P

∂v2
+ rS

∂P

∂S
− rP +

(
κ(η − v)

)
∂P

∂v
= 0,

P (S, v, T ) = max(K − S, 0),

P (Sf (v, t), v, t) = K − Sf (v, t),
∂P

∂S
(Sf (v, t), v, t) = −1, lim

S→∞
P (S, v, t) = 0,

lim
v→0

P (S, v, t) = max(K − S, 0), lim
v→∞

P (S, v, t) = K.

(2.8)

The above PDE system is defined on S ∈ [Sf (v, t),∞), v ∈ [0,∞), and t ∈
[0, T ]. For each t ∈ [0, T ], there exists a stock price, S at which early exercise

before final time, T is advantageous. One can show that these values define a

continuous curve Sf (v, t). It is a priori unknown and therefore defines a free

boundary.

2.3 Transformation and localization of domain

Because the governing differential equation in Equation (2.8) is indeed a de-

generate parabolic differential equation and to overcome the computational

difficulty associated with the moving boundary in the S direction, the follow-

ing transforms are applied:

x = ln
S

K
, xf (v, τ) = ln

Sf (v, t)

K
, u(x, v, τ) =

P + S

K
−1 and τ =

ξ2(T − t)

2
.
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The transformed option value u = u(x, v, τ) then satisfies the dimensionless

Heston’s equation

∂u

∂τ
− vq1

∂2u

∂x2

−2vρ

ξ

∂2u

∂x∂v
− v

∂2u

∂v2
+ (q1v − q2)

∂u

∂x
− 2q1κ(η − v)

∂u

∂v
+ q2u+ q2 = 0,

u(x, v, 0) = max(ex − 1, 0),

u(xf (v, τ), v, τ) = 0,
∂u

∂x
(xf (v, τ), v, τ) = 0, lim

x→∞
u(x, v, τ) = ex − 1,

lim
v→0

u(x, v, τ) = max(ex − 1, 0), lim
v→∞

u(x, v, τ) = ex,

(2.9)

where q1 = 1/ξ2 and q2 is the relative interest rate, which is related to the

original risk-free interest rate r by q2ξ
2/2. The system of equations (2.9) is

defined on an unbounded domain Ω∞u := [0, Tσ2/2]× [xf ,+∞)× [0,+∞) i.e.,

Ω∞u := {(x, v, τ) | x ∈ [xf ,∞), v ∈ [0,∞), and τ ∈ [0, Tσ2/2]}.
To proceed with the implementation of the current hybrid method, the

range of the option price, u should be known a priori and its monotonicity

is required along the axis where the moving boundary occurs. From (2.9),

one can easily deduce that the option price, u falls within [0, ex − 1] in the

x direction and [0, ex] in v direction. Furthermore, the monotonically of u is

required along the x direction ∀ x ∈ [0,+∞) to ensure a reasonably accurate

solution. Following the argument in [34], where similar condition exists, we

evaluate
∂u

∂x
=

(
∂P

∂S
+ 1

)
S

K
.

The value is greater than zero because the delta of an American put option is

more than −1 for S ∈ [Sf ,+∞). Hence, u is strictly monotonically increasing

with respect to x for any x ∈ (xf ,+∞).

Additionally, the two adopted boundary conditions in the v direction have

coincidentally shown the monotonicity of the option price with respect to v as

well as its boundedness:

max(ex − 1, 0) ≤ u(x, v, τ) ≤ ex.

For numerical computation, we need to localize the unbounded domain Ω∞u by

defining Ωu := [0, Tσ2/2] × Ω ⊂ R3 with the spatial domain Ω := [0, xmax] ×
[0, vmax] ⊂ R2. The truncation points xmax and vmax should be sufficiently

large to eliminate the boundary effect. Based on the previous estimates [30],
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we set xmax = ln5. On the other hand, the highest value of the volatility that

has ever been recorded on Chicago Board Options Exchange (CBOE) is only

0.85. Thus, it is quite reasonable to set vmax = 1, and this has also been the

case in many previous studies [33, 16]. Upon truncating the computational

domain, the range of u becomes [0, exmax − 1] in the x direction and [0, ex] in v

direction while the monotonicity is retained. In what follows, the construction

of the hybrid method is detailed.

3 The hybrid inverse finite element (iFE)/finite

difference (FD) method

After successful establishing a closed differential system (2.9), we now fo-

cus on the formulation of the hybrid iFE/FD method. The approach follows

closely the details described in [3, 34, 2] for the treatment of various non-

linear problems, although with an additional final differences. Essentially, the

implementation involves interchanging the roles of dependent and independent

financial variables, thus allowing the problem to be treated inversely [1]. This

requires the boundaries of the elements to remain on “isotherms” of the un-

derlying such that the option value can be specified a priori everywhere in

the domain. Furthermore, the adopted finite differences elegantly substituted

the volatility derivative terms in the governing differential equation with its

discretized form, which permits numerical computations. Finally, with the use

of simulated finite elements, we deduce a system of non-linear equation. The

solution of the resulting equation through the Newton iterations then reveals

the correct location of the free boundary.

For the implementation of the hybrid iFEM/FD approach, we first deal

with the time derivative term contained in (2.9). We begin with

du

dτ
=
∂u

∂τ
+
∂u

∂x

∂x

∂τ
+
∂u

∂v

∂v

∂τ
, (3.1)

where du
dτ

is a total derivative, i.e. is the rate of change of the option price

at a node. By the concept of iFEM, the option price is distributed and kept
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constant at all times at the computational nodes, du
dτ

= 0. Therefore,

∂u

∂τ
= −∂u

∂x

∂x

∂τ
− ∂u

∂v

∂v

∂τ
. (3.2)

In the problem defined above,the mesh along the x-direction is not fixed,

but moves with velocity V1 = dx
dτ

. Whereas, the nodal locations along the

v-direction are fixed, and thus, the term dv
dτ

:= V2 can be determined straight-

forwardly.

Next, the velocity of the mesh V1 is approximated by first order finite

difference, i.e.,

V1 ≈ Vmesh =
xτ+∆τ − xτ

∆τ
(3.3)

Adopting the approximation (3.3), the governing differential equation (2.9)

becomes

vq1
∂2u

∂x2
+

2vρ

ξ

∂2u

∂x∂v
+ v

∂2u

∂v2
+ (q2 − q1v − Vmesh)

∂u

∂x

+ 2q1κ(η − v − V2)
∂u

∂v
− q2u− q2 = 0.

(3.4)

Although the numerical treatment of Vmesh could affect the accuracy of the final

results but adopting a higher order approximation would reduce the truncation

errors due to the approximation in (3.3). In the current work, we confine our

attention to the relatively simple case of first-order difference scheme while we

defer the treatment of higher-order approximation formulae to future work.

The discretization along the v direction is performed by placing a set of

uniformly distributed grids in the computation domain [0, vmax]. We denote

the number of steps in the v direction by Nv and the step size is defined as

4v = vmax

Nv
. The value of the unknown function u at a grid point along v

direction is thus denoted by

uτ
x,i ≈ u(x, vi, τ) = u(x, i4v, τ),

where i = 0, . . . , Nv.

The discretization needs to be conducted in the interior domain Ωv =

{i4v | i = 1 . . . Nv − 1} to approximate the first and second-order spatial

derivatives using the standard forward difference schemes

∂u

∂v
≈ Ai =

uτ
x,i+1 − uτ

x,i

4v
,

∂2u

∂v2
≈ Bi =

uτ
x,i+1 − 2uτ

x,i + uτ
x,i−1

(4v)2
,

(3.5)
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At the boundary ∂Ωv = {i4v | i = 0, Nv}, the boundary conditions uτ
x,0 = 0

and uτ
x,4vNv

= ex are simply incorporated into the discrete equation. With

Equation (3.5), the differential equation (3.4) can be written as

viq1
∂2ui

∂x2
+

2viρ

ξ

∂Ai

∂x
+ viBi + (q2 − q1v − Vmesh)

∂ui

∂x

+ 2q1κ(η − vi − V2)Ai − q2ui − q2 = 0,

(3.6)

which is a system of PDE to be solved. Again, one should recall that all

parameters except x are constant real values in Equation (3.6) for each i. At

each i, we need to numerically solve Equation (3.6) for v = vi = ih where h is

the constant v step. For simplicity, we drop the subscript i′s hereafter.

Following the traditional finite element method, a residual equation can be

constructed as

R(x) =

xmax∫
0

[
vq1

∂2u

∂x2
+

2vρ

ξ

∂A

∂x
+ vB + (q2 − q1v − Vmesh)

∂u

∂x

+ 2q1κ(η − v − V2)A− q2u− q2)

]
ϕ dx = 0,

(3.7)

the solution of which is identical to the one of (3.6) in the weak sense. Here,

ϕ is the trial function.

Following the use of divergence theorem, the residual R(x), becomes

R(x) =

xmax∫
0

[
− vq1

∂u

∂x

∂ϕ

∂x
+

2vρ

ξ
Aϕ− 2vρ

ξ
A
∂ϕ

∂x
+ vBϕ+ (q2 − q1v − Vmesh)ϕ

∂u

∂x

+ 2q1κ(η − v − V2)ϕA− q2ϕu− q2ϕ

]
dΩ.

(3.8)

We now proceed to discretize residual equation (3.8) with respect to the space

variable x in terms of linear finite elements. For this purpose, we partition the

computational domain [0, xmax] into Nx line elements, each of which is mapped

isoparametrically into a basic line element with limits −1 ≤ ξ ≤ 1.

Now, expressing u in terms of a finite element basis function as

u =

p∑
i=1

wi(τ)ϕi(ξ) = (ϕi, . . . , ϕp)W n, (3.9)
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where W n is the vector of the nodal values associated with the nth element,

i.e.,W n = (W1 . . .Wp)
′

with the subscripts being the local numbers, and p is

the total number of the nodal values of this element.

By substituting (3.9) into (3.8), we obtain the matrix form for the residual

of the nth element as

R(n)(x) = k(n)W (n) − q(n), (3.10)

where

k(n)(i, j) =

1∫
−1

(
vq1

ϕ
′
iϕ

′
j

Jb

+(q2−q1v−Vmesh)ϕ
′

iϕj−q2ϕiϕjJb

)
dξ, i, j = 1 . . . p,

q(n)(i) =

1∫
−1

(
MϕiJb + ϕ

′

i

)
dξ, i = 1 . . . p

and M = 2vρ
ξ
A+ vB − q2 + 2q1κ(η − v − V2)A.

The term Jb is the stretch factor between x and ξ coordinates. It is the

determinant of the Jacobian matrix of the mapping between the coordinate

systems. For the linear shape function, Jb = 1/2. Using the solid mechanics

terminology, k(n) is the so-called element-stiffness matrix, which characterizes

the behavior of the element, whereas q(n) is the applied (or external) element

generalized-load vector, defined by the element potential energy [26].

Upon specifying the appropriate boundary conditions, the assembling of

the element matrices in Equation (3.10) yields

R = KW −Q, (3.11)

where W is the vector of the known nodal values of the entire domain, K is

the constrained master stiffness matrix involving the unknown locations of the

underlying asset, and Q represent the vector of forcing term.

To find the location of the underlying asset at each time step, we modify

the Newton’s algorithm discussed by Zhu and Chen [34]. More specifically, we

create an additional loop to handle the finite difference discretization of the

volatility derivative terms. Moreover, The Jacobian of the Newton-Raphson

procedure is saved using an element-by-element storage and solved by an it-

erative method based on a modification of the biconjugate gradient stabilized
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method. The derivatives of the residual equations (3.11) are obtained with

respect to the unknown nodal locations x. For the converged results, usually,

two to three iterations in the Newton-Raphson procedure are necessary at each

time step, and the solution advances to the next time step when all unknowns

converge to the stopping criterion set to a relative error of 10−4.

4 The convergence of the algorithm

In this section, we discuss the convergence analysis of the current hybrid

approach. This is achieved by providing the error estimate for the nth time

steps of the resulting discrete finite element solution. After implementing the

finite differences which remove the volatility-dependent terms in the governing

differential equation, we reformulate the resulting system as a linear comple-

mentarity problem. Then, we establish the weak convergence to the Heston

model in the underlying space.

At each time step n, it is not difficult to show that the option pricing

problem (2.8) after eliminating the volatility derivative terms is equivalent to

the following linear complementarity problem
(Lu− Λ).(u− g) = 0,

u− g ≥ 0,

Lu− Λ ≥ 0,

u = ψ on the boundary,

(4.1)

where g = max(ex − 1, 0), L is a partial differential operator defined as

L = vq1
∂2

∂x2
+ (q2 − q1v − Vmesh)

∂

∂x
− q2I,

and

Λ = q2 − vB − 2q1κ(η − v − V2)A− 2vρ
∂A

∂x
.

The problem (4.1) is defined on an infinite domain Ω := (∞,+∞). In

practice, we cannot solve the LCP over the whole real number line. So, we

truncate the infinite domain into the finite interval, i.e., Ωk := [xmin, xmax].

Further, we set xmax = ln 5 to ensure consistency with the truncation described

in the previous section. As pointed out in [18], this truncation of the domain
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will only bring inconsequential error in the pricing of American options. On the

other hand, xmin here is set to be sufficiently small to eliminate the boundary

effect. It is expected that if the desired error estimate of (2.9) is finally derived

through that of (4.1), the value of xmin will not affect the former, as a result

of the domain of (2.9) being a subset of Ωk containing xmin. However, for

symmetric purposes, some published works set xmin = −xmax, and we have

adopted same in this case.

With the truncated domain Ωk, first, we derive the equivalent variational

form of (4.1) to obtain the desired error estimate.

Lemma 4.1 (Variational inequality) At each time step, the linear comple-

mentary problem (4.1) is equivalent, in the weak sense, to solving for a w ∈ K,

such that for all φ ∈ K, the inequality a(w, φ− w) ≥ (g, φ− w) holds, where

K := {φ ∈ H1(Ω) : φ ≥ 0, φ(∂Ω) = 0}, Π = q2 − q1v − Vmesh,

a(w, φ− w) =vq1

∫
Ωk

∂w

∂x

∂(φ− w)

∂x
dΩk −

1

2

∫
Ωk

Π

[
∂w

∂x
(φ− w)− w

∂(φ− w)

∂x

]
dΩk

+

∫
Ωk

(
q2 +

1

2

∂Vmesh

∂x

)
(φ− w)w dΩk

and

(g, φ− w) =− vq1

∫
Ωk

∂ψ

∂ψ

∂(φ− w)

∂x
dΩk +

∫
Ωk

Π
∂ψ

∂x
(φ− w) dΩk −

∫
Ωk

q2ψ(φ− w) dΩk

−
∫
Ωk

[
q2 − vB − 2q1κ(η − v − V2)A

]
(φ− w) dΩk

+

∫
Ωk

2vρA
∂(φ− w)

∂x
dΩk

Proof. Let L2(Ωk) be the usual space of Lebesgue measurable and square

integrable functions on Ω = [xmin, xmax] and denote by H1
0 (Ωk) the Sobolev

space of first-order weak derivatives. We define K ⊂ H1
0 (Ωk) as

K̄ := {φ ∈ H1(Ω) : φ ≥ g, φ(x) = g(x),∀x ∈ ∂Ω}, (4.2)

where the inequality sign means to hold pointwise ∀ x ∈ Ωk. Let φ ∈ K̄ be

any test function and u ∈ K̄ be a solution of problem (4.1). For all φ ∈ K, we
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have φ− g ≥ 0. We multiply the third equation in (4.1) by φ− g (which does

not change in sign) and integrate over Ωk, yielding
∫
Ωk

Lu−Λ).(φ−g) dΩk ≥ 0.

Subtraction of the first equation in (4.1), integrated over Ωk, that is,
∫
Ωk

(Lu−

Λ).(u− g) dΩk = 0, yields

∫
Ωk

(Lu− Λ).(φ− u)dx ≥ 0,

thereby eliminating ψ. Furthermore, we apply a transformation w = u− g in

order to achieve zero boundary conditions. For this, we need to assume for

the moment that g is sufficiently smooth. According to this transformation,

we define a new constraint space as

K := {φ ∈ H1(Ω) : φ ≥ 0, φ(x) = 0} (4.3)

Therefore, the linear complementarity problem (4.1) is equivalent to finding

w ∈ K with ∫
Ωk

[L(w + g)− Λ].(φ− w)dx ≥ 0.

By applying integrating by parts technique, it is now clear that the weak

solution of (4.1) is the solution of the following problem. Finding w ∈ K, such

that for all φ ∈ K

vq1

∫
Ωk

∂w

∂x

∂(φ− w)

∂x
dΩk −

∫
Ωk

Π
∂w

∂x
(φ− w) dΩk + q2

∫
Ωk

w(φ− w) dΩk ≥

− vq1

∫
Ωk

∂ψ

∂ψ

∂(φ− w)

∂x
dΩk +

∫
Ωk

Π
∂ψ

∂x
(φ− w) dΩk −

∫
Ωk

q2ψ(φ− w) dΩk

−
∫
Ωk

[
q2 − vB − 2q1κ(η − v − V2)A

]
(φ− w) dΩk +

∫
Ωk

2vρA
∂(φ− w)

∂x
dΩk

(4.4)
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Using the fact that

1

2

∫
Ωk

Π
∂w

∂x
(φ− w) dΩk =

1

2
Π(φ− w)w |∂Ωk

−1

2

∫
Ωk

Π
∂Π

∂x
(φ− w)w dΩk

− 1

2

∫
Ωk

wΠ
∂(φ− w)

∂x
dΩk

= −1

2

∫
Ωk

Π
∂Π

∂x
(φ− w)w dΩk −

1

2

∫
Ωk

wΠ
∂(φ− w)

∂x
dΩk,

(4.5)

the left-hand side of (4.5) can be written as

vq1
∫
Ωk

∂w
∂x

∂(φ−w)
∂x

dΩk − 1
2

∫
Ωk

Π

[
∂w
∂x

(φ− w)− w ∂(φ−w)
∂x

]
dΩk

+
∫
Ωk

(
q2 + 1

2
∂Qx

∂x

)
(φ− w)w dΩk

Therefore, at the nth time step, the linear complementary problem (4.1) be-

comes: solve for w ∈ K, such that for all φ ∈ K, the inequality a(w, φ− w) ≥
(g, φ− w) is always satisfied. �

Lemma 4.2 When the sizes of the time step and the elements are sufficiently

small, the inequality ∂Vmesh

∂x
≥ 0 holds.

Proof. The details of proof can be found in [34]. �

Following the reasoning in [34, 24], Lemma 4.2 is proved with the condition

that both temporal and spacial step sizes are approaching zero. Thus, it is

numerically challenging to identify the δ1-neighborhood and δ2-neighborhood

of zero for ∆t and ∆x, respectively. Finally, using Lemma 4.2, the ellipticity

of the bilinear form a(·, ·) and the boundness of both a(·, ·) and (ψ, φ) can be

achieved. These are essential requirements to establish the error estimate of

the finite element solution of the class of problem (4.1).

Theorem 4.3 a(·, ·) is a continuous H1-elliptic bilinear form and (g, φ) is

bounded.
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Proof. According to the definition of a(·, ·), it is clear that for all φ ∈ H1(Ω),

a(φ, φ) =vq1

∫
Ω

(
∂φ

∂x

)2

dΩ +

∫
Ω

(
q2 +

1

2

∂Vmesh

∂x

)
φ2 dΩ ≥ L

∫
Ω

[
vq1

(
∂φ

∂x

)2

+ φ2

]
dΩ

= L‖φ2‖,
(

since q2 and
∂Vmesh

∂x
≥ 0

)
,

where L is a positive constant.

Moreover, ∀ ϕ, φ ∈ H1(Ω),

a(ϕ, φ) =

∫
Ω

∂ϕ

∂x

∂φ

∂x
dΩ−

∫
Ω

M
∂ϕ

∂x
φ dΩ+

∫
Ω

q2ϕφ dΩ ≥ ‖ϕ‖1‖φ‖1(1+‖M‖Ω,∞+q2).

Therefore, a(·, ·) is in a continuous H1-elliptic bilinear form provided that M

is ∞-measurable on the Ω, which is the case here.

On the other hand,

(g, φ) =−
∫
Ω

q2φ dΩ +

∫
Ω

Mφ dΩ−
∫
Ω

∂g

∂x

∂φ

∂x
dΩ+

∫
Ω

Π
∂g

∂x
φ dΩ−

∫
Ω

q2gφ dΩ,

where N = vB + 2Avρ2 + 2q1k[η − v − V 2]A and Π = q2 − q1v − Vmesh. �

Referencing Theorem 4.3 together with the generalized LaxMigram theo-

rem [20, 6], the linear complementary problem (4.1) has a unique solution.

Next, with the linear elements, we have adopted to discretize (4.1) with

respect to the space variable x, Ω has been decomposed into uniform line

segment with length proportional to a parameter h. We define Vh ∈ H1(Ω) as

the finite element space spanned by the one-dimensional linear basis functions

and has vanishing boundary values at the boundary.

In addition, let

K̄〈 := {φh ∈ Vh, φh ≥ 0, and φh = 0 on ∂Ω}.

The discrete version of (4.1) is to find wh ∈ K̄〈, such that ∀φ ∈ K̄〈, a(wh, φh−
wh) ≥ (g, φh − wh) holds pointwise. Also, the existence and uniqueness of

the discrete solution is guaranteed by the generalized LaxMilgram theorem,

applied to finite dimensional spaces [6].
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On the other hand, the error analysis for the discrete solution of (4.1) is

‖ w − wh ‖H1(Ω)= O(h) as long as g ∈ L2(Ω). This reasoning follows that

of Brezzi et al. [5], where similar conditions exist. Thus, with respect to the

L2(Ω) norm, and using the explicit Euler algorithm, the error analysis for the

discrete solution of problem (4.1) is

‖ w − wh ‖ L2
[Ω×(0,T ))]

= O(h2 +4t) (4.6)

5 Numerical results and discussion

This section presents numerical results of the hybrid iFE/FD algorithm

for pricing American options written on Heston’s stochastic volatility model.

First, we investigate whether the computed solution can be validated. Since

there is no exact solution of Problem 2.8 in closed form, we compare the option

price from the current hybrid approach with some of the existing numerical

solutions. In addition, the section presents some graphical results to illustrate

the effects of time-dependent volatility on the optimal exercise boundary of

American options.

5.1 Option prices

Here, we compare the performance of the hybrid iFE/FD method with

various finite difference methods’ pricing results given by Clark & Parrott [7],

Zvan et al. [25], Oosterlee [22] and Zhu and Chen [33]. The model parame-

ters are presented in Table 1. These parameters are chosen to permit direct

comparison with the reference works.

For our computation, we fix the number of points in the v coordinate

as Nv = 50, with a varying number of time and space steps: Nτ = Nx =

50, 75, 100. We calculate two sets of American put options with different pa-

rameters. The option values are presented in Tables 2 and 3 at fives stock

prices S = 8, 9, 10, 11, 12, and for variance values v0 = 0.25 and v0 = 0.0625.

We have used different discretization grids to study the accuracy of the nu-

merical solutions. The prices reported in [25, 7, 22, 33] are also shown in these
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Table 1: Model parameters

Strike price K ($) 10

Interest rate r 0.1

Correlation parameter ρ 0.1

Mean reversion level η 0.16

Expiry time T 0.25

Mean reversion rate k 5

Initial stock prices S0 ($) 8,. . . ,12

tables for comparisons. It can be seen that even with the most coarse grid

Nτ = Nx = 50, the error is only about 10−2. The prices obtained with the

finest grid are reasonably close to the ones in [25, 7, 22, 33], and the error is

about 10−3. This confirms that our numerical solution does converge to that

of the original nonlinear PDE.

Table 2: Comparison of the computed option prices with the reference solutions

at v0 = 0.25

Nx, Nτ S0 = 8 S0 = 9 S0 = 10 S0 = 11 S0 = 12

50, 50 2.0968 1.4581 0.8918 0.5493 0.2932

75, 50 2.0444 1.3325 0.7941 0.4470 0.2423

75, 75 2.0780 1.3329 0.7952 0.4477 0.2426

100, 75 2.0781 1.3333 0.7956 0.4480 0.2427

100, 100 2.0783 1.3347 0.7958 0.4481 0.2428

Ref. [33] 2.0781 1.3337 0.7965 0.4496 0.2441

Ref. [7] 2.0733 1.3290 0.7992 0.4536 0.2502

Ref. [22] 2.0790 1.3340 0.7960 0.4490 0.2430

Ref. [25] 2.0784 1.3337 0.7961 0.4483 0.2428

Next, we graph the option value versus the stock price at different time to

expiry as some readers may wish to see the result in graphical forms. Depicted

in Figure 1 is the option price, P (S, v, τ) as a function of S with fixed variance

v = 0.25 at four instants, τ = 0, τ = 0.1 (Year), τ = 0.5 (Year) and τ = 1

(Year). Clearly, the option price is a decreasing function of stock price. As

it gets closer to the expiration of the option, i.e. τ → 0 or t → 1 (year), the
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Table 3: Comparison of the computed option prices with the reference solutions

at v0 = 0.0625

Nx, Nτ S0 = 8 S0 = 9 S0 = 10 S0 = 11 S0 = 12

50, 50 1.9829 1.1067 0.5190 0.2136 0.0818

75, 50 1.9836 1.1075 0.5193 0.2136 0.0821

75, 75 1.9979 1.1075 0.5199 0.2136 0.0820

100, 75 2.0000 1.1076 0.5199 0.2136 0.0821

100, 100 2.0000 1.1076 0.5120 0.2137 0.0821

Ref. [33] 2.0000 1.0987 0.5082 0.2106 0.0861

Ref. [7] 2.0000 1.1080 0.5316 0.2261 0.0907

Ref. [22] 2.0000 1.1070 0.5170 0.2120 0.0815

Ref. [25] 2.0000 1.1076 0.5202 0.2138 0.0821

option price becomes closer to the payoff function max(K − S, 0). In fact,

when τ = 0, the option price is just the S axis starting from S = $10, since

Sf (v, 0) = $10 implies that P (S, v, τ) = 0 for all S ≥ $10.

5.2 Optimal exercise prices

So far, we have only presented some detailed results on the option value.

For the pricing of American options, it is far more crucial to determine the

optimal exercise price than the option price itself. In fact, once the optimal

exercise price is accurately determined, the problem becomes a fixed boundary

problem and the determination of the option price is straightforward [32]. In

what follows, we present some graphs to illustrate the effects of time-dependent

volatility on the optimal exercise price.

The optimal exercise price Sf (v, τ) with different fixed variance values is

shown in Figure 2. As clearly shown, the optimal exercise price is a monoton-

ically decreasing function of T − t or a monotonically increasing function of t.

As the time, t approaches the expiration time, T of the option, the optimal ex-

ercise price rises sharply towards the strike price K = $10. At t = T or τ = 0,

Sf (v, τ) = K, as we expected. Figure 2 also shows that the rate of change of

Sf (v, τ) is much larger near the expiration time than when the option contract

is far from expiration. In fact, it is because of this large rate of change of
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Figure 1: Option prices at different times to expiration. Model parameters are

k = 5, η = 0.16, ρ = 0.1, r = 0.1, T = 1, K = 10, ξ = 0.9, v0 = 0.25

the optimal exercise price near the expiration time that most numerical al-

gorithms have difficulties dealing with the singular behaviour of the optimal

exercise price near t = T or τ = 0. However, in this case, the algorithm is

designed to deal with this problem as the location of the optimal exercise price

at expiry is known a priori and is already included in the algorithm.

Depicted in Figure 3 is a graph of Sf (v, τ) with different fixed time to

expiration τ . As clearly shown in Figure 3, the optimal exercise price is a

monotonically decreasing function of v and Sf (v, τ) approaches the strike price

as v approaches zero.

5.3 Efficiency and convergence of the algorithm

Attempt is made here to compare the computational cost of the hybrid

method with a known method, predictor-corrector method [33], in the liter-

ature. The tested examples is chosen with the parameter values k = 1.5,

η = 0.16, ρ = 0.1, r = 0.1, T = 1, K = 10. These values are consistent

with the model parameters of the referenced work in order to ensure a fair
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Figure 2: Optimal exercise prices with different volatility values. Model pa-

rameters are k = 5, η = 0.16, ρ = 0.1, r = 0.1, T = 1, K = 10, ξ = 0.3,

Nτ = Nx = 100

comparison.

Table 4 compares the runtime measures as the computational cost of the

current hybrid method with the predictor-corrector method at various grid

resolutions. As shown in the table, the major set back of the current algorithm

is its high computational cost. The time required to evaluate the results is quite

high and the CPU memory used is large. However, much of the implementation

of the proposed algorithm has been geared toward proof of concept and no

optimization of the code has been attempted. .

Table 4: Comparison of the computational cost of the hybrid method and

predictor-corrector scheme

Nx N/tau Nv Ref. [33] Hybrid method

13 25 50 0.8440 418.3720

26 80 50 3.4370 7004.6543

52 250 50 19.5420 423513.7456

Next, we briefly investigate the convergence of our numerical result. We
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Figure 3: Optimal exercise prices with different time to expiration. Model

parameters are k = 5, η = 0.16, ρ = 0.1, r = 0.1, T = 1, K = 10, ξ = 0.9,

Nτ = Nx = 100

are particularly interested in the convergence properties of the algorithm as

the grid is refined. To achieve this, we consider the convergence ratio proposed

by D’Halluin et al. [31].

Let 4τ = h and 4x = h. For all our tests, we simply use as constant

step size, h for both temporal and spatial directions. If we then carry out a

convergence study by letting h→ 0, then we can assume that the error in the

solution (at a given node) is PN(h) = Pexact + hω , and the convergence ratio

is defined as

ratio =
PN/2 − PM

PM/4 − PM/2

, (5.1)

where PN denotes here the approximated price obtained with N = Nx number

of finite elements. We fixed the number of v steps at Nv = 50. For each test,

as we double the number of grid points by reducing the time-step and element

sizes (4x = 4τ = 0.02 on the coarsest grid) in half.

In the case of quadratic convergence (ω = 2), the ratio = 4, while for linear

convergence (ω = 2), ratio = 2. In Table 5, we show the convergence rate for

an American put option written on Heston
′
s model using the data in Table 1.

The table shows that ratios of the present method are all around 2 and 3,
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Table 5: Ratio of the price of American put options as the starting point S0

varies

M S0 = 8 S0 = 8 S0 = 10 S0 = 11 S0 = 12

50 2.41087 2.73284 3.02986 2.96705 3.28045

100 2.21926 2.37261 2.39418 2.41290 2.43874

200 2.01274 2.11748 2.14439 2.17503 2.16423

which suggests that the convergence ratio for the current method is linear in

both x and τ direction. Moreover, Table 5 shows that the observed ratios are

very stable, and this gives an evidence of the stability of the method.

6 Conclusion

In this paper, we have presented a hybrid method for pricing American

options written on the Heston model. We establish the convergence by re-

formulating the discretized problem in a variational form and study the ap-

proximation of the option price. The advantage of the proposed algorithm

is that it preserves the simplicity and flexibility of the conventional finite el-

ement and finite difference methods while allowing the use of full Newton

iteration scheme with its inherent quadratic convergence. Various numerical

experiments suggest that the current method is comparable with the existing

valuation methods. Based on the numerical results, we have also examined the

influence of the time-dependent volatility on the optimal exercise prices.
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