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Abstract

This paper proposes a Brownian time change for modeling stochas-

tic volatility and combines it with a drifted variance gamma process in

deriving explicit pricing methods for exotic power options in the pres-

ence of jumps and volatility clustering. In view of the changeful payoff

structure of exotic options, the underlying stock is assumed to pay con-

stant dividends on a continuous basis. In-depth analysis of properties

of the time change as well as the time-changed process is focused on

characteristic functions, which facilitate pricing via Fourier transform.

The pricing mechanism of plain-vanilla options is discussed as a basis for

pricing power options. Also, Monte-Carlo simulation techniques are s-

tudied through time discretization while empirical analysis is conducted

on real financial markets. My objective is to study the theoretical ele-

ments of this stochastic-volatility model and its interesting advantages

in the context of power option pricing.
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1 Introduction

The Black-Scholes model based on standard Brownian motion and nor-

mal distribution proposed in 1973 [5] has been one of the most classical and

successful models in option pricing theory. It is arguably the pathfinder of

continuous-time pricing for a wide class of financial derivatives. Despite this,

the model has inevitable drawbacks by assuming constant volatility and fail-

ing to incorporate the conspicuous asymmetric leptokurtic feature of financial

returns. In connection with this, many studies have existed over the recent

decades to make pertinent improvement as much as possible. Instead of multi-

farious complicated diffusion-based semimartingales, the use of a Lévy process

has been advantageous as it directly defines an infinitely divisible probability

distribution whose skewness and excess kurtosis are easily adjustable, as well

as is usually able to describe volatility smile by introducing discontinuities

aimed to capture short-term large jumps. Related works include Madan and

Seneta (1990) [14] and Carr et al (2002) [7], in which the renowned variance

gamma model and CGMY model were respectively introduced. Nevertheless,

imperfections still exist in traditional Lévy models in that they assume by con-

struction deterministic volatility evolution and thus have proven ineffectual for

volatility cluster effect.

In a discrete-time environment, such effect has been thoroughly modeled

by heteroscedasticity (GARCH) models, whereas under continuous time, two

solutions exist in general - one directly constructs a stochastic process for the

volatility coefficient while the other randomizes the time structure to distort

financial returns frequencies. A comprehensible advantage of the latter, which

has a common appellation of a time change, is increased analytical tractability

when adapted to a wide range of Lévy processes. To name a few, Carr et

al (2003) [8] initially utilized a mean-reverting process proposed by Cox et al

(1985) [10] as a stochastic time change, while Barndorff-Nielsen and Shepard

(2001) [4] studied non-Gaussian Ornstein-Uhlenbeck processes for this purpose.

It is worth mentioning that these time changes possess characteristic functions

in explicit form.

In this paper, time change is modeled under a rather convenient structure.

I choose a drifted integrated squared Brownian motion due to its controllable

stochastic level and, importantly, tractability with a closed-form characteristic
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function. In addition, allowing for its relative diversity and simplicity in simu-

lation, a drifted variance gamma process is selected as the primary model for

fluctuations in financial returns. As a consequence, a time-changed variance

gamma process is constructed under which the pricing of derivatives can be

analyzed. In all, such a model is capable of capturing not only asymmetric lep-

tokurtic feature but also volatility clustering, and I expect it to yield desirable

modeling outcomes when applied to real financial time series.

Recently, with the exception of standard European and American options,

a large number of new financial derivatives have emerged in the international

financial market. Among them, power option is one of the new exotic options.

A power option is in general a European-style derivative that provides the

option holder with a leveraged or distorted payoff. There are currently two

types of power options. Asymmetric power options have payoff at maturity

based on the price of an underlying asset raised to a specific power in excess of

the option strike price, while symmetric power options simply place a power

effect on the original payoff. These options are structurally closely related to

typical plain-vanilla options. Also, due to its relative rarity at present, research

of power options is critically significant in both theoretical aspect and practical

area and is thus the main focus of this paper.

The remainder of this paper is organized as follows. In Section 2 a stochas-

tic time change is formally defined with a Brownian integral, whose statistical

features are analyzed subsequently. Section 3 then provides a brief review on

the key concepts pertaining to gamma and variance gamma processes. In Sec-

tion 4 the time change is combined with a drifted variance gamma process and

the outcome is used for analyzing evolution of the price of a risky asset. Lat-

er, Section 5 discusses in depth specific characteristic-function-based pricing

methods for plain-vanilla and power-type options using the new model, while

Section 6 explains some simulation techniques as an alternative way of pric-

ing. Finally, empirical analysis is conducted in Section 7, where plain-vanilla

pricing results are compared to real market prices and power option prices are

given as numerical examples. Some crucial conclusions are drawn in Section

8. Several selected proofs are shown in Appendices that follow.
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2 Construction of Business Time

To begin with, let me clarify that this paper assumes a continuous-time

environment with t ≥ 0, and to distinguish it from stochastic business time, t

is expressly referred to as the calendar time admitting no randomness.

In general, there are several requirements for the construction of a time

change. As a particular type of time, a business time process should be non-

negative and monotonically increasing, and to well cater to continuous-time

modeling, it is required to be continuous, i.e., have no jumps, and better

increasing in a smooth manner. The latter property can be realized by con-

structing a purely continuous instantaneous activity rate process, while the

former simply necessitates positivity of such a process.

Let W ≡ (Wt) be a standard Brownian motion, which is normally distribut-

ed. Rather intuitively, a qualified candidate for the instantaneous activity rate

can be found by simply squaring it2, or W 2. On this basis, I can define a

stochastic business time B ≡ (Bt) as an integrated squared Brownian motion

plus a drift.

Bt := mt+ v

∫ t

0

W 2
s ds, (2.1)

for m ≥ 0 and v > 0. In differential form, this is written as

dBt =
(
m+ vW 2

t

)
dt, (2.2)

with B0 = 0 a.s., which shows that B is of finite total variation and, indeed,

nonnegative and smoothly strictly increasing, with smoothness understood

from the existence of dBt/dt, ∀t. Commenting on the convexity of B yet

makes no sense as W is nowhere differentiable with respect to t. An advan-

tage of this time construction, apart from simplicity, is that it can be flexibly

adjusted towards or away from the calendar time t. While m maintains the

consistency of B with respect to t, v controls the extent of stochastic volatility.

In particular, as v ↘ 0 and m↗ 1, Bt → t, ∀t.
The distribution of B is quite elusive as the integral in (2.1) is at bottom

an infinite Riemann sum of correlated chi-square distributed random variables.

Despite this, its characteristic function can still be found in the following closed

2As implied from Appendix A, the square impact gives rise to an analytical characteristic

function of B, while other possible choices, such as an absolute value operator, fail in general.
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form,

ψB|t(u) := E
[
eiuBt

]
= eimtu

√
sec
√

2ivt2u, (2.3)

where i =
√
−1 is the imaginary unit. Appendix A gives in a convenient way

a detailed proof of this function, thanks to the analytical tractability of chi-

squared and gamma distributions. By using (2.3) the four crucial moments of

B are readily available.

E[Bt] = −i
d lnψB|t(u)

du

∣∣∣∣
u→0

= mt+
vt2

2
,

Var[Bt] = (−i)2 d2 lnψB|t(u)

du2

∣∣∣∣
u→0

=
v2t4

3
,

Skew[Bt] =
(−i)3√

(Var[Bt])3

d3 lnψB|t(u)

du3

∣∣∣∣
u→0

=
8
√

3

5
≈ 2.7713 > 0,

Kurt[Bt] = 3 +
(−i)4

(Var[Bt])2

d4 lnψB|t(u)

du4

∣∣∣∣
u→0

=
513

35
≈ 14.6571 > 3. (2.4)

It can be seen that B has time-dependent mean and variance, but is uncon-

ditionally skewed to the right and leptokurtic. This business time choice, also

referred to as a Brownian time change, will play an essential role in creating

stochastic volatility in the pricing models to appear later on.

3 Gamma and Variance Gamma Processes

In this section, I will synthesize some essential concepts related to gamma

processes and variance gamma processes, which crucially underly price model-

ing afterwards. These processes have been thoroughly studied in such papers

as Madan and Seneta (1990) [14] and Madan et al (1998) [15].

3.1 Gamma Processes

A gamma process G ≡ (Gt)t≥0 is defined as a purely discontinuous Lévy

process admitting a gamma law. I.e., G0 = 0 a.s., and G has independent

and stationary increments such that for any h > 0, Gt+h − Gt
law
= Gh ∼

Gamma(ah, b) where a > 0 and b > 0. To be precise, a gamma process with
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parametrization (a, b) has the following density.

fG|t(x) =
bat

Γ(at)
xat−1e−bx, x > 0, (3.1.1)

where Γ(·) stands for the gamma function. Jumps of G are driven by its Lévy

measure,

νG(dx) = ax−1e−bx1{x>0}dx, (3.1.2)

where 1{·} denotes the indicator function which takes value 1 if the argument

is true and 0 otherwise. Since
∫
R\{0} νG(dx) =∞ and

∫
R\{0} |x|νG(dx) <∞, it

is said that the gamma process has an infinite jump arrival rate, i.e., infinitely

many jumps over any finite time interval, but is of finite total variation. Notice

that the characteristic function of (Gt) is given by

ψG|t(u) := E
[
eiuGt

]
=

(
1− iu

b

)−at
. (3.1.3)

By the Lévy-Khintchine representation (see Papapantoleon (2000) [16]), such

a function is infinitely divisible, and on its basis the four crucial moments of

G are E[Gt] = at/b, Var[Gt] = at/b2, Skew[Gt] = 2/
√
at > 0 and Kurt[Gt] =

3 + 6/(at) > 3 for t > 0. Clearly, the gamma distribution is asymmetric with

a fat right tail.

3.2 Variance Gamma Processes

A variance gamma process can be defined in three distinct ways. It has

a preliminary and natural relationship with a variance gamma distribution.

This is a three-parameter distribution with a > 0, θ ∈ R, and σ > 0, and has

the following characteristic function,

ψVarGamma(u) =

(
1− iθu

a
+
σ2u2

2a

)−a
, (3.2.1)

which is also infinitely divisible, and thus gives rise to a variance gamma pro-

cess as a Lévy process. A variance gamma process H(0) ≡
(
H

(0)
t

)
can hence

be defined by its Lévy properties: H
(0)
0 = 0 a.s., and H(0) has independent

and stationary increments such that for any h > 0, H
(0)
t+h − H

(0)
t

law
= H

(0)
h ∼

VarGamma(ah, θh, σ
√
h).
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H(0) is known to be yet another purely discontinuous process whose jumps

are governed by the Lévy measure

νH(0)(dx) =
a

|x|
exp

(
θx− |x|

√
2aσ2 + θ2

σ2

)
dx, (3.2.2)

which indicates an infinite jump arrival rate and finite total variation. In some

cases an additional drift may be necessary to generate a persistent trend for

modeling. A drifted variance gamma process H ≡ (Ht) with drift parameter

µ ∈ R is formally3 defined as

Ht := µt+ θGt + σW ′
Gt
, (3.2.3)

where (W ′
t) is another standard Brownian motion and (Gt) is a special gam-

ma process with parameters (a, a). On an important note, W , G, and W ′

are mutually independent. This definition sees the variance gamma process

as a gamma-time-changed Brownian motion with drift4. The characteristic

function of H is presented by directly introducing a drift impact.

ψH|t(u) := E
[
eiuHt

]
= eiµtu

(
1− iθu

a
+
σ2u2

2a

)−at
. (3.2.4)

The additional drift only changes the mean of H, while the other central

moments are unaffected.

E[Ht] = −i
d lnψH|t(u)

du

∣∣∣∣
u=0

= (µ+ θ)t,

Var[Ht] = (−i)2 d2 lnψH|t(u)

du2

∣∣∣∣
u=0

=

(
θ2

a
+ σ2

)
t,

Skew[Ht] =
(−i)3√

(Var[Ht])3

d3 lnψH|t(u)

du3

∣∣∣∣
u=0

=
(2θ3 + 3aθσ2)

(θ2 + aσ2)2

√
θ2 + aσ2

at
,

Kurt[Ht] = 3 +
(−i)4

(Var[Ht])2

d4 lnψH|t(u)

du4

∣∣∣∣
u=0

=
3((at+ 2)θ4 + 2a(at+ 2)θ2σ2 + a2(at+ 1)σ4)

at(θ2 + aσ2)2
. (3.2.5)

3This is the formal definition of a variance gamma process as presented in Madan and

Seneta (1990) [14].
4Early discussed in Clark (1973) [9], a positive non-decreasing Lévy process of finite

total variation can be used as a particular time change, a.k.a. a subordinator, to convert a

Brownian motion into a purely discontinuous process. This type of time change, however,

admits discontinuities and is not suitable for modeling business time.
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The variance gamma process observably has all time-variant moments, which

partially explain its flexibility in practice. In concrete, θ places an impact

on all the moments and largely controls the level of asymmetry, noting that

Skew[Ht] = 0 if θ = 0; σ mainly defines the level of volatility or fluctuations;

the gamma parameter a has a primary control over the leptokurtic feature,

because lima↘0 Kurt[Ht] = ∞, whereas lima→∞Kurt[Ht] = 3, which becomes

mesokurtic.

Moreover, Madan et al (1998) [15] proved, by decomposing its characteristic

function, that a variance gamma process without drift can also be regarded as

the difference of two independent gamma processes. In fact,

H
(0)
t ≡ Ht − µt = G

(1)
t −G

(2)
t , (3.2.6)

where G(1) and G(2) are two independent gamma processes with respective

parameters (a, 1/`+) and (a, 1/`−), for which

`± =

√
θ2

4a2
+
σ2

2a
± θ

2a
> 0. (3.2.7)

From another perspective, notice that the Lévy measure (3.2.2) can be refor-

matted into the following piecewise function,

νH(0)(dx) =

ax−1e−x/`+dx, x > 0,

a|x|−1ex/`−dx, x < 0,
(3.2.8)

thus pointing to the difference of two independent gamma processes’ Lévy

measures.

4 Model Definition

After well establishing the business time structure and the variance gamma

process, a time-changed process can now be constructed to indirectly model

the evolution of the price of a risky financial asset. In this section, the model

will be rigorously defined and its properties will be analyzed concretely as the

foundation of pricing financial derivatives.
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4.1 A Time-Changed Process

Be a stochastic process X ≡ (Xt) defined by Brownian-time-changing a

drifted variance gamma process, namely,

Xt := HBt , (4.1.1)

with X0 = 0 a.s. Indeed, X well reserves the jump size pattern of H, as defined

by its Lévy measure, while it is the timing of jumps that has been changed in

the presence of B. Whenever B increases faster than t, or dBt/dt > 1, jumps

occur more frequently than otherwise, and hence the volatility structure is

automatically randomized. As noted before, the closer B is to t, the less

stochastic the volatility level becomes.

The characteristic functions of H and B already known in (2.3) and (3.2.4),

the characteristic function of X can be easily derived based on the tower

property of expectations.

ψX|t(u) := E
[
eiuXt

]
= E

[
E
[
eiuHBt |Bt

]]
= E

[
eiµuBt

(
1− iθu

a
+
σ2u2

2a

)−aBt
]

= ψB|t

(
µu+ ia ln

(
1− iθu

a
+
σ2u2

2a

))
. (4.1.2)

To be precise, I have

ψX|t(u) = eimµtu

(
1− iθu

a
+
σ2u2

2a

)−mat

×

√√√√sec

√
2ivt2

(
µu+ ia ln

(
1− iθu

a
+
σ2u2

2a

))
, (4.1.3)

which immediately implies the following crucial moments.

E[Xt] = −i
d lnψX|t(u)

du

∣∣∣∣
u→0

= (µ+ θ)

(
mt+

vt2

2

)
,

Var[Xt] = (−i)2 d2 lnψX|t(u)

du2

∣∣∣∣
u→0

=
t

6a
(6m(θ2 + aσ2) + vt(θ2(3 + 2vat2) + 4vµaθt2

+ a(2vµ2t2 + 3σ2))). (4.1.4)
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Besides, the skewness and kurtosis come in considerably lengthy but elemen-

tary forms.

Skew[Xt] =
(−i)3√

(Var[Xt])3

d3 lnψX|t(u)

du3

∣∣∣∣
u→0

=
√

6(60mθ3 + 2vt(θ3(15 + vat2(15 + 8vat2)) + 3vµaθ2t2(5 + 8vat2)

+ 24v2µ2a2θt4 + 8v2µ3a2t4) + 15aσ2(6mθ + vt(θ(3 + 2vat2)

+ 2vµat2)))
/(

5(at(6m(θ2 + aσ2) + vt(θ2(3 + 2vat2)

+ 4vµaθt2 + a(2vµ2t2 + 3σ2)))3)
1
2

)
,

Kurt[Xt] = 3 +
(−i)4

(Var[Xt])2

d4 lnψX|t(u)

du4

∣∣∣∣
u→0

= 3
(
1260m2at(θ2 + aσ2)2 + 420m(θ2(θ2(6 + vat2(3 + 2vat2))

+ 4v2µa2θt4 + 2v2µ2a2t4) + 2aσ2(θ2(6 + vat2(3 + vat2))

+ 2v2µa2θt4 + v2µ2a2t4) + 3a2σ4(1 + vat2)) + vt(θ4(1260

+ vat2(1855 + 36vat2(49 + 19vat2))) + 8vµaθ3t2(140

+ 9vat2(49 + 38vat2)) + 24vµa2θt2(114v2µ2at4

+ 7σ2(10 + 21vat2)) + 18aθ2(2v2µ2at4(49 + 114vat2)

+ 7σ2(20 + vat2(25 + 14vat2))) + 3a2(228v3µ4at6

+ 588v2µ2aσ2t4 + 35σ4(6 + 7vat2)))
)/(

35at(6m(θ2 + aσ2)

+ vt(θ2(3 + 2vat2) + 4vµaθt2 + a(2vµ2t2 + 3σ2)))2
)
. (4.1.5)

It can be seen that all these moments of X explicitly depend on time t, involv-

ing not only the parameters of the business time B but those of the variance

gamma process H as well. In fact, it is not difficult to notice that, although the

variance gamma parameters a, θ, and σ still have significant influence on the

kurtosis, skewness, and variance, such influence displays more uncertainty due

to the business time parameters m and v. A superficial comment, nevertheless,

is that any moment of X approaches the corresponding one of H as m↗ 1 and

v ↘ 0 simultaneously, while it tends towards that of B as t → ∞. In short,

X is so far characterized with both time-dependent asymmetric leptokurtic

feature and stochastic volatility structure.
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4.2 Real-World and Risk-Neutral Evolutions of Stock

Price

Now consider a frictionless continuous-trading financial market, i.e., no

transaction costs are present. The market information set or filtration is

(Ft)t≥0 and the real-world probability measure is P. Denote the price process

of a risky asset, typically a stock, by S ≡ (St). Suppose the initial stock price

is S0 > 0, and that under P, S evolves according to the following geometric

process.

St = S0e
Xt . (4.2.1)

This is an ordinary exponential of X, which is defined as in (4.1.1). A reason

behind this construction is the effect of continuous compounding over con-

tinuous time. To this end, notice that (lnSt) = (lnS0 + Xt) is nothing but

the log price process whose shape is exactly the same as X’s. The real-world

characteristic function of lnS is simply

ψlnS|t(u) := E
[
eiu lnSt

]
= eiu lnS0ψX|t(u). (4.2.2)

Let r be the risk-free rate and d the stock’s dividend yield, both con-

tinuously compounded and assumed to be constant. As always, for pricing

financial derivatives it is necessary to eliminate the existence of arbitrage by

finding a measure P∗ under which the discounted post-dividend stock price

process
(
e−(r−d)tSt

)
becomes a local martingale. Under such a measure the

stock should have a mean log return equal to r − d. In this case, since the

density function of X is not explicitly known, I can simply let the risk-neutral

or P∗-evolution of S be given by

St =
S0e

(r−d)t+Xt

E
[
eXt
] =

S0e
(r−d)t+Xt

ψX|t(−i)
. (4.2.3)

To give a short proof of the local martingale property, note that the business

time B is in itself an adapted process, i.e., (Bt) is Ft-measurable, and by its

strictly increasing property that Bt − Bs > 0 a.s. ∀0 ≤ s < t, (Xt) ≡ (HBt)

is also Ft-adapted. On the other hand, in light of the Lévy property of H,

for any 0 ≤ s < t, one can claim that the increment Xt −Xs ≡ HBt −HBs is

independent from the information set at time s, Fs. Therefore,

E∗
[
e−(r−d)tSt|Fs

]
= S0E

[
eXt

ψX|t(−i)
|Fs

]
=

S0e
Xs

ψX|s(−i)
E
[

eXt−Xs

E
[
eXt−Xs

]]
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=
S0e

Xs

ψX|s(−i)
= e−(r−d)sSs, (4.2.4)

where E
[
eXt−Xs

]
6= ψX|t−s(−i) in general because X has nonstationary incre-

ments.

Under P∗, (4.2.3) can be specified as

St = S0e
(r−d−mµ)t+Xt

(
2a− 2θ − σ2

2a

)mat

×

√√√√cos

√
2vt2

(
µ− a ln

2a− 2θ − σ2

2a

)
, (4.2.5)

for which an implicit requirement is that the cosine function return a positive

value5, or

2a− 2θ − σ2

2a
> 0 and vt2

(
µ− a ln

2a− 2θ − σ2

2a

)
<
π2

8
. (4.2.6)

As will be seen in Section 7, this condition is rarely violated in practice. By

consulting (4.2.3), the risk-neutral characteristic function of the log price pro-

cess lnS can be expressed in terms of the characteristic function of X.

ψ∗lnS|t(u) := E∗
[
eiu lnSt

]
= eiu((r−d)t+lnS0)ψX|t(u)(ψX|t(−i))−iu. (4.2.7)

This will be useful to pricing financial derivatives.

5 Exotic Power Option Pricing

In this section I will analyze in depth the pricing mechanism of European-

style exotic power options when the underlying stock follows a geometric

Brownian-time-changed variance gamma process as in (4.2.1) and (4.2.3). Dis-

cussion of plain-vanilla options is necessary to conduce the analysis of power

options.

5Notice that µ−a ln((2a−2θ−σ2)/(2a)) can take negative values as the cosine or secant

function is positive on the imaginary axis.
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5.1 Plain-Vanilla Options

Consider a European plain-vanilla call option with strike price K > 0 and

time to maturity T > 0. Its standard payoff is written as

CT = (ST −K)+, (5.1.1)

where (·)+ is identical to max{·, 0}. Under the risk-neutral measure P∗, the

option price today is the expected discounted payoff,

C0 ≡ C0(S0, K, r, d, T ;m, v, µ, a, θ, σ)

= E∗[e−rT (ST −K)+]

= e−rTE∗[ST1{ST>K}]−Ke−rTE∗[1{ST>K}]. (5.1.2)

A semicolon has been used to separate the explicit parameters that are ob-

servable from the market from the implicit that are only obtainable by means

of statistical modeling.

Many works have so far existed to discuss explicit pricing methods for

plain-vanilla options when the characteristic function, but not the density,

of the underlying stock’s log price process is known in the context of risk-

neutrality. For instance, using the fact that every characteristic function is

even in its real and imaginary parts, Bakshi and Madan (2000) [2] derived a

very straightforward formula for evaluating the expectations in (5.1.2). As a

consequence,

C0 = S0e
−dTΠ1 −Ke−rTΠ2, (5.1.3)

where the associated in-the-money probabilities are given by

Π1 =
1

2
+

1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u− i)

iuψ∗lnS|T (−i)

}
du,

Π2 =
1

2
+

1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

iu

}
du, (5.1.4)

<{·} denoting the real part operator. To briefly explain, Π1 results from

choosing the random variable ST as a numéraire, because E∗
[
e−(r−d)TST/S0

]
=

1. In general, these integrals can be numerically evaluated with high efficiency,

to which classical truncation methods such as Simpson’s rule also apply.

For a similar plain-vanilla put option with standard payoff

PT = (K − ST )+, (5.1.5)
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its price is directly implied by the call price through put-call parity. The version

including continuous dividend yield can be found in Guo and Su (2006) [12].

P0 = C0 +Ke−rT − S0e
−dT . (5.1.6)

5.2 Asymmetric Power Options

Also called leveraged options, asymmetric power options are designed to

grant the option holder a leveraged view on a specific underlying stock or its

volatility. Such an option’s payoff becomes nonlinear by raising the stock price

to a fixed power. A leveraged call option has the following payoff at maturity,

C
(ap)
T =

(
SpT −K

)+
, (5.2.1)

where p > 0 is a predetermined power coefficient. Allowing for the magnificent

impact of leverage, p can hardly exceed 2 in practice.

According to (4.2.3), the P∗-evolution of the powered stock price Sp ≡
(
Spt
)

is given by

Spt =
Sp0e

p(r−d)t+pXt

(ψX|t(−i))p
. (5.2.2)

To transform the stochastic part into a well-compensated martingale form, let

a function be defined on (p, t) as

ϕ(p, t) :=
1

t
(lnψX|t(−ip)− p lnψX|t(−i))

= ma

(
p ln

2a− 2θ − σ2

2a
− ln

2a− 2pθ − p2σ2

2a

)

+
1

t
ln

√√√√sec

√
2vt2

(
pµ− a ln

2a− 2pθ − p2σ2

2a

)

+
p

t
ln

√√√√cos

√
2vt2

(
µ− a ln

2a− 2θ − σ2

2a

)
, (5.2.3)

which is real finite as long as

2a− 2pθ − p2σ2

2a
> 0 and vt2

(
pµ− a ln

2a− 2pθ − p2σ2

2a

)
<
π2

8
, (5.2.4)
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in addition to (4.2.6). This function allows (5.2.2) to be conveniently rewritten

as

Spt =
Sp0e

(r−dp(t))t+pXt

ψX|t(−ip)
, (5.2.5)

by constructing a power-dependent dividend yield function dp(t) as

dp(t) = pd− (p− 1)r − ϕ(p, t). (5.2.6)

Notice that it is the randomness in B that leads to the time dependence of

dp, because the last two terms of ϕ would not exist if B happened to be t.

As a result of ϕ, dp changes with t as long as p 6= 1; obviously, limp↘0 dp = r

and d1 = d, regardless of t. Importantly, dp is not to be misunderstood as a

deterministic process - it does not evolve over any trading period, but instead,

is fixed once the finite time length is known.

To this end, Sp can be viewed as the price of another stock whose continuous

uncertainty is governed by a new time-changed process pX and pays a new

dividend dp. pX understandably has the same structure as X, since the power

p does not affect my choice of B, yet resulting in a new drifted variance gamma

process pH with parameters (pµ, a, pθ, pσ), which is merely a direct implication

from (3.2.3).

Therefore, conditioned on Sp, the asymmetric power call possesses a payoff

structure of plain-vanilla type, and by modifying the parameters in the call

price function (5.1.2), I can write

C
(ap)
0 = C0

(
Sp0 , K, r, dp(T ), T ;m, v, pµ, a, pθ, pσ

)
, (5.2.7)

and price through characteristic function as before. Furthermore, put-call

parity also holds for the price of a similar put with terminal payoff P
(ap)
T =(

K − SpT
)+

, i.e.,

P
(ap)
0 = C

(ap)
0 +Ke−rT − Sp0e−dp(T )T . (5.2.8)

5.3 Symmetric Power Options

A symmetric power option is an exotic option whose payoff at maturity is

raised to an agreed-upon power. Another appellation for this class is powered

options. Instead of a leverage effect, the power here is aimed at distorting the
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option payoff, which would in turn affect the option value. Starting from a

powered call, the one-time payoff is

C
(sp)
T =

(
(ST −K)+

)p
, (5.3.1)

for some p > 0. In fact, when 0 < p < 1 the effect is a minus or shrinking,

and when p > 1 the effect is a plus or magnifying. Most of the time, p takes

values no larger than 3.

Because of the distorting effect on both ST and K, pricing methods for this

type are not as easy as for asymmetric power options. In fact, by using binomial

expansion for the powered difference, the option payoff can be expressed in

terms of

C
(sp)
T = SpT

(
1− K

ST

)p
1{ST>K} =

∞∑
k=0

(
p

k

)
SpT

(
− K

ST

)k
1{ST>K}, (5.3.2)

which converges for ST/K > 1. Notice that this ensures that the option has

a positive intrinsic value at maturity and is exactly the condition for option

exercise. The call price hence follows as

C
(sp)
0 = E∗

[
e−rTC

(sp)
T

]
=
∞∑
k=0

(
p

k

)
(−K)kE∗

[
e−rTSp−kT 1{ST>K}

]
. (5.3.3)

Analogous to the asymmetric power case, in each of these expectations the

stock price is raised to a power p − k, ∀k. However, it is logical to think

of Sp−k as the price of another stock paying a constant dividend only for

p−k ≥ 0. On the other hand, the moment generating function ψX|T (−i(p−k))

will understandably fail to exist for some sufficiently large k, by which using

this powered stock price as a numéraire with martingale property under the

risk-neutral setting becomes problematic. To this end, change of numéraire

only applies to a finite number of k with k ≤ bpc, b·c denoting the floor

function, and, of course, subject to the constraints (4.2.6) and (5.2.4); for

large values of k the expectations remain to be evaluated as direct integrals.

Following this idea, the call price comes as a piecewise summation6.

C
(sp)
0 =

bpc∑
k=0

(
p

k

)
(−K)kSp−k0 e−dp−k(T )T Π̃p−k

6Despite an infinite series, my personal experience suggests that an upper bound of 100

will typically do fine, by which computational efficiency is guaranteed. Also, the binomial

coefficient

(
p

k

)
:=
∏k

j=1(p− j + 1)/k! is generalized for arbitrary p > 0 and k ∈ N.
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+Kpe−rT
∞∑

k=bpc+1

(
p

k

)
(−1)kI1,p−k. (5.3.4)

For the first part, by way of changing numéraire, each in-the-money probability

is given by

Π̃p−k =
1

2
+

1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u− i(p− k))

iuψ∗lnS|T (−i(p− k))

}
du, 0 ≤ k ≤ bpc,

(5.3.5)

and the second part relies on the supplementary integrals specified as

I1,p−k =
1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

iu− p+ k

}
du, k ≥ bpc+ 1. (5.3.6)

Alternatively, it can be further shown that the call price has the following

equivalent expression.

C
(sp)
0 =

bpc∑
k=0

(
p

k

)
(−K)kSp−k0 e−dp−k(T )T Π̃p−k +Kpe−rT (−1)1+bpc

×

(
p

1 + bpc

)
1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)Υ(p, iu)

1 + iu− p+ bpc

}
du, (5.3.7)

where the new function Υ(·, ·) makes use of the well-known generalized Gauss

hypergeometric function in such a way that

Υ(p, iu) = 3F2

 1

1− p+ bpc
1 + iu− p+ bpc

;
2 + bpc

2 + iu− p+ bpc
; 1

 . (5.3.8)

The series representation and some crucial properties of 3F2 can be found in

Abramowitz and Stegun (1972) [1]. All detailed derivations of these pricing

formulae are shown in Appendix B. Notably, the purpose of (5.3.7) with (5.3.8)

is to enhance computational accuracy for packages, such as Mathematicar

by Wolfram Research, Inc. (2015) [18], in which the hypergeometric function

family is well established.

It is worth mentioning that, given k ≤ p, dp−k represents the constant

dividend yield of the stock as powered by p − k; in the special case where

p ∈ N++, whenever p = k the option position becomes perfectly hedged or

risk-free, as d0 ≡ r.
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For a similar symmetric power put, put-call parity does not work for all

p 6= 1 as the standard payoff structure is distorted. Likewise, binomially

expanding the option payoff as

P
(sp)
T =

(
(K − ST )+

)p
= Kp

∞∑
k=0

(
p

k

)(
− ST
K

)k
1{ST<K}, (5.3.9)

which is convergent for ST/K < 1, implies the following expression for its

price.

P
(sp)
0 = E∗

[
e−rTP

(sp)
T

]
= Kpe−rT

(
Π{2 +

∞∑
k=1

(
p

k

)
(−1)kI2,k

)
, (5.3.10)

where Π{2 = 1− Π2 as in (5.1.4) and each supplementary integral is given by

I2,k =
1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

k − iu

}
du, k ≥ 1. (5.3.11)

Indeed, the symmetric power put pricing formulae are simpler compared to

those for the symmetric power call. No change of numéraire is necessary be-

cause the stock price S now is powered by k ∈ N and the integral I2,k holds

true for k > 0, while for Π2 to exist recall that only (4.2.6) needs to be in

force.

Similarly, (5.3.10) with (5.3.11) can be alternatively simplified into

P
(sp)
0 = Kpe−rT

(
1

2
+

1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)B(1 + p,−iu)

}
du

)
, (5.3.12)

provided that (4.2.6) is well met, thanks to Euler’s Beta function B(·, ·)7. This

expression significantly facilitates numerical computation by transforming the

infinite series into a simple function. Again, see Appendix B for detailed proof.

It is not difficult to check that, other things equal, C
(sp)
0 ≡ C

(ap)
0 ≡ C0 and

P
(sp)
0 ≡ P

(ap)
0 ≡ P0 when and only when p = 1, and so “symmetry” is not a

special case of “asymmetry” in describing power options.

7Defined as B(x, y) := Γ(x)Γ(y)/Γ(x + y), this function is easily evaluated with most

standard packages and a built-in function in Mathematicar.
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6 Monte-Carlo Simulation

As mentioned in the very beginning, one of the important reasons behind

combining a Brownian time change with a variance gamma process is that

the resulting processes are easy to simulate, because of the relative simplicity

of underlying distributions. This section thus expatiates on the simulation

techniques of each of the processes analyzed above as well as discusses the

associated pricing logic as a comparison to characteristic function pricing in

Section 5. The simulation is primarily realized through time discretization in

the absence of path dependence.

Let us start from the business time construction. By way of discretization,

I construct N + 1 discrete time points {0} ∪ {n∆}n=1,2,...,N for a certain time

interval [0, T ], where ∆ = T/N is the quadrature magnitude. Based on the

Lévy property of the standard Brownian motion, W can be approximated by

Ŵ ≡
(
Ŵn∆

)
with the following recursion,

Ŵ0 = 0 Ŵn = Ŵ(n−1)∆ + ωn, (6.1)

where (ωn) ∼ i.i.d.Normal(0,∆). Notice that from its definition (2.1), B is

at bottom a Riemann integral of W and starts from 0. Thus, denoting an

estimator by B̂ ≡
(
B̂n∆

)
, simple quadrature rule can be applied to obtain

B̂0 = 0 B̂n∆ = B̂(n−1)∆ +m∆ + v∆Ŵ 2
n∆. (6.2)

The above relations directly imply that, at a given T = N∆, the estimator

B̂N∆ is asymptotically unbiased towards BT in that

E
[
B̂N∆

]
= E

[
mN∆ + v

N∑
n=1

∆Ŵ 2
n∆

]
= mN∆ + v∆

N∑
n=1

n∑
k=1

E
[
ω2
k

]
= mN∆ +

v∆2N(N + 1)

2
= mT +

vT 2

2
+
vT 2

2N
, (6.3)

which tends to E[BT ] = mT +vT 2/2 as N →∞. Also, the mean squared error

(MSE) of B̂N∆ is calculated as the sum of its squared bias and variance.

MSE
[
B̂N∆

]
≡
(
E
[
B̂N∆ −BT

])2
+ Var

[
B̂N∆

]
=

(
v∆2N

2

)2

+ v2∆2Var

[
N∑
n=1

Ŵ 2
n∆

]
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=
v2∆4N2

4
+ v2∆2

N∑
n1=1

N∑
n2=1

2((n1 ∧ n2)∆)2

=
v2∆4N(4N3 + 8N2 + 11N + 4)

12
, (6.4)

where the second equality follows from the independent and stationary incre-

ment property of Ŵ along with W . This result is of order O(N4∆4) ≡ O(T 4),

which is the same as that of Var[BT ] = v2T 4/3, and it also asymptotically

converges to the true variance as N →∞.

In an attempt to simulate the time-changed variance gamma process X, the

calendar time frame needs to be modified by {0}∪
{
B̂n∆

}
n=1,2,...,N

, which gives

rise to stochastic volatility. On this basis, let X̂ ≡
(
Xn∆

)
be an approximation

of X, and then it can be generated in three ways equivalently, according to

Subsection 3.2.

Firstly, the Lévy property of variance gamma process implies the following

recursive relation,

X̂0 = 0 X̂n∆ = X̂(n−1)∆ + µ
(
B̂n∆ − B̂(n−1)∆

)
+ ηn, (6.5)

where (ηn) are independent random variables following VarGamma
(
a
(
B̂n∆ −

B̂(n−1)∆

)
, θ
(
B̂n∆ − B̂(n−1)∆

)
, σ
√
B̂n∆ − B̂(n−1)∆

)
. This approach is yet time-

consuming because it is difficult to sample from a variance gamma distribution

due to its density’s complexity; again, see Madan et al (1998) [15].

Secondly, by the formal definition (3.2.3), it follows that

X̂0 = 0 X̂n∆ = X̂(n−1)∆ + µ
(
B̂n∆ − B̂(n−1)∆

)
+ θγn + σ

√
γnω

′
n, (6.6)

where (γn) ∼ Gamma
(
a
(
B̂n∆− B̂(n−1)∆

)
, a
)

is a sequence of independent vari-

ables8 and (ω′n) ∼ i.i.d.Normal(0, 1). Just as in theory, (γn) and (ω′n), ∀n, are

independent from each other.

For the third approach, which adopts a decomposition in terms of gamma

processes, I can write

X̂0 = 0 X̂n∆ = X̂(n−1)∆ + µ
(
B̂n∆ − B̂(n−1)∆

)
+ γ(1)

n − γ(2)
n , (6.7)

8Generating independent gamma random variables is straightforward for most standard

packages, and the gamma generator using standard uniform distributions proposed by Johnk

(1964) [13] is yet another acceptable approach.
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where
(
γ

(i)
n

)
∼ Gamma

(
a
(
B̂n∆ − B̂(n−1)∆

)
, 1/`±

)
, i ∈ {1, 2}, are taken to be

two mutually independent sequences of independent random variables, with

`± given in (3.2.7). Because of the simplicity of gamma and normal distribu-

tions relative to a variance gamma, the last two approaches are much more

preferable. Obviously, as m ↗ 1 and v ↘ 0, B̂n∆ → n∆, ∀n, and all of (6.5)

to (6.7) will yield estimators of the original variance gamma process H.

Also, X̂N∆ is asymptotically unbiased towards XT since, by (6.6) and the

tower property,

E
[
X̂N∆

]
= (µ+ θ)E

[
B̂N∆

]
= (µ+ θ)

(
mT +

vT 2

2
+
vT 2

2N

)
, (6.8)

which tends towards E[XT ] = (µ + θ)(mT + vT 2/2) as N → ∞. Clearly, the

existence of bias is only a result of the randomness in B. On the other hand,

the estimator’s mean squared error is obtained by consulting the law of total

variance.

MSE
[
X̂N∆

]
=

(
(µ+ θ)

v∆2N

2

)2

+ E
[
Var
[
X̂N∆|B̂N∆

]]
+ Var

[
E
[
X̂N∆|B̂N∆

]]
= (µ+ θ)2v

2∆4N2

4
+

(
θ2

a
+ σ2

)
E
[
B̂N∆

]
+ (µ+ θ)2Var

[
B̂N∆

]
=

1

12
N∆

(
v2(µ+ θ)2∆3(4N3 + 8N2 + 11N + 4)

+
6(2m+ v∆(N + 1))(θ2 + aσ2)

a

)
, (6.9)

which still has the same order as Var[XT ], or O(T 4).

Based on X̂, under the real-world probability measure P, an estimator of

the log stock price at a given maturity date T , lnST , can be created by

ln ŜN∆ = lnS0 + X̂N∆, (6.10)

for N∆ = T , which is immediately asymptotically unbiased and has the same

mean squared error as X̂N∆’s. Regarding computational effort, given T > 0,

generating one trajectory of Ŵ requires N operations, and so simulating one

sample path of B necessitates N+
∑N

n=1 n = N(N+3)/2 ∼ O(N2) operations.

Obtaining an estimate X̂N∆ of XT therefore requires computational effort of

order O(N2) based on the increments of B̂. For practical purposes, usually

M � 1 paths are simulated, in which case an aggregate computational effort

of O(MN2) is needed.
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Once M estimators of lnST , denoted by ln Ŝ
(j)
N∆, j = 1, 2, . . . ,M , are ob-

tained, the stock price estimators can be put into the risk-neutral setting via

a simple multiplier. I.e., under P∗, the compensated estimators are given by

Ŝ
(j)
N∆ =

S0e
(r−d)T+X̂

(j)
N∆

1
M

∑M
j=1 e

X̂
(j)
N∆

, j = 1, 2, . . . ,M, (6.11)

as an approximation of (4.2.3). With this, the payoff of a particular type of

option can be correspondingly estimated by properly discounting the average

resulting payoff from each simulated path under P∗. To be precise,

Ĉ0 =
e−rT

M

M∑
j=1

(
Ŝ

(j)
N∆ −K

)
1{Ŝ(j)

N∆>K}
, P̂0 =

e−rT

M

M∑
j=1

(
K − Ŝ(j)

N∆

)
1{Ŝ(j)

N∆<K}
,

(6.12)

and, similarly, for exotic power options with power p > 0,

Ĉ
(ap)
0 =

e−rT

M

M∑
j=1

(
Ŝ

(j)p
N∆ −K

)
1{Ŝ(j)p

N∆>K},

P̂
(ap)
0 =

e−rT

M

M∑
j=1

(
K − Ŝ(j)p

N∆

)
1{Ŝ(j)p

N∆<K},

Ĉ
(sp)
0 =

e−rT

M

M∑
j=1

(
Ŝ

(j)
N∆ −K

)p
1{Ŝ(j)

N∆>K}
,

P̂
(sp)
0 =

e−rT

M

M∑
j=1

(
K − Ŝ(j)

N∆

)p
1{Ŝ(j)

N∆<K}
. (6.13)

These approximations are to be used as an alternative to the analytical pricing

results using characteristic functions. Advantageously, they can provide some

insights into the evolution of each process visually.

To give a graphical illustration, suppose m = 0.76, v = 0.4, µ = −0.17,

a = 66.45, θ = 0.28, σ = 0.36, and T = 1 with N = 1000. Figure 1 displays a

simulated sample path for each of the standard Brownian motion W , business

time B, and time-changed variance gamma process X ≡ lnS − lnS0.
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Figure 1: Simulated sample paths of (Wt), (Bt), and (Xt)

Apparently, B is smoothly increasing beside positivity due to the almost-

sure continuity ofW , whileX is observationally a purely discontinuous process.

7 Empirical Analysis

In this section, the Brownian-time-changed variance gamma model will be

applied to real financial time series and market prices of standard options.

Theoretical prices will be compared to true prices to indicate the model’s

overall fitting degree. Further comparison will be made with the case under

calendar time or without drift and the Black-Scholes model with normality.

For exotic power options, numerical examples will be given solely based on

the time-changed model, on purpose of providing insights into the validity of

business-time pricing when the power takes different values.



44 Pricing Exotic Power Options

7.1 Data Modeling

I choose the daily closing prices of Standard & Poor 500 Index (SP500)

over the recent year from July 2, 2015 to July 1, 2016 (collected from Yahoo

Finance) as the study object, with a total number of 253 observations, denoted

by Ši, for i = 1, 2, . . . , 253, in proper order. To obtain a stationary series, the

daily log returns are accordingly calculated as

Ři = ln Ši − ln Ši−1, i = 2, 3, . . . , 253, (7.1.1)

which consist of 252 observations. Figures 2 and 3 below present the respective

series of the closing prices ($) and log returns.

Figure 2: Series of
(
Ši
)

Figure 3: Series of
(
Ři

)
Sample statistics of the log returns include insignificant mean of 4.96924×

10−5, standard deviation of 0.010847, skewness of −0.30999 and kurtosis of

4.39189. This indicates a leptokurtic feature with left skewness. Also, trends

of clustering can be easily noticed in Figure 3, which signify that stochastic

volatility does exist in the returns of SP500. These phenomena can already be

well captured by the time-changed variance gamma process.

In the absence of a density function, performing maximum likelihood es-

timation becomes unrealistic, and so for convenience purposes the model pa-



Weixuan Xia 45

rameters are estimated under the method of moments, which is covered in

Bowman and Shenton (1998) [6]. Under this scheme, parameter estimation

is realized by minimizing the level to which the model moments deviate from

the data moments, and the number of sample raw moments should reasonably

match the number of parameters for consistency. In this connection, the first

six raw moments of the log returns are found in Table 1.

Table 1: Sample raw moments of
(
Ři

)
Ř Ř2 Ř3

4.96924× 10−5 1.172× 10−4 −3.7583× 10−7

Ř4 Ř5 Ř6

6.02476× 10−8 −5.71495× 10−10 5.72786× 10−11

As aforementioned, four models will be tested for comparison, including the

Black-Scholes geometric Brownian motion model, whose characteristic function

is well known in explicit form. For each one the estimation scheme involves

solving the following least square problem,

min
P

{ |P|∑
n=1

(
Řn − (−i)n

dnψX| 1
252

(u)

dun

∣∣∣∣
u→0

)2
}
, (7.1.2)

where |P| stands for the cardinality or number of parameters in the constrained

parameter set P. In the case of the business-time variance gamma model, for

instance, P = {m ≥ 0, v > 0, µ, a > 0, θ, σ > 0} and |P| = 6. Also notice that

there are 252 trading days in a calendar year. The optimal parameter set, P?,

contains all the parameters needed for option pricing. By using Mathematicar,

Table 2 summarizes the parameter estimation under each model.

To explain, enclosed in square brackets are the associated CPU time in

seconds9. Notably, the two location parameters µ and θ have a theoretical

offsetting effect which explains the significant difference among estimates under

different models. In particular, the drift estimate µ? is useless for Black-Scholes

pricing as it is entirely replaced by the risk-free rate r under risk-neutrality.

Under the business-time parameter estimates, the daily log returns’ implied

mean, standard deviation, skewness and kurtosis are 4.96922×10−5, 0.0108258,

−0.310869 and 5.70631, respectively, according to the formulae in (4.1.4) and

9The minimization program is run on a personal computer with an Intel Core i5-4300U

and 4GB RAM.
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(4.1.5). It can be seen that the parameters of X well describe the asymmetric

leptokurtic feature, though they have slightly overestimated the kurtosis. On

the contrary, under calendar time, the variance gamma model fails to explain

the asymmetry by giving a skewness estimate of 0.00547943 without drift,

while with drift it makes an overestimation by giving −1.0124. Needless to

say, the normal model is always symmetric and mesokurtic.

Table 2: Summary of parameter estimation
Black- non-drift variance Brownian-time-changed

Scholes variance gamma gamma variance gamma

- - - m? = 0.452847

- - - v? = 0.299871

µ? = 0.0272894 - µ? = 2.64113 µ? = 0.738514

- a? = 633.306 a? = 630.536 a? = 631.116

- θ? = 0.0125224 θ? = −2.6286 θ? = −0.710898

σ? = 0.171854 σ? = 0.171853 σ? = 0.136282 σ? = 0.253637

[0.0156001] [0.0780005] [0.140401] [3.12002]

7.2 Standard Option Prices

Prices of standard (European-style plain-vanilla) options are collected from

Market Watch, quoted as of July 1, 2016. Mid-prices are calculated by aver-

aging the bid and ask prices in pairs. In general, I select options with strikes

ranging from $1950 to $2070 expiring in August 2016, October 2016, December

2016, and June 2017, with respective maturities of 35/252, 80/252, 0.5, and

1 year. On July 1, 2016, SP500 closed at $2102.95. This generates a total of

50 prices for actively trading option contracts, including 29 calls and 21 puts.

On that day, the one-year risk-free rate was at 0.45% and the SP500 dividend

yield was at 2.09% per annum. Thus, I assume r = 0.0045 and d = 0.0209 on

the annual basis.

By plugging these values into the pricing formulae, Figures 4 through 7

plot the model prices versus the market mid-prices ($). Empty circles are used

for true prices while solid marks stand for model prices.

In each plot, there are observably four strings of option prices, The up-

permost string contains the prices with the longest expiry, while the lowest
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represents the shortest expiry. Due to certain liquidity issues, the prices may

fluctuate at some low level with respect to increasing strikes.

Calls Puts

Figure 4: Black-Scholes model prices vs market prices

Calls Puts

Figure 5: Non-drift variance gamma model prices vs market prices

Calls Puts

Figure 6: Variance gamma model prices vs market prices
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Calls Puts

Figure 7: Brownian-time-changed variance gamma model prices vs market

prices

In general, deviations prevail because historical data are taken into account

in place of calibration, and recent price trends are only able to partially re-

flect market expectations. Despite this, the four models uniformly fit better

for short-expiry options than for long-expiry ones. In comparison, the vari-

ance gamma models visually improve from the Black-Scholes for short-term

options by introducing large jumps, while the business time structure appears

to increase accuracy for long-term options with stochastic volatility.

To provide a more rigorous comparison, I calculate the average relative

percentage error for each model. Denote by Či,0 and P̌j,0 the market prices

of the standard call and put options, for i = 1, 2, . . . , 29 and j = 1, 2, . . . , 21,

as mentioned before. These errors are calculated separately for the calls and

puts.

EC =
1

29

29∑
i=1

∣∣∣∣Ci,0Či,0
− 1

∣∣∣∣ and EP =
1

21

21∑
j=1

∣∣∣∣Pj,0P̌j,0
− 1

∣∣∣∣. (7.2)

The next table displays the respective errors in percentages under the four

models.

Table 3: Average relative percentage errors
Black- non-drift variance Brownian-time-changed

Scholes variance gamma gamma variance gamma

EC 5.17520% 5.16441% 5.04483% 4.58624%

EP 26.90328% 26.82247% 25.20010% 23.37114%

It is not surprising that the errors decline with the increase of the number

of parameters. After all, an increased adaptability to the financial data’s
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distribution pattern basically results in a better fit for market expectations in

a relative sense. The purpose of comparing different modeling results mainly

lies in illustrating the necessity and validity of short-term large jumps as well

as long-term stochastic volatility.

7.3 Power Option Prices

Since exotic power option contracts are typically traded over-the-counter,

no market prices are accessible. For this reason, I use solely the business-

time variance gamma model and stick to the parameter estimation P? ≡
{m?, v?, µ?, a?, θ?, σ?} in the previous subsection while fixing the strike price

and expiry at K = $2050 and T = 1, respectively, aimed at better explaining

the power impact. S0 = $2102.95, r = 0.0045 and d = 0.0209 are unchanged.

Notice that for asymmetric power options, strike prices need to be adjusted

to the same order of magnitude as the powered stock price. Here I simply

raise the original strike K = $2050 to the power p to achieve this effect. For

symmetric power options there is no need to change K.

Figures 8 and 9 below plot the power sensitivity of asymmetric and sym-

metric power option prices ($), respectively.

Figure 8: Asymmetric power option price sensitivity to power
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Figure 9: Symmetric power option price sensitivity to power

To accelerate computation, I have adopted the infinite series method (5.3.4)

for plotting symmetric power call prices and the beta function method (5.3.12)

for symmetric power put prices. Thanks to put-call parity, it typically takes

0.0156001 second to compute a pair of put-call prices for an asymmetric power

option using Mathematicar, regardless of p. On the other hand, an increase

in p can decelerate computation for pricing symmetric power options under

the infinite series methods, but runtime is acceptably around 0.4 second for a

single call or put; under the Gauss hypergeometric and beta functions methods

which eliminate systematic errors, however, computing a symmetric power call

price requires 5 to 6 seconds while computing a similar put price only needs

0.0156001 second. In particular, for p = 1.5, computation gives an asymmetric

power call price of $12379.69 and an asymmetric power put price of $9712.79;

using (5.3.4) and (5.3.10), the symmetric power call and put prices are obtained

to be $4046.57 and $3049.42, respectively, while using (5.3.7) and (5.3.12) the

prices are $4046.89 and $3049.74, respectively, from which it is seen that the

series methods inevitably produce small errors.

Based on the figures, the impact of power on the option prices is signifi-

cantly large. All the sensitivity curves slope upward and grow exponentially.

Compared to symmetric power options, the prices of asymmetric power options



Weixuan Xia 51

appear to be more sensitive to p. A simple explanation is that, by assuming

power-adjusted asymmetric power option strikes, a power difference exceeds a

powered difference if and only if the power gets larger than 1. When p = 1 in

particular, the options become plain-vanilla and their prices coincide.

Moreover, it is of interest to study the pricing via Monte-Carlo simula-

tion. Continuing with the same parameter set, I choose a quadrature size

∆ = 1/400 and three groups of simulation sample sizes - M = 100, 500, 1000.

Table 4 displays the simulation-based pricing results ($) for p = 0.5, 1, 1.5, 2

expressly, using (6.13). These results are compared with the formula-based

numerical results and their respective absolute relative percentage errors are

also calculated using
∣∣Ĉ(ap),(sp)

0 /C
(ap),(sp)
0 − 1

∣∣ and
∣∣P̂ (ap),(sp)

0 /P
(ap),(sp)
0 − 1

∣∣.
Table 4: Pricing results via simulation and error analysis

Asymmetric power options

Formula-based
Simulation-based

M = 100 M = 500 M = 1000

p C
(ap)
0 P

(ap)
0 Ĉ

(ap)
0 P̂

(ap)
0 Ĉ

(ap)
0 P

(ap)
0 Ĉ

(ap)
0 P̂

(ap)
0

0.5 1.75785 1.77448
1.67228

(4.87%)

1.67585

(5.56%)

1.78726

(1.67%)

1.83633

(3.49%)

1.76147

(0.21%)

1.7783

(0.22%)

1 170.059 151.4
162.291

(4.57%)

143.633

(5.13%)

174.305

(2.50%)

155.646

(2.80%)

170.198

(0.08%)

151.54

(0.09%)

1.5 12379.7 9712.79
11864.6

(4.16%)

9252.38

(4.74%)

12811.8

(3.49%)

9930.49

(2.24%)

12369.5

(0.08%)

9712.58

(0.00%)

2 803940 555183
774764

(3.63%)

530840

(4.38%)

841634

(4.69%)

565046

(1.78%)

801534

(0.30%)

554778

(0.07%)

Symmetric power options

Formula-based
Simulation-based

M = 100 M = 500 M = 1000

p C
(sp)
0 P

(sp)
0 Ĉ

(sp)
0 P̂

(sp)
0 Ĉ

(sp)
0 P

(sp)
0 Ĉ

(sp)
0 P̂

(sp)
0

0.5 8.15967 8.2358
7.8862

(3.35%)

8.01634

(2.66%)

8.07665

(1.02%)

8.32861

(1.13%)

8.18723

(0.34%)

8.21919

(0.20%)

1 170.059 151.4
162.291

(4.57%)

143.633

(5.13%)

174.305

(2.50%)

155.646

(2.80%)

170.198

(0.08%)

151.54

(0.09%)

1.5 4046.89 3049.74
3936.84

(2.72%)

2802.01

(8.12%)

4408.74

(8.94%)

3241.32

(6.28%)

4014.98

(0.79%)

3066.75

(0.56%)

2 106698 65557
109369

(2.50%)

58053.9

(11.45%)

126984

(19.01%)

73104.1

(11.51%)

103721

(2.79%)

66534.9

(1.49%)

The absolute relative percentage errors (rounded to a basis point) are given

in the little parentheses below the prices. Using the same program, simulating
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100 sample paths takes about 4 seconds to complete, and so simulating 1000

paths results in a large computational effort of 40 seconds approximately, which

exactly grows in an arithmetic manner. It is clearly seen that the relative

errors generally decline with increased simulation sample sizes, which in some

sense fits into the asymptotical unbiasedness of the estimators of the log price

process. Nevertheless, due to its superior computational efficiency, pricing

through characteristic functions is highly preferred over simulation.

8 Concluding Remarks

In this paper a Brownian time change is constructed to randomize time

structure and thus model stochastic volatility in finance. Composed of a non-

negative drift and a quadratic Brownian integral, this time change has only

two parameters which reciprocally control the randomness of volatility. The

business time is combined with a drifted variance gamma process for finan-

cial modeling, and the resulting process is able to incorporate jumps, has

an asymmetric leptokurtic feature, and flexibly describes volatility clustering,

as well as is tractable with characteristic functions and very easy to simu-

late. After establishing the stock price dynamics under the real-world and

risk-neutral measures, the time-changed model is used for option pricing. By

using its uncomplicated characteristic function, pricing for plain-vanilla op-

tions is considerably efficient. An asymmetric power option can be regarded

as a plain-vanilla option on a new powered price stock and so follows the same

pricing mechanism. Also, I find that symmetric power options can be priced

in two approaches, one with infinite series expansion and the other with some

advanced functionals, the latter eliminating certain systematic errors. Com-

pared to asymmetric power options, the pricing of symmetric power options

takes significantly more time.

In discussing the Monte-Carlo simulation of this time-changed process, a

general time discretization is used. In proper order, the business time, variance

gamma process with drift, and stock price process can be simulated convenient-

ly. It is confirmed that the estimator of the log stock price at a fixed time point

is asymptotically unbiased, and therefore pricing through simulation is readily

available.
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Afterwards, one-year SP500 daily data are taken into account for empiri-

cal modeling. Since the model’s density function is not explicitly known, the

method of moments has been used to estimate the parameters. With market

mid-prices of standard options obtained, by comparing the model’s fitting de-

gree with those of another three calendar-time or purely continuous models it

is observed that while discontinuities are necessary for short-term large fluc-

tuations, stochastic volatility seems to be needed in the long run. In addition,

based on the numerical pricing of power options, it is directly concluded that

the power impact is enormous or the option prices show very high sensitivity

to the power taken. Furthermore, when pricing options via simulation, a larg-

er sample size leads to less absolute relative percentage error while requiring

more computational effort that grows arithmetically.

Of course, the Brownian time change can presumably work well with other

types of Lévy processes, such as the normal inverse Gaussian process and the

CGMY process. See, further, Barndorff-Nielsen (1995) [3]. Pricing other exotic

options is understandably realistic under the time-changed process. However,

imperfections of the model still exist. In reality, neither risk-free rates nor

dividends are constant numbers; they are in themselves stochastic processes.

Therefore, constructing specific interest rate and dividend yield models can

better fit into time-variant market expectations. On the other hand, this would

unavoidably impede the analytical tractability of the pricing mechanism, which

should instead have reliance on other computational methods.
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Appendix A - Proof of Characteristic Function of Busi-

ness Time

In an attempt to prove (2.3), note that the only source of randomness in

the business time (Bt) is the integrated squared Brownian motion, I ≡ (It) :=( ∫ t
0
W 2
s ds
)
. Since the square impact makes W 2 no longer a Lévy process,

analysis should have recourse to certain decomposition in order to construct

uncorrelated variables. The Karhunen-Loève theorem (see, e.g., Ghanem and

Spanos (1991) [11]) provides a useful canonical orthogonal representation for

W . Fixing the time interval [0, t], since for any s > 0, E[Wt] = 0, E
[
W 2
t

]
= t,

and Cov[Ws,Wt] = s ∧ t, which is a continuous function in time and can be

used as a Mercer kernel, W admits a decomposition that

Ws =
∞∑
k=1

Zkgk(s), s ≥ 0, (A.1)

where convergence is understood in L2-norm; Zk =
∫ t

0
Wsgk(s)ds ∼ Normal(0,

λk), ∀k, are pairwise uncorrelated random variables; gk, ∀k, are eigenfunctions

forming an orthonormal basis with corresponding eigenvalues λk > 0. In this

case, the integral I can be expressed as

It =

∫ t

0

(
∞∑
k=1

Zkgk(s)

)2

ds =
∞∑
k=1

Z2
k

∫ t

0

g2
k(s)ds =

∞∑
k=1

Z2
k . (A.2)

Given t, It happens to be the sum of a sequence of weighted uncorrelated chi-

squared random variables. Since Z2
k ∼ λkχ

2(1)
law
= Gamma(1/2, 1/(2λk)) for

any k10, the distribution of It is indeed equivalent to a sum of uncorrelated

gamma random variables. Recall the characteristic function of a gamma ran-

dom variable; see (3.1.3). Then the characteristic function of I conditioned on

t is expressed as

ψI|t(u) := E
[
eiuIt

]
= E

[
eiu

∑∞
k=1 Z

2
k

]
=
∞∏
k=1

E
[
eiuZ2

k

]
=
∞∏
k=1

(1− 2iλku)−
1
2 . (A.3)

According to the Karhunen-Loève theorem, the eigenfunctions and eigen-

values are found by solving a homogeneous Fredholm integral equation of the

10The chi-squared distribution has a natural relationship with the gamma distribution

family by positive scaling. Refer to Walck (2007) [17].
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second kind, namely,

λkgk(u) =

∫ t

0

gk(s)(s ∧ u)ds. (A.4)

Separating the integral for the minimum function results in

λkgk(u) =

∫ u

0

sgk(s)ds+

∫ t

u

ugk(s)ds. (A.5)

By the Leibniz rule, differentiating twice both sides gives rise to the ordinary

differential equation (ODE) below.

λkg
′′
k(u) = −gk(u), (A.6)

subject to the boundary conditions that gk(0) = 0 and g′k(t) = 0. This equation

has nontrivial solutions

gk(u) =

√
2

t
sin

u√
λk
, k ∈ N++, (A.7)

if and only if the eigenvalues admit the form

λk =
4t2

π2(2k − 1)2
, k ∈ N++. (A.8)

Clearly,
∑∞

k=1 λk = t2/2 <∞.

According to Abramowitz and Stegun (1972) [1], the cosine function has a

very famous product representation,

cosx =
∞∏
k=1

(
1− 4x2

π2(2k − 1)2

)
. (A.9)

Owing to this expansion, along with (A.8), (A.3) can be conveniently reduced

into

ψI|t(u) =

√√√√( ∞∏
k=1

(
1− 8it2u

π2(2k − 1)2

))−1

=

√
sec
√

2it2u. (A.10)

Therefore, (2.3) becomes clear as, for m ≥ 0 and v > 0,

E
[
eiu(mt+vIt)

]
= eimtu

√
sec
√

2ivt2u. (A.11)
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Appendix B - Proof of Selected Pricing Formulae for

Symmetric Power Options

Recall that in (5.3.3) the price of a symmetric power call involves a series

of expectations, which I denote by E1,p−k := E∗
[
e−rTSp−kT 1{ST>K}

]
, for k ∈ N.

Given k ≤ bpc, p − k ≥ 0, and change of numéraire is meaningful as every

powered stock price Sp−k can be thought to have the following P∗-evolution,

Sp−kt =
Sp−k0 e(r−dp−k(t))t+(p−k)Xt

ψX|t(−i(p− k))
, k ≤ bpc. (B.1)

In this case ψX|t(−i(p − k)) and dp−k(t) exist provided that (5.2.4) is true,

and
(
e−(r−dp−k(t))tSp−kt

)
is indeed a local martingale under P∗. Hence, choosing

Sp−k, for k ≤ bpc, as numéraires directly leads to the in-the-money probabil-

ities given in (5.3.5). Notice that there is substantially no difference between

the handling method here and that for asymmetric power options.

On the other hand, if k ≥ bpc + 1, the stock power becomes negative and

makes no practical sense. Then, denote by f ∗lnS|T the density function of lnST

under P∗, and applying inverse Fourier transform it follows that

E1,p−k = e−rT
∫
R

e(p−k)x1{x>lnK}f
∗
lnS|T (x)dx

= e−rT
∫ ∞

0

e(p−k)(y+lnK) 1

π

∫ ∞
0

<
{
e−iu(y+lnK)ψ∗lnS|T (u)

}
dudy

=
Kp−ke−rT

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

∫ ∞
0

e(p−k−iu)ydy

}
du

=
Kp−ke−rT

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

iu− p+ k

}
du, (B.2)

where the second equality follows from changing variable with y = x − lnK

and the third is a result of Fubini’s theorem for iterated integrals; note that

integration is exchangeable only for p − k < 0. Plugging (B.2) into (5.3.3)

yields (5.3.4) through (5.3.6).

Further, by changing the order of integration and summation, the second

sum in (5.3.4) becomes

Kpe−rT

π

∫ ∞
0

<

{
e−iu lnKψ∗lnS|T (u)

∞∑
k=bpc+1

(
p

k

)
(−1)k

iu− p+ k

}
du. (B.3)
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The kth term of the sum in (B.3) can be rearranged by doing some product

tricks as follows.

(−1)bpc+k

iu− p+ bpc+ k

(
p

bpc+ k

)

=

∏bpc+k
j=1 (−p+ j − 1)

(iu− p+ bpc+ k)(bpc+ k)!

=

∏bpc+1
j=1 (−p+ j − 1)

∏k−1
j=1(1− p+ bpc+ j − 1)

(iu− p+ bpc+ k)(bpc+ 1)!
∏k−1

j=1(2 + bpc+ j − 1)

=
(−1)bpc+1

1 + iu− p+ bpc

(
p

bpc+ 1

) ∏k−1
j=1(1− p+ bpc+ j − 1)∏k−1
j=1(2 + bpc+ j − 1)

× 1 + iu− p+ bpc
1 + iu− p+ bpc+ k − 1

=
(−1)bpc+1

1 + iu− p+ bpc

(
p

bpc+ 1

) ∏k−1
j=1(1− p+ bpc+ j − 1)∏k−1
j=1(2 + bpc+ j − 1)

×
∏k−1

j=1(1 + iu− p+ bpc+ j − 1)∏k
j=2(1 + iu− p+ bpc+ j − 1)

=
(−1)bpc+1

1 + iu− p+ bpc

(
p

bpc+ 1

)
(1)k(1− p+ bpc)k−1(1 + iu− p+ bpc)k−1

k!(2 + bpc)k−1(2 + iu− p+ bpc)k−1

,

(B.4)

where in the final step the Pochhammer symbol (·)· has been used for reduction.

The second fraction in the last line of (B.4) is yet equivalent to the kth term

of a hypergeometric function 3F2, thus giving rise to Υ as in (5.3.8). This

completes the proof for the call.

Similarly, for a symmetric power put, let E2,k := E∗
[
e−rTSkT1{ST<K}

]
. For

k = 0, it is immediate that E2,0 = e−rT
(
1− Π2

)
for Π2 as in (5.1.4).

For a given k ≥ 1, by performing inverse Fourier transform again,

E2,k = e−rT
∫
R

ekx1{x<lnK}f
∗
lnS|T (x)dx

= e−rT
∫ 0

−∞
ek(y+lnK) 1

π

∫ ∞
0

<
{
e−iu(y+lnK)ψ∗lnS|T (u)

}
dudy

=
Kke−rT

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

∫ 0

−∞
e(k−iu)ydy

}
du

=
Kke−rT

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

k − iu

}
du. (B.5)
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Notably, here Fubini’s theorem is applicable for k > 0. This implies (5.3.11).

Combined with (5.3.10), further reduction can be made by

Kpe−rT
(

1

2
+
∞∑
k=0

(
p

k

)
(−1)k

1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

k − iu

}
du

)

= Kpe−rT

(
1

2
+

1

π

∫ ∞
0

<

{
e−iu lnKψ∗lnS|T (u)

∞∑
k=0

(
p

k

)
(−1)k

k − iu

}
du

)

= Kpe−rT

(
1

2
+

1

π

∫ ∞
0

<

{
e−iu lnKψ∗lnS|T (u)

×
∫ 1

0

∞∑
k=0

(
p

k

)
(−1)kzk−iu−1dz

}
du

)

= Kpe−rT
(

1

2
+

1

π

∫ ∞
0

<
{
e−iu lnKψ∗lnS|T (u)

∫ 1

0

z−iu−1(1− z)pdz

}
du

)
,

(B.6)

for which it is observed that∫ 1

0

z−iu−1(1− z)pdz =: B(−iu, 1 + p) = B(1 + p,−iu), (B.7)

according to the symmetric property of the Beta function, and thus the pricing

formula (5.3.12).
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