
Communications in Mathematical Finance, vol.5, no.1, 2016, 43-54

ISSN: 2241-1968 (print), 2241-195X (online)

Scienpress Ltd, 2016

Valuation of Discrete Vanilla Options

Using a Recursive Algorithm

in a Trinomial Tree Setting

Dennis G. Llemit1

Abstract

We present an extension or modification of a recursive algorithm to
valuate discrete vanilla options in a trinomial tree setting. The algo-
rithm only uses terminal values of the option as opposed to the standard
method of simulating all nodal values for the entire tree. We then show
that the option price under the said algorithm converges to the Black-
Scholes price confirming its validity.

Keywords: vanilla options; recursive algorithm; trinomial tree

1 Introduction

An option is a derivative contract which confers to the owner (or buyer)

the right but not the obligation to buy or sell certain amounts of an underlying

at a future time at a predetermined price. It was first formally traded in the

1 Department of Mathematics Adamson University 1000 San Marcelino Street, Ermita,
Manila.

Article Info: Received : December 1, 2015. Revised : January 4, 2016.
Published online : March 1, 2016.

44 Valuation of Discrete Vanilla Options Using a Recursive Algorithm ...

Chicago Board Options Exchange (CBOE) in 1973 but there have been his-

torical accounts that it was used before, specifically in ancient Greece where it

was used to speculate on the price of olive oil. In modern times, options have

grown to become necessary financial tools in trading and many consider their

impact in the industry as revolutionary.

Primarily, an option is used to hedge against risks brought by the inherently

uncertain nature of trading. The hedging is done by setting up a replicating

portfolio consisting of units of bonds and stocks. The price of the option is

given by the law of one price - the unique smallest amount or wealth that

is necessary to set up the replicating portfolio[6]. In this set up, the famous

Black-Scholes model [1] is used to compute the unique price. For discrete-

valued market prices, lattice valuation methods are also employed and two

popular alternatives to the Black-Scholes are the Cox-Ross-Rubinstein (CRR)

binomial model and the family of trinomial tree lattices.

Options can be classified according to exercise time. European or vanilla

type options are derivative contracts that can only be exercised at maturity

while American type derivative contracts can be exercised within the securities’

lifespan. A third classification which also receives significant interest are path

dependent options. These are securities whose prices are contingent on the

trajectories of their underlying. Asian and barrier options are two examples

of this class of securities.

In the field of computational finance, studies are devoted on developing

pricing algorithms that are efficient. Many pricing algorithms have been pro-

posed to implement the Black-Scholes as well as lattice models. Usually, al-

gorithms for pricing options in the lattice framework requires that the option

values have to be simulated for the entire tree. In this scheme, the worst case

time complexity of the CRR is known to be O(2n). In 2009, Tina Sol[7] to-

gether with her adviser Dr. van der Weide of Technical University of Delft,

constructed an algorithm that computes the price of barrier options exactly

the same as the CRR model. This algorithm is very simple in that it only

requires terminal values of the option and recursively computes the premium.

In 2015, Llemit [4] completely verified the accuracy of the Sol - van der Weide

algorithm versus the CRR and showed that its time complexity is Θ(n2).

Dennis G. Llemit 45

In this paper we intend to

(1) modify the Sol-van der Weide algorithm in order for it to be applicable

to trinomial trees, and

(2) determine the modified algorithm’s time complexity.

The first goal is obvious since we want to extend the algorithm to a more gen-

eral lattice model. As the lattice model contains more nodes, it approximates

the dynamics of the Black-Scholes. Thus, the modified algorithm hews closer

to the true dynamics compared to algorithms in the binomial framework. The

second goal is to check whether the time complexity changes as the algorithm

is modified.

2 Trinomial Tree Models

It was Phelim Boyle who considered moving from the dichotomous states

of the binomial model in 1986 [2]. Instead of two states, up and down, we

allow the underlying to move up, down and stay the same with jump steps

u, d, and m, respectively. This is shown by the figure below. To derive the

Figure 1: Three Possible States of the Underlying at t = 1

pricing formula, we need to match the first two moments of the underlying St

which is assumed to follow a geometric Brownian motion. These are

E [St+∆t|St] = upu + mpm + dpd = er∆t (1)

46 Valuation of Discrete Vanilla Options Using a Recursive Algorithm ...

and

V ar [St+∆t|St] =
E
[
S2

t+∆t

]
S(t)2

− E [St+∆t]
2

S(t)2

= u2pu + pm + d2pd

= e2r∆t+σ2∆t − e2r∆t (2)

where pu, pm, and pd are transition probabilities, r is the risk-free rate, and σ

is the volatility.

We impose the constraint

u = 1/d (3)

in order to preserve the centrality or recombining nature of the tree while

the other jump step is taken to be m = 1. Then, we solve equations (1), (2)

with (3) simultaneously to get

pu =

(
e2r∆t+σ2∆t − er∆t

)
u−

(
er∆t − 1

)
(u− 1) (u2 − 1)

(4)

and

pd =

(
e2r∆t+σ2∆t − er∆t

)
u2 −

(
er∆t − 1

)
u3

(u− 1) (u2 − 1)
(5)

while we set

pm = 1− pu − pd. (6)

The price of a European type option is given recursively by

Vn−1 = e−r∆t
[
puV

u
n + pmV m

n + pdV
d
n

]
(7)

where n is a nonnegative integer, V u
n denotes the option price when the under-

lying takes the value uS one period later. Similar meanings hold for V m
n and

V d
n .

3 Sol - van der Weide Algorithm

The first part of the algorithm is called the initialization subprocedure since

it essentially initializes the vectors representing the underlying and pay-off val-

ues at maturity T for a number of time steps n.

Dennis G. Llemit 47

Initialization Subprocedure:

ST =


ST (n, n)

ST (n, n− 2)
...

ST (n,−n + 2)

ST (n,−n)

 =


S0u

n

S0u
n−1d
...

S0udn−1

S0d
n



VT =


VT (n, n)

VT (n, n− 2)
...

VT (n,−n + 2)

VT (n,−n)

 = (K − ST)+ .× (ST < B) .

Here, .× represents pointwise vector multiplication. The vector (ST < B)

contains logicals 0 or 1. If the underlying is below the barrier B then the

vector contains only 1′s. Otherwise, 0′s will be the only entries.

The second part is called the recursion subprocedure since it recursively

runs the operation until it obtains the single entry vector V0 which is the op-

tion premium.

Recursion Subprocedure:

For i = 1, 2, · · · , n and h = T/n update the pay-off vector

VT−ih = e−rih ·
(
pV up

i + qV down
i

)
.× (ST−ih < B) . (8)

Run recursively until V0 is obtained.

Here, h is the length of each time step. The updating of vectors requires

that they must be based from the original vectors VT and ST . The vector ST−ih

is attained by using either one of the two formulas:

ST−ih = ui.Sdown
i (9)

or

ST−ih = di.Sup
i (10)

48 Valuation of Discrete Vanilla Options Using a Recursive Algorithm ...

where vectors Sdown
i and Sup

i are obtained by deleting the first i and the last i

entries, respectively, of ST . The purpose of the multiplier u or d is to preserve

the centrality or recombining nature of the tree. The same is true for vectors

V up
i and V down

i . The deletion of entries goes on until they become single entry

vectors or 1× 1 matrices.

4 Trinomial Tree Adaptation

In this section, we present the trinomial tree adaptation of the algorithm.

We note that we are considering a European-type vanilla call option. The

resulting adaptation still consists of two subprocedures.

4.1 Algorithm Modifications

Similar to Sol[7], the initialization subprocedure involves setting the ter-

minal values of the underlying and the option values. We present the said

subprocedure below:

Initialization Subprocedure:

ST =


ST (n, n)

ST (n, n− 1)
...

ST (n,−n + 1)

ST (n,−n)

 =


S0u

n

S0u
n−1d
...

S0udn−1

S0d
n



VT =


VT (n, n)

VT (n, n− 1)
...

VT (n,−n + 1)

VT (n,−n)

 = (ST −K)+

where n is the number of time increments.

Noticeable in this set up is the absence of the vector (ST < B) because

we are working with vanilla options. The said vector is used to terminate the

contract in the barrier options setting.

Dennis G. Llemit 49

As for the recursion subprocedure, we need only to modify the updating

vector VT−ih in order to reflect the three states of the underlying - S0u, S0m,

and S0d. Unlike the original algorithm, there is no need to modify the vector

ST because the trinomial tree is recombining even if we delete some nodes from

it per iteration.

Recursion Subprocedure:

For i = 1, 2, · · · , n and h = T
n

update the pay-off vector

VT−ih = e−rih ·
(
puV

u
i + pmV m

i + qV d
i

)
. (11)

Run recursively until V0 is obtained.

Again, h is the length of each time step and pu, pm, and pd are the transition

probabilities. The vector V u
i is obtained by deleting the last two nodal values

of VT . The vector V m
i is obtained from VT by deleting the first and the last

entry of from VT and for V d
i , deleting the first two entries of VT .

4.2 Time Complexity Analysis

In this section, we are going to check whether the time complexity was

affected by the modifications imposed on the Sol - van der Weide algorithm.

From Cormen [3], we define the following measures of time complexity:

Definition (Big O Complexity). For any monotonic functions f(n) and

g(n) where n ≥ 0, we say that f(n) = O(g(n)) when there exist constants

c > 0 and n0 > 0 such that f(n) ≤ c · g(n), for all n ≥ n0.

Definition (Big Omega Complexity). For any monotonic functions f(n)

and g(n) where n ≥ 0, we say that f(n) = Ω(g(n)) if there exist a constant c

such that f(n) ≥ c · g(n) for all sufficiently large n.

Definition (Big Theta Complexity). For any monotonic functions f(n)

and g(n) where n ≥ 0, we say that f(n) = Θ(g(n)) if there exist constants c1

and c2 such that 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all sufficiently large n.

Then we state a series of theorems from Rosen [5].

50 Valuation of Discrete Vanilla Options Using a Recursive Algorithm ...

Theorem 4.1. For any monotonic functions f(n) and g(n) where n ≥ 0, we

say that f(n) = Θ(g(n)) if and only f(n) = O(g(n)) and f(n) = Ω(g(n)) for

all sufficiently large n.

Theorem 4.2. Let f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0, where a0, a1, · · · , an

are real numbers with an 6= 0. Then f(x) is of order xn.

Theorem 4.3. Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)). Then

(f1 + f2) (x) is O (max (‖g1(x)‖, ‖g2(x)‖)) .

Theorem 4.4. Suppose that f1(x) is Ω(g1(x)) and f2(x) is Ω(g2(x)). Then

(f1 + f2) (x) is Ω (max (‖g1(x)‖, ‖g2(x)‖)).

Now, suppose that MS(n) is the running time function for the modified Sol

- van der Weide algorithm. We have the following time complexity analyses.

For the worst-case time complexity, we argue that both vectors ST and VT

have lengths 2n+1 in the initialization subprocedure. Putting them together,

they contribute 4n + 2 instructions in this subprocedure. Hence, by Theorem

(2),

initialization subprocedure time complexity = 4n + 2 ∈ O(n).

As for the recursion subprocedure, it now involves a single vector, VT−ih which

contracts by length two every iteration. This reduction in length can be ex-

pressed as

(2n− 1) + (2n− 3) + . . . + 3 + 1 =
n

2
[2 + 2(n− 1)]

= n2.

According to Theorem (2), n2 ∈ O(n2). Thus the worst-case time complexity

of the entire algorithm according to Theorem (3) is

MS(n) = initialization subprocedure time complexity

+ recursion subprocedure time complexity

= O(n) + O(n2)

= O(n2).

As for the best-case time complexity, we note that the initialization subpro-

cedure has to process all the input elements and reducing its length will affect

Dennis G. Llemit 51

the accuracy of the computation. Hence, we conclude that the initialization

subprocedure has a linear time complexity. That is

initialization subprocedure time complexity = Ω(n)

For the recursion subprocedure, we conclude that it is also quadratic similar

to its worst-case counterpart for the following reasons:

1.) the recursion is iterative and contains no conditional statement.

2.) the recursion is based on a closed form equation (11).

Therefore, by Theorem (4), the best-case time complexity of the entire algo-

rithm is

MS(n) = initialization subprocedure time complexity

+ recursion subprocedure time complexity

= Ω(n) + Ω(n2)

= Ω(n2).

Since, MS(n) = O(n2) and MS(n) = Ω(n2), we conclude that MS(n) = Θ(n2)

by Theorem (1). Hence, the time complexity remains the same and consistent

to the analysis in Llemit[4].

5 Implementation and Results

We implemented the modified Sol - van der Weide algorithm on a desktop

computer with an installed random access memory (RAM) of 2.0 GB and an

Intel Core 2 Duo processors with speeds of 2.0 GHz and 1.99 GHz. The popular

values for the transition probabilities were used and these are

pu =

(
e(r−γ)∆t

2 − e−σ
√

∆t
2

eσ
√

∆t
2 − e−σ

√
∆t
2

)2

(12)

and

pd =

(
e−σ

√
∆t
2 − e(r−γ)∆t

2

eσ
√

∆t
2 − e−σ

√
∆t
2

)2

(13)

52 Valuation of Discrete Vanilla Options Using a Recursive Algorithm ...

where γ stands for the dividend yield and σ the volatility rate. As for the

middle transition probability, as usual, we set it to pm = 1− pu − pd.

We use the following test values: S = 5 (stock price), K = 3 (strike

price), r = 0.15 (risk-free interest rate), T = 0.25 (maturity), σ = 0.5,

and γ = 0.1 (dividend yield rate). The corresponding Black-Scholes value

is 1.993111420725652 and is obtained using the built-in Matlab command

blsprice. We then plot the true error of the MSWA versus time-steps n.

Figure 2: True Error of MSWA versus time steps n

Observe that the error tends to zero as the number of time steps n becomes

large as shown by the graph. This confirms the convergence of the MSWA to

the Black - Scholes and validates our modifications to the Sol - van der Weide

Algorithm.

Dennis G. Llemit 53

6 Conclusions

This paper had two goals. Firstly, it aimed to modifiy the Sol - van der

Weide algorithm in order for it to be applicable to trinomial tree models. As we

can see, the difference between the algorithm computations versus the Black-

Scholes price approches zero as we increase the time steps n. This confirms the

validity of the modified Sol-van der Weide algorithm. Secondly, it intended to

check whether the time complexity of the modified algorithm was affected by

the modifications. From our time complexity analyses, we found that the time

complexity remains to be Θ(n2).

As further works, it would be interesting to determine the algorithm’s space

complexity and subsequently, whether it is optimizable in terms of the number

of multiplications and additions. Next would be to modify the Sol - van der

Weide algorithm to be applied to barrier options in a trinomial tree set-up.

References

[1] Black, F. and Scholes, M. The Pricing of Options and Corporate Liabilities.

Journal of Political Economy, 1973.

[2] Boyle, P. Option Valuation Using a Three-Jump Process. International

Options Journal , 1986.

[3] Cormen, T.H., Leiserson, C.E., Rivest, R., Stein, C. Introduction to Algo-

rithms, 3rd Ed. The MIT Press, 2009.

[4] Llemit, D.G. On A Recursive Algorithm For Pricing Discrete Barrier Op-

tions. International Journal of Financial Engineering, 2015.

[5] Rosen, K.H. Discrete Mathematics and Its Applications, 6th Ed. McGraw-

Hill, 2008.

[6] Shreve, S.E. Stochastic Calculus for Finance I: The Binomial Asset Pricing

Model. Springer Finance, 2005.

[7] Tina Sol. Pricing Barrier Options in Discrete Time. Bachelor Thesis,

Technische Universiteit Delft, 2009.

54 Valuation of Discrete Vanilla Options Using a Recursive Algorithm ...

Modified Sol - van der Weide Algorithm Code

