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Abstract 
The monthly Prime Lending Rates of Nigerian Banks are modeled herein by SARIMA 
methods. The realization considered here spans from January 2006 to July 2014. The 
original series called herein PLR has a generally horizontal secular trend. Its correlogram 
reveals some seasonality of period 12 months. Moreover, preliminary data analysis shows 
that yearly maximums are mostly between October and the next March, and the 
minimums mostly between April and September. That means that the maximums tend to 
lie in the first and the fourth quarters of the year and the minimums in the second and 
third quarters of the year. That means that the series is seasonal of 12 monthly period. 
Twelve-monthly differencing of PLR yields the series called SDPLR which also has a 
generally horizontal trend. Augmented Dickey Fuller (ADF) Tests consider both PLR and 
SDPLR to be non-stationary. A non-seasonal differencing of SDPLR yields the series 
DSDPLR which is considered stationary by the ADF tests. Its correlogram attests to a 
12-monthly seasonality as well as the presence of a seasonal moving average component 
of order one. The autocorrelation structure suggests the proposal of the following models: 
(1) a SARIMA(0,1,1)x(0,1,1)12 (2) a SARIMA(0,1,1)x(1,1,1)12 and (3) a 
SARIMA(0,1,1)x(2,1,1)12 . The foregoing models following a descending order of degree 
of adequacy on AIC grounds. However, from the SARIMA(0,1,1)x(2,1,1)12 model, a 
SARIMA(0,1,0)x(2,1,1)12 model becomes suggestive and it outdoes the rest on all counts. 
Its residuals are mostly uncorrelated and also follow a normal distribution with mean zero. 
Hence it is adequate and may be used to forecast the prime lending rates.         
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1  Introduction  
Prime lending rates are rates at which banks give loans to their best customers. These 
customers are called best in the sense of having a long term relationship and credit 
reputation with the bank and are often big-time and well-established clients. These rates 
are usually minimal and they fluctuate according to the economic realities of the nation. 
The aim of this work is to fit a seasonal autoregressive integrated moving average 
(SARIMA) model to the monthly prime lending rates of Nigerian banks. 
The rates are herein observed to show some seasonality of period 12 months as many 
other economic and financial time series. Hence, the proposal of a SARIMA fit. In the 
literature time series that have been modeled by SARIMA techniques because of their 
intrinsically seasonal nature include temperature (Khajavi et al., [1]), tourism patronage 
(Padhan, [2]), airways patronage (Box and Jenkins, [3]), inflation (Fannoh et al. [4]), 
savings deposit rates (Etuk et al., [5]), rice prices (Hassan et al., [6]),  tuberculosis 
incidence (Moosazadeh et al., [7]), stock prices (Etuk, [8]), cucumber prices (Luo et al., 
[9]), internally generated revenues (Etuk et al., [10]), dengue numbers (Martinez et al., 
[11]), and tomato prices (Adanacioglu and Yercan, [12]), to mention but a few.   

 
 
2  Materials and Methods 
2.1 Data 
The data analyzed in this work are 103 prime lending rates from January 2006 to July 
2014 retrievable from the website of the Central Bank of Nigeria, www.cenbank.org. 
They are published under the Money Market indicators subsection of the Data and 
Statistics section.  

 
2.2 Sarima Models 
A stationary time series {Xt} is said to follow an autoregressive integrated moving 
average model of order p and q denoted by ARMA(p,q) if it satisfies the following 
difference equation 
 

qtqtttptpttt XXXX −−−−−− ++++=−−−− εβεβεβεααα ...... 22112211         (1) 
 
where the sequence of random variables {εt} is a white noise process. The α’s and β’s are 
constants such that the model is both stationary and invertible. Suppose that the model (1) 
is written as 
 

tt LBXLA ε)()( =                                                       (2) 
 
where A(L) and B(L) are the autoregressive (AR) and the moving average (MA) 
operators respectively defined by A(L) = 1 - α1L - α2L2 - … - αpLp and B(L) = 1 + β1L + 
β2L2 + … + βqLq and L is the backward shift operator defined by LkXt = Xt-k. 
 
If a time series is non-stationary, Box and Jenkins [3] proposed that differencing of the 
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series a number of times may make it stationary. Let ∇ be the difference operator. Then ∇ 
= 1 – L. If d is the minimum number of times for which the dth difference {∇dXt} of {Xt} 
is stationary and {∇dXt} follows model (1) or (2) the original series {Xt} is said to follow 
an autoregressive integrated moving average model of order p, d and q, denoted by 
ARIMA(p,d,q). 
 
If in addition the time series {Xt} is seasonal of period s, Box and Jenkins [3] moreover 
proposed that it may be modeled by 
 

t
s

t
D
s

ds LLBXLLA ε)()()()( Θ=∇∇Φ                                       (3) 
 
where ∇s is the seasonal differencing operator defined by ∇s = 1 – Ls, D is the minimum 
number of times of seasonal differencing for stationarity and Φ(L) and Θ(L) are the 
seasonal AR and MA operators respectively. Suppose Φ(L) and Θ(L) are polynomials of 
orders P and Q respectively model (3) is called a multiplicative seasonal autoregressive 
integrated moving average model of order (p,d,q)x(P,D,Q)s, denoted by 
SARIMA(p,d,q)x(P,D,Q)s model. 

 
2.3 Sarima Model Fitting 
The fitting of a SARIMA model of the form (3) starts invariably with the determination of 
the orders p, d, q, P, D, Q and s. The seasonal period might be directly suggestive by 
knowledge of the seasonal nature of the series as with monthly rainfall for which s = 12 or 
hourly atmospheric temperature for which s = 24. An inspection of the series could reveal 
an otherwise unclear seasonality. Moreover the correlogram could reveal seasonality if 
the autocorrelation function (ACF) has a sinusoidal pattern. In this case the period of 
seasonality is the same as that of the ACF. The differencing orders d and D are often 
chosen so that d + D < 3. This is usually enough to make the series stationary. Before and 
after differencing at each stage the series is tested for stationarity using the Augmented 
Dickey Fuller (ADF) Test. The AR orders p and P are estimated by the non-seasonal and 
the seasonal cut-off lags of the partial autocorrelation function function (PACF) 
respectively and the MA orders q and Q are estimated by the non-seasonal and the 
seasonal cut-off lags of the ACF respectively. 
The model parameters may be estimated by the use of a nonlinear optimization technique 
like the least squares procedure or the maximum likelihood technique. This is due to the 
presence of items of the white noise process in the model. The best of competing models 
shall be chosen on minimum Akaike’s Information Criterion (AIC) grounds. Any chosen 
model is tested for goodness-of-fit to the data by analysis of its residuals. An adequate 
model must have residuals that are uncorrelated and/or follow the Gaussian distribution. 

 
2.4 Statistical Software 
The software used here is Eviews 7. It employs the least error sum of squares criterion for 
model estimation.  
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3  Results and Discussion  
The time plot of the realization of the prime lending rates called herein PLR in Figure 1 
shows a generally horizontal trend with a big hunch between 2009 and 2010. It is 
observed that yearly minimums tend to lie in the second and third quarters of the year and 
the maximums in the first and fourth quarters of the year.  
 

 
Figure 1: PLR 

 
It has a sinusoidal patterned ACF (see Figure 2) revealing a seasonal tendency of period 
12 months. A 12-monthly differencing produces the series SDPLR which also has a fairly 
horizontal trend with a hunch between 2009 and 2010 (See Figure 3). A non-seasonal 
differencing of SDPLR yields the series DSDPLR which has a generally horizontal trend 
(See Figure 4). 
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Figure 2: Correlogram of PLR 

 

 
Figure 3: SDPLR 

 
The ADF test statistic for PLR, SDPLR and DSDPLR are respectively -2.4, -2.4 and -5.8. 
With the 1%, 5% and 10% critical values of -3.5, -2.9 and -2.6 respectively the ADF test 
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considers both PLR and SDPLR non-stationary and DSDPLR as stationary.  
 

 
Figure 4: DSDPLR 

 

 
Figure 5: Correlogram of DSDPLR 

 
The correlogram of DSDPLR in Figure 5 shows an ACF of a series with a 
SARIMA(0,1,1)x(0,1,1)12 component and a seasonal AR component of order 2. The 
models proposed are (1) a SARIMA(0,1,1)x(0,1,1)12 model (2) a 
SARIMA(0,1,1)x(1,1,1)12 model (3) a SARIMA(0,1,1)x(2,1,1)12 model and (4) a 
SARIMA(0,1,0)x(2,1,1)12 model. 
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The SARIMA(0,1,1)x(0,1,1)12 model as estimated in Table 1 is given by 
 

13121 0563.6386.3046 −−− +−= ttttX εεε                                     (4) 
 
The additive SARIMA model suggestive by model (4) is estimated in Table 2 by 
 

ttttX εεε +−= −− 121 7512.2486.                                           (5) 
 

Table 1: Estimation of the SARIMA(0,1,1)x(0,1,1)12 Model 

 
 

Table 2: Estimation of the Additive Sarima Model 
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Table 3: Estimation of the SARIMA(0,1,1)x(1,1,1)12 Model 

 
 

Table 4: Estimation of the SARIMA(0,1,1)x(2,1,1)12 Model 
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The SARIMA(0,1,1)x(1,1,1)12 model as estimated in Table 3 is given by 
 

tttttt XX εεεε +−−=+ −−−− 1312112 5619.6114.2773.3085.                     (6) 
 
The SARIMA(0,1,1)x(2,1,1)12 model as estimated in Table 4 is given by 
 

ttttttt XXX εεεε +++=++ −−−−− 131212412 0847.9484.1165.3833.9314.         (7) 
 
which suggests a SARIMA(0,1,0)x(2,1,1)12 model. This is estimated in Table 5 as 
 

ttttt XXX εε +=++ −−− 122412 9330.3849.9329.                              (8) 
 

Table 5: Estimation of the SARIMA(0,1,0)x(2,1,1)12 Model 
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Figure 6: Correlogram of the SARIMA(0,1,0)x(2,1,1)12 Residuals 

 

 
Figure 7: Histogram of the SARIMA(0,1,0)x(2,1,1)12 Residuals 

 
In models (4) through (8), X represents DSDPLR. Model (8) is the most adequate on 
minimum AIC grounds. 
The residuals of model (8) are mostly uncorrelated (See Figure 6) and normally 
distributed (See the Jarque Bera test of Figure 7) implying that model (8) is adequate. 
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4  Conclusion 
It may be concluded that the prime lending rates of Nigerian banks follow a  
SARIMA(0,1,0)x(2,1,1)12 model. Forecasting of these rates may be done on the   
basis of this model. 
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