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1 Introduction

The disparity between academic finance and industrial practice is the dis-

affiliation between technical analysis and academic financial theory. For the

technical analysis, it is lack of theoretic foundation; For the academic analysis,

it rules out any predictability from technical charting by assuming geometric

Brownian motions for the stock prices. The empirical data falls inconclusive

between the technical analysis and the academics. Lo, Mamaysky and Wang

[1] propose computational algorithms and statistical inference to recognize the

effectiveness of technical analysis on a large number of U. S. stocks from 1962

to 1996. They find out, over 34-year sample period, several technical indicators

do provide incremental information and may have some practice value. Zhu

and Zhou [2] further indicate that all major brokerage firms issue technical

commentary on the market and many advisory services come from technical

analysis. Covel [3] advocates the technical analysis exclusively by quoting

examples of large and successful hedge funds, without using any fundamental

information on the market. However, those facts mentioned above are not easy

to convince the academics. Among academics, the joint distribution (chart-

ings) of prices and volumes contribute important information, but is lack of the

financially theoretical support. Lo and MacKinlay [4] have shown that past

prices may be used to forecast future returns to some degree, a fact that all

technical analysts take for granted. Zhu and Zhou [2] realize it is theoretically

reasonable to use technical analysis in a standard asset allocation problem.

They show that the use of geometric moving average (GMA) rule combined

with the fixed rule can help increase the investor’s utility of wealth by solving

the the problem of allocating the optimal amount of stock. They analyze the

GMA with explicit solutions under log-utility due to the complexity and diffi-

culty of the distribution of the arithmetic moving average (AMA), though the

GMA rule is not a widely used strategy in real investment world. Their solu-

tion for the GMA is not complete since the optimal amount of the expected

utility can be reached for other constraints.

The AMA rule is a common market timing strategy that shifts investments

between cash and stocks. The use of the AMA rule can not only help in-

crease the investors’ utility of wealth enormously, but interlink the gulf between

quantitative finance and technical analysis through a systemic and scientific
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approach to the technical analysis practice and by using the now-standard

empirical analysis to gauge the efficacy of technical indicators over time and

across securities.

In this present paper, the utility of the most popular technical trading

method, AMA, is analyzed. And we solve the optimal problem that investors

buy the stock when its current stock price is moving above the arithmetic

average price over a given period L for both constraints on the ratio of pure

AMA rule and the ratio without AMA rule. The constraints on the ratio of

pure AMA rule and the ratio without AMA rule determine the allocation of

the wealth. Our analysis indicates that the optimal trading strategy is a lin-

ear combination of a fixed strategy and a pure AMA strategy. The technical

analysis from the AMA therefore can be adopted to increase the expected util-

ity and improve the popular fixed strategy in Markowitz [5] portfolio theory.

Our complete solution for improving the fixed strategy with the AMA should

have the practical importance in the real world. In particular, when there are

more ambiguous models for the stock price, the AMA method provides more

advantage in real world for investors. It is model-free and easy to compute

for the optimal trading strategy. For the log-utility function of wealth, ex-

plicitly the approximated investment strategy is constructed. And we prove

that the approximated investment strategy indeed converges to the optimal

investment solution. The implementation is based on four sets of parameters.

One set of parameters is from Huang and Liu [6]. The other three sets of

parameters are those used in Zhu and Zhou [2]. The optimal values and the

optimal strategy choices under the AMA rule are given and compared with

the counterparts under the GMA rule given in Zhu and Zhou [2]. Zhu and

Zhou [2] mention that the optimal value for the expected log-utility can be

achieved in all possibilities from various constraints, though they only give the

optimal value for the expected log-utility under GMA from two constraints.

The complete optimal value for the expected log-utility under AMA and the

associated optimal strategy choices are given in this paper, which include the

optimal values on all boundaries and that at the interior part. We find out

that the optimal investment strategy from the GMA rule can be misleading in

practice for the AMA rule. The optimal log-utility function of wealth from the

GMA can either overestimate or underestimate that from the practical AMA
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rule3.

The paper is organized as follows. In Section 2, the background of the

mathematical problem is introduced. The main results of this paper are pre-

sented in Section 3. We define a discrete time and discrete state approximation

from practice point of view for the optimal choice of the strategy and show

this approximation converges to the continuous time counterpart in section 4.

Section 5 gives numerical examples of the technical analysis. We conclude in

Section 6, and the proof is given in Appendix.

2 Optimal Investment Problem

We set the theoretical background for the optimal investment problem with

the expected utility of wealth subject to the budget constraint following from

the general model developed by Merton [7]. We assume the dynamics for the

cum-dividend stock price following Kim and Omberg [8] and Huang and Liu

[6],
dSt

St

= (µ0 + µ1Xt)dt + σsdBt, (1)

dXt = (θ0 + θ1Xt)dt + ρσxdBt +
√

1− ρ2σxdZt, (2)

where µ0, µ1, θ0, θ1(< 0), σs, σx are parameters, ρ ∈ [−1, 1], Xt is the

stationary predictable variable from the Ornstein-Uhlenbeck process, Bt and

Zt are independent Brownian motions, and θ1 < 0 is a mean reverting process.

Suppose that W0 is the initial wealth, T is the investment horizon and

X0 is normally distributed with mean M0− and variance V (0−). Let Ft be the

filtration at time t generated by {Su}0≤u≤t and the prior (M0− , V (0−)). Assume

that an investor has HARA preference over [0, T ]. The standard allocation

problem of an investor is to decide a portfolio strategy ξt to maximize the

expected utility of wealth,

max
ξt

E[u(WT )] (3)

subject to the budget constraint

dWt = rWtdt + ξt(µ0 + µ1Xt − r)Wtdt + ξtσsWtdBt. (4)

3Zhu and Zhou [2] provide an excellent literature review on the technical analysis related
to the arithmetic moving average in section 2. We refer to their paper for further references.
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The solution to (3) and (4) is the optimal investment strategy.

For a power type utility, u(WT ) = γ
1−γ

(
λW
γ

+ η
)1−γ

, where γ is the in-

vestor’s risk aversion parameter (γ 6= 0, 1), Huang and Liu [6] gave an implicit

form of the optimal dynamic strategy, ξ∗t , in the Proposition 1 therein. If

the stock returns are assumed to be independently and identically distributed,

Markowitz [5] suggests the optimal strategy is:

ξ∗fix1 =
µs − r

γσ2
s

, (5)

where µs = µ0 + µ1X = µ0 + µ1EXt = µ0 − µ1θ0

θ1
is the long term mean of

the stock return. In practice, this is an important benchmark model on the

investment strategy. Apparently, ξ∗fix1 is no longer optimal if stock returns are

not i.i.d. The constant ξ∗fix1 indicates a fixed portion of wealth invested into

the stock all the time and ignores any predictability completely. If the investor

knows the true predictable process but not the state variable, Zhu and Zhou

[2] give the optimal constant strategy for the power utility, u(WT ) =
W 1−γ

T

1−γ
(See

formula (15)-(17) therein). If the log-utility function, u(WT ) = log(WT ), is

considered, Zhu and Zhou [2] obtain the same optimal solution as that in (5).

That is, ξ∗fix1 = µs−r
σ2

s
.

3 Optimal Strategy under the AMA

In this section, we study a time-varying strategy, Arithmetic moving aver-

age (AMA) strategies, for the log-utility. The complete and explicit solution

to the optimal AMA strategy is provided. The difference between the optimal

AMA strategy and the optimal fixed allocation is given. Our analysis indicates

that the optimal trading strategy is a linear combination of a fixed strategy and

a pure AMA strategy. The technical analysis from the AMA strategy therefore

can be used to maximize the expected utility and improve the popular fixed

strategy in Markowitz [5] portfolio theory.

Let L > 0 be the lag or the look-back period. The AMA of the stock price

{St}t≥0 at time t is given by

At =
1

L

∫ t

t−L

Sudu. (6)
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The simplest moving average trading rule is the following stock allocation

strategy:

ηt = η(St, At) =





1, if St > At

0, otherwise.
(7)

When t > L, ηt is well-defined and ηt = 0 for t ≤ L. The Arithmetic Moving

Average (AMA) rule is

ξt = ξfix + ξmvη(St, At), (8)

where ξfix and ξmv are constant. The strategy consists of a fixed strategy

and a pure moving strategy. If ξmv = 0 and ξfix = ξ∗fix1, then the strategy

invests a fixed portion of wealth into the stock all the time. If ξmv = 1 and

ξfix = 0, then this strategy is commonly adapted to the pure AMA strategy

which positions in the stock or nothing with portfolio weight ηt. All these

strategies are commonly used and may not be optimal almost surely due to

the irrelevance to the investor’s tolerance γ to stock risk and to the degree of

predictability. The optimal choice of ξfix and ξmv is the goal of this study for

the AMA and the log-utility function, u(WT ) = log WT .

Recall (4). By Itô formula, we have that

log WT = log W0 + rT +

∫ L

0

dt

[
ξ∗fix1

(
µ0 + µ1Xt − r − σ2

s

2
ξ∗fix1

)]

+

∫ T

L

[
ξfix

(
µ0 + µ1Xt − r − σ2

s

2
ξfix

)]
dt + ξmvµ1

∫ T

L

X̂tηtdt

+

∫ T

L

[
ξmv(µ0 + µ1X̄ − r)− σ2

s

2
ξ2
mv − σ2

sξfixξmv

]
ηtdt

+σs

∫ T

0

(ξfix + ξmvηt)dBt, (9)

where X̂t = Xt − X̄ with X̄ = −θ0/θ1. Then the expected log-utility is

UAMA = E log WT = log W0 + rT +
(µ0 + µ1X̄ − r)2

2σ2
s

L

+ξfix

(
µ0 + µ1X̄ − r − σ2

s

2
ξfix

)
(T − L) + ξmvµ1

∫ T

L

b1(t)dt

+

[
ξmv(µ0 + µ1X̄ − r)− σ2

s

2
ξ2
mv − σ2

sξfixξmv

] ∫ T

L

b2(t)dt, (10)
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where

b1(t) ≡ E[X̂tηt(St, At)], b2(t) ≡ E[ηt(St, At)] = P (St > At). (11)

Remark 3.1. Both b1(t) and b2(t) proposed by Zhu and Zhou [2] are proved

to be constant in their GMA model. However, neither b1(t) nor b2(t) is a

constant in our AMA model. In the real world, the probability of (St > At) at

any given time t and E[X̂tηt(St, At)] both vary according to the time t.

We first answer the question that what the optimal choices of ξfix and

ξmv are in the interior part of the region ξfix ∈ [0, ξ∗fix1] and ξmv ∈ [0, 1] for

AMA in Proposition 3.2 below. Then we restrict to four different boundaries

to find other optimal choices of ξfix and ξmv in Proposition 3.3. By the end,

we compare all these choices to obtain the globally optimal choice to be the

optimal investment strategy for AMA in Theorem 3.5.

Proposition 3.2. In the class of strategies ξt, the interior optimal choice

of ξfix and ξmv under the log-utility is

ξ∗fix =
µs − r

σ2
s

− µ1A

(T − L−B) σ2
s

, ξ∗mv =
µ1(T − L)A

B (T − L−B) σ2
s

, (12)

and

U∗
AMA0 = U∗

fix1 +
µ2

1 (A)2 (T − L)

2B (T − L−B) σ2
s

≥ U∗
fix1, (13)

for ξfix ∈ (0, ξ∗fix1) and ξmv ∈ (0, 1). Here and later on, A =
∫ T

L
b1(t)dt,

B =
∫ T

L
b2(t)dt and the value associate with ξ∗fix1, U∗

fix1 = log W0 + rT +
(µ0+µ1X−r)2

2σ2
s

T .

Proposition 3.2 is a direct generalization of Proposition 1 of Zhu and Zhou

[2]. From Proposition 3.2, it follows that the improvement over ξ∗fix1 is positive

by combining a suitable fixed strategy with the AMA one (this is a similar

verification as (35) of Zhu and Zhou [2]). However, the interior optimal strategy

may not be the optimal in general since the AMA rule can happen to be along

the fixed strategies on those boundaries, ξfix = 0 or ξ∗fix1 and ξmv = 0 or 1.

For the GMA case, Zhu and Zhou [2] only give the optimal solutions from the

boundaries of ξfix = ξ∗fix1 and ξfix = 0. For the AMA case, we give the optimal

solutions from all of the four boundaries in the following proposition.
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Proposition 3.3. (1) In the class of strategies ξt with restriction ξmv = 0,

the optimal choice of ξfix under the log-utility is ξ∗fix = ξ∗fix1 = µs−r
σ2

s
and the

associated value function is U∗
AMA1 = U∗

fix1.

(2) In the class of strategies ξt with restriction ξmv = 1, the optimal choice

of ξfix under the log-utility is ξ∗fix = µs−r
σ2

s
− B

T−L
if µs−r

σ2
s
− B

T−L
> 0 and the

associated value function is

U∗
AMA2 = U∗

fix1 + µ1A− σ2
sB

2(T − L)
(T − L−B) . (14)

(3) In the class of strategies ξt with restriction ξfix = 0, the optimal choice of

ξmv under the log-utility is ξ∗mv = µ1A+(µs−r)B
σ2

sB
if µ1A+(µs−r)B

σ2
sB

∈ (0, 1) and the

associated value function is

U∗
AMA3 = U∗

fix1 +
(µ1A + (µs − r)B)2

2σ2
sB

− (µs − r)2(T − L)

2σ2
s

. (15)

(4) In the class of strategies ξt with restriction ξfix = ξ∗fix1, the optimal choice

of ξmv under the log-utility is ξ∗mv = µ1A
σ2

sB
if µ1A

σ2
sB

∈ (0, 1) and the associated

value function is

U∗
AMA4 = U∗

fix1 +
µ2

1 (A)2

2σ2
sB

≥ U∗
fix1. (16)

Comparing with proposition 2 and proposition 3 of Zhu and Zhou [2],

proposition 3.3 is a complete version with respect to AMA. Proposition 2 of

Zhu and Zhou [2] only considers ξfix = ξ∗fix1 as Case (4) in our proposition 3.3,

and proposition 3 of Zhu and Zhou [2] as Case (3) in our proposition 3.3.

Remark 3.4. ¿From Proposition 3.3, it follows that U∗
AMA2 and U∗

AMA3

could be either greater than or less than U∗
fix1, U∗

AMA1 = U∗
fix1, and that U∗

AMA0

and U∗
AMA4 are both greater than U∗

fix1 if each corresponding (ξ∗fix, ξ∗mv) satisfies

the corresponding restrictions. Hence, the optimal value function is U∗
AMA =

max{U∗
AMA0, U∗

AMA1, U∗
AMA2, U∗

AMA3, U∗
AMA4}. In the next theorem, we will

show that U∗
AMA0 is the greatest among all those interior and boundary optimal

choices if its corresponding (ξ∗fix, ξ∗mv) satisfies ξ∗fix ∈ (0, ξ∗fix1) and ξ∗mv ∈
(0, 1). I.e., U∗

AMA is actually equal to U∗
AMA0 if the corresponding (ξ∗fix, ξ∗mv)

given in (12) do lies in the interior part. On the other hand, the optimal

expected log-utility value must be obtained on one of the four boundaries if the

(ξ∗fix, ξ∗mv) with respect to U∗
AMA0 does not lie in the interior part.
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Theorem 3.5. The overall optimal value function is given by U∗
AMA =

U∗
AMA0, where U∗

AMA0 is the one given in (13), if the optimal choice given in

(12) satisfies ξ∗fix ∈ (0, ξ∗fix1) and ξ∗mv ∈ (0, 1). Otherwise,

U∗
AMA = max{U∗

AMA0, U∗
AMA1, U∗

AMA2, U∗
AMA3, U∗

AMA4}.
Proofs of Proposition 3.2, Proposition 3.3 and Theorem 3.5 are given in

the appendix.

4 Approximation of the Optimal Strategy

As we mentioned in Remark 3.1, b1(t) and b2(t) proposed by Zhu and Zhou

[2] are showed to be constant because their definitions are based on the GMA

model and the stock price is log-normal. Furthermore, the closed form formulas

for b1(t) and b2(t) are given in Zhu and Zhou [2] accordingly. However, it is

not the case in the real world for AMA. Even the stock price usually does not

follow any log-normal distribution. Maller, Solomon and Szimayer [9] define

the stock price as an exponential of a Lévy process. As a result, one cannot

find a closed form formula for the optimal expected utility of wealth for those

general models of the stock price.

In this section, we evaluate b1(t), t ∈ [L, T ], and b2(t), t ∈ [L, T ], defined

in (11) for AMA instead of GMA by giving a discrete time and discrete value

approximation from practice point of view. It is easy to implement and give

us insight on extending the model based on a Brownian motion to any process

that has a convergence discrete approximation under the uniform topology.

Firstly, we give the explicit expressions of the closed forms of Xt, St and

At/St, for t ≥ 0. By (2), we have the solution for the Ornstein-Uhlenbeck

process

Xt = X0e
θ1t − θ0

θ1

(
1− eθ1t

)
+ ρσx

∫ t

0

eθ1(t−s)dBs +
√

1− ρ2σx

∫ t

0

eθ1(t−s)dZs.

(17)

Hence, Xt is normally distributed with EXt = − θ0

θ1
= M0− , and V arXt =

− σ2
x

2θ1
= V (0−).

By (1) and (17), we obtain, for any t ≥ 0,

St = Ct exp{SE(t)}, (18)
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where Ct = S0 exp
{

(µ0 − σ2
s

2
− µ1θ0

θ1
)t

}
and

SE(t) = µ1

(
X0

θ1

+
θ0

θ2
1

) (
eθ1t − 1

)

+ σsBt + µ1σxρ

∫ t

0

eθ1(t−u)Budu + µ1σx

√
1− ρ2

∫ t

0

eθ1(t−u)Zudu.

The proof of Equation (18) is given in the appendix. It follows from the

basic Itó Lemma and Fubini theorem. By (6), the definition of the arithmetic

average over the period L, and (18), we get the expression, for any t ≥ L,

At

St

=
1

L

∫ t

t−L

Su

St

du =
1

L

∫ t

t−L

exp

{(
µ0 − σ2

s

2
− µ1θ0

θ1

)
(u− t)

}
exp{E(u)}du,

(19)

where

E(u) = µ1

(
X0

θ1

+
θ0

θ2
1

) (
eθ1u − eθ1t

)
+ σs(Bu −Bt)

+ µ1σxρ

(∫ u

0

eθ1(u−v)Bvdv −
∫ t

0

eθ1(t−v)Bvdv

)

+ µ1σx

√
1− ρ2

(∫ u

0

eθ1(u−v)Zvdv −
∫ t

0

eθ1(t−v)Zvdv

)
.

The cum-dividend stock price given in (18) is log-normal. Whereas, the

arithmetic average over a period is no longer log-normal. Li and Chen [10]

study a few properties of the arithmetic average of the log-normal stock. Note

that At

St
is equal to an integral of log-normal distribution, which is no longer

log-normal distributed. Hence, we could not evaluate exactly. We look for

a discrete approximation of this term At

St
in such a way that it is easy to

implement. First of all, for the Brownian motion {Bt, t ≥ 0}, we take the

discrete approximation, {Bt(n), t ≥ 0}, proposed in the proof of Theorem 3.3

in Szimayer and Maller [11], which can be viewed as a modification of the

approximation proposed by Itó and McKean [12]. Here, for the convenience of

the readers, we repeat the construction of the approximation for the Brownian

motion {Bt, t ≥ 0}. For any n ∈ N , let 0 = t0(n) < t1(n) < · · · < tbnT c(n) ≤ T

be an equal interval partition of [0, T ], such that tj(n) − tj−1(n) = ∆t(n) =
1
n
, j = 1, 2, . . . , bnT c. Define stopping times by: e0(n) = 0, and for j =

1, 2, . . . ,

ej(n) = inf
{

t > ej−1(n) : |Bt −Bej−1(n)| ≥
√

∆t(n)
}

, j = 1, 2, . . . .
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Let B
(n)
t , t ∈ [0, T ], be a step function valued random variable defined by

B
(n)
t = Bej−1(n), tj−1(n) ≤ t < tj(n).

By the arguements in Szimayer and Maller [11] and Itó and McKean [12],

sup
0≤t≤T

∣∣∣B(n)
t −Bt

∣∣∣ −→ 0 almost surely, as n →∞. (20)

Similarly, for the Brownian motion {Zt, t ≥ 0}, an approximation denoted by

{Z(n)
t ), t ≥ 0} can be defined, such that

sup
0≤t≤T

|Z(n)
t − Zt| −→ 0 almost surely, as n →∞. (21)

Remark 4.1. ¿From the definitions of B
(n)
t and Z

(n)
t , we have that

B
(n)
t =

1√
n

bntc∑
i=1

Vi, (22)

where Vi, i = 1, 2, . . . are i.i.d with distribution P (Vi = 1) = P (Vi = −1) = 1
2

and that

Z
(n)
t =

1√
n

bntc∑
i=1

Yi, (23)

where Yi, i = 1, 2, . . . are also i.i.d with the same distribution with Vi. Note

that, {Yi, i = 1, 2, . . . } are independent of {Vi, i = 1, 2, . . . } because {Zt, t ∈
[0, T ]} is independent of {Bt, t ∈ [0, T ]}.

Recall that X0 is normally distributed with expectation − θ0

θ1
and variance

− σ2
x

2θ1
. We take the classic approximation of X0, denoted by X

(n)
0 , such that

X
(n)
0 converges in distribution to X0. That is, For any n ∈ N , let

X
(n)
0 = −θ0

θ1

+

√
− σ2

x

2θ1n

n∑
i=1

Ri, (24)

where Ri, i ≥ 1 are i.i.d random variables with distribution: P (Ri = 1) =

P (Ri = −1) = 1
2

(see Page 357 of Billingsley [13]). Notice that, Ri is indepen-

dent of Vi and Yi for all i ≥ 1 and j ≥ 1 and that the distribution of X
(n)
0 is

given by

P

(
X

(n)
0 = −θ0

θ1

+ (2k − n)

√
− σ2

x

2θ1n

)
=

n!

k!(n− k)!2n
.
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Now we construct the approximated the cum-dividend stock price S
(n)
t and

its arithmetic average A
(n)
t by simply replace Bt, Zt and X0 in (18) with B

(n)
t ,

Z
(n)
t and X

(n)
0 respectively. That is, let the approximated stock price at t ≥ 0

be

S
(n)
t = Ct exp

{
µ1

(
X

(n)
0

θ1

+
θ0

θ2
1

)
(
eθ1t − 1

)
+ Q

(n)
t

}
, (25)

where

Q
(n)
t = σsB

(n)
t + µ1σxρ

∫ t

0

eθ1(t−u)B(n)
u du + µ1σx

√
1− ρ2

∫ t

0

eθ1(t−u)Z(n)
u du,

(26)

and its corresponding arithmetic average

A
(n)
t =

1

L

∫ t

t−L

S(n)
u du. (27)

The following three theorems state the convergence results of the approxima-

tions, and further indicate that the corresponding optimal choice of ξfix and

ξmv under the log-utility have such approximations that the desired optimal

expected log-utility function is approximated by the construction.

Theorem 4.2. For any t ∈ [L, T ],
A

(n)
t

S
(n)
t

−→ At

St
in distribution as n →∞.

Assume that P (At

St
= 1) = 04. Then, the following corollary is an immediate

result of Theorem 4.2.

Corollary 4.3. For any t ∈ [L, T ],

b
(n)
2 (t) = P

(
A

(n)
t

S
(n)
t

< 1

)
−→ P

(
At

St

< 1

)
= b2(t) as n →∞.

Theorem 4.4. For any t ∈ [L, T ], b
(n)
1 (t) = E

(
X̂

(n)
t η{S(n)

t >A
(n)
t }

)
−→

E
(
X̂tη{St>At}

)
= b1(t) as n →∞, where

X̂t = Xt−X =

(
X0 +

θ0

θ1

)
eθ1t+ρσx

∫ t

0

eθ1(t−s)dBs+
√

1− ρ2σx

∫ t

0

eθ1(t−s)dZs,

4For geometric Brownian motions and exponential Lévy process of the stock price, this
assumption is valid. In fact, this should be true for any nontrivial model of the stock price.
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X̂
(n)
t

=

(
X

(n)
0 +

θ0

θ1

)
eθ1t + ρσx

∫ t

0

eθ1(t−s)dB(n)
s +

√
1− ρ2σx

∫ t

0

eθ1(t−s)dZ(n)
s

=

(
X

(n)
0 +

θ0

θ1

)
eθ1t + ρσx

(
B

(n)
t + θ1

∫ t

0

eθ1(t−s)B(n)
s ds

)

+σx

√
1− ρ2

(
Z

(n)
t + θ1

∫ t

0

eθ1(t−s)Z(n)
s ds

)
.

By Corollary 4.3 and Theorem 4.4, we can obtain the approximation for

A =
∫ T

L
b1(t)dt and B =

∫ T

L
b2(t)dt.

Theorem 4.5. An =
∫ T

L
b
(n)
1 (t)dt −→ A, Bn =

∫ T

L
b
(n)
2 (t)dt −→ B, as

n →∞.

Proofs of Theorem 4.2, Theorem 4.4 and Theorem 4.5 are given in the ap-

pendix. The implementation in next section is to compute the approximated

values of U∗
AMAi, i = 0, 1, 2, 3, 4, and their corresponding ξ∗fix’s, ξ∗mv’s con-

structed in Proposition 3.2 and 3.3 by replacing A and B with An and Bn,

respectively.

5 Empirical Analysis

In this section, the evaluation of the approximated optimal expected log-

utility of wealth under the AMA is illustrated. Meanwhile, the optimal log-

utilities under the AMA and those under the GMA are compared.

We outline the procedure of evaluating the optimal expected log-utility of

wealth under the AMA, U∗
AMA0, with a fixed L < T . The procedure can be

implemented by the following steps:

(1) Simulate the paths of the discrete time and discrete states processes

V = {Vi, i ∈ N} and Y = {Yi, i ∈ N} with probabilities;

(2) Obtain the simple random walk {B(n)
t , 0 ≤ t ≤ T} and {Z(n)

t , 0 ≤ t ≤
T} by plugging the paths of V as well as Y into terms (22) and (25);

(3) Evaluate S
(n)
t , 0 ≤ t ≤ T and

A
(n)
t

S
(n)
t

, L ≤ t ≤ T by term (25), (26) and

(27) in Section 4;

(4) Find the values of b
(n)
2 (t) and b

(n)
1 (t) defined in corollary 4.3 and theorem

4.4, respectively, and evaluate An, Bn given in Theorem 4.5;
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(5) Approximate U∗
AMAi, i = 0, 1, 2, 3, 4 and their corresponding ξ∗fix

and ξ∗mv by simply replacing A and B with An and Bn in the Proposition 3.2

and the Proposition 3.3.

The most challenge part of the implementation is to simulate the paths

of the discrete time and discrete states process V = {Vi, i = 1, 2, ..., n} or

Y = {Yi, i = 1, 2, ..., n} with probability of each path stated in step (1).

By the definitions of processes V and Y defined in Section 4, the process

Y = {Yi, i = 1, 2, ..., n} has the same distribution with the process V =

{Vi, i = 1, 2, ..., n}. Because there are 2n equally likely paths of V or Y ,

each path has the probability of 1
2n . To distinguish the paths, we construct a

bijective correspondence between the set {1, 2, 3, ..., 2n} and the set of the

paths as follows.

Each j(∈ {0, 1, 2, 3, ..., 2n − 1}) is converted into a binary numeral. If

necessary, −1′s are attached to the front of the binary number such that there

are n digits in total. The result is the j + 1th path of the sample process V .

This finishes the step (1).

To process step (3), recall (22)-(24). Then, (25), (26) can be rewritten

respectively as

S
(n)
t = Ct exp

{
µ1

(
1

θ1

√
− σ2

x

2θ1n

n∑
i=1

Ri

)
(
eθ1t − 1

)
+ Q

(n)
t

}
,

if t ∈ [ti, ti+1), i = 0, 1, . . . , bnT c, where

Q
(n)
t = σsB

(n)
ti + µ1σxρ

bntc∑
j=0

B
(n)
tj

∫ tj∧t

tj

eθ1(t−u)du

+µ1σx

√
1− ρ2

bntc∑
j=0

Z
(n)
tj

∫ tj∧t

tj

eθ1(t−u)du.

Our goal is to evaluate the optimal expected log-utility of wealth under

the AMA and show the difference between the GMA strategy and the AMA

strategy. The evaluations and comparisons are given with respect to the Term-

spread (Term-sp.), the Dividend yield (Div. yield), the Consumption-wealth

ratio (C-W ratio) and the Payout ratio (P. ratio), respectively. The parameters

are given in Table 1. The parameters with respect to the Consumption-wealth

ratio are chosen as those in Huang and Liu [6]. They are based on the quarterly

CRSP value-weighted return of stocks traded on the New York Stock Exchange



Mei Xing and Weiping Li 15

(NYSE) and Xt that represents the estimated trend deviation variable, cayt, for

the consumption-wealth ratio from 1952 to 2001. The parameters with respect

to the Payout ratio, the Term-spread and the Dividend yield are chosen as those

in Zhu and Zhou [2]. Their stock return is the monthly return on the Standard

and Poor 500. And, Xt represents the Payout ratio, the Term-spread and the

Dividend yield, respectively. Their estimation period is from December 1926

to December 2004.

Table 1: Parameters

µ0 µ1 σs θ0 θ1 σx ρ

Term-sp. 0.097 1.206 0.195 0.009 −0.527 0.013 0.001

Div. yield 0.031 2.072 0.195 0.010 −0.253 0.012 −0.073

C-W ratio −1.301 2.040 0.0801 0.117 −0.180 0.00747 −0.620

P. ratio 0.282 −0.292 0.194 0.014 −0.027 0.050 −0.003

Let the investment horizon and the lag in years, (T, L), be (12, 4), (6, 2)

and (3, 2), respectively. Assume the risk-free interest rate is r = 2% and

the initial wealth, W0 = $100. The approximations, An and Bn, defined in

Theorem 4.5 are calculated for n = 1, 2, or 4. The optimal strategy choices

and the corresponding optimal log-utilities for the interior case and case #1,

#2 under GMA can be obtained directly from the closed form formulas in

Proposition 1, 2, 3 of Zhu and Zhou [2]. The optimal values and optimal

strategy choices under GMA for case #3 and #4 can be calculated by using

our formula (15) and (16) with A = b1(T − L) and B = b2(T − L), where

b1 and b2 are those given in (27) and (28) of Zhu and Zhou [2]. In Table 2,

3, 4, 5, the Certainty-Equivalent (CE) gains of each U∗
AMAi and U∗

GMAi, i =

0, 1, 2, 3, 4, compared with the risk free one and the corresponding optimal

strategy choices, ξ∗fix, ξ∗mv, are given. The CE is the guaranteed amount of

money that an individual would view as equally desirable as a risky asset.

Mathematically, the certainty equivalent is the certain value, C, satisfying

log(W0 + C) + rT = U∗
AMAi, i = 0, 1, 2, 3, 4. In each table, the interior

values are based Proposition 3.2 and the 4 cases are corresponding to the four

different boundaries reported in Proposition 3.3 in order. ¿From now on in

this section, each U∗
AMAi and U∗

GMAi, i = 0, 1, 2, 3, 4 means the CE gain of

each U∗
AMAi and U∗

GMAi, i = 0, 1, 2, 3, 4.
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Table 2: Comparison of the optimal U1’s with respect to Term-spread

AMA GMA

ξ∗fix(n) ξ∗mv(n) CE Gain ξ∗fix ξ∗mv CE Gain

(T, L, n) = (12, 4, 1)

Interior 2.3837 0.1832 349.4966 2.5234 0.0535 349.5232

Case #1 2.5666 0 349.4929 2.5666 0 349.4929

Case #2 1.5682 1 349.4237 1.7586 1 340.1208

Case #3 0 2.5669 348.8748 0 2.5769 273.2539

Case #4 2.5666 2.9352e-04 349.4929 2.5666 0.0103 349.4987

(T, L, n) = (6, 2, 2)

Interior 2.5385 0.0338 112.0150 2.5320 0.0473 112.0196

Case #1 2.5666 0 112.0125 2.5666 0 112.0125

Case #2 1.7341 1 109.9265 1.8353 1 109.1637

Case #3 0 2.5723 95.3080 0 2.5793 85.9920

Case #4 2.5666 0.0057 112.0129 2.5666 0.0127 112.0144

(T, L, n) = (3, 2, 4)

Interior 2.5341 0.0399 45.6071 2.5320 0.0473 45.6077

Case #1 2.5666 0 45.6065 2.5666 0 45.6065

Case #2 1.7506 1 45.2245 1.8353 1 45.1149

Case #3 0 2.5740 42.3731 0 2.5793 40.9172

Case #4 2.5666 0.0073 45.6066 2.5666 0.0127 45.6068

Our discussion includes tree aspects.

Firstly, from Table 2 and Table 3, it follows that the interior optimal value,

U∗
AMA0, is indeed the global maximum value when the corresponding (ξ∗fix, ξ∗mv)

satisfies ξ∗fix ∈ (0, ξ∗fix1) and ξ∗mv ∈ (0, 1), which exactly matches our conclusion

in Theorem 3.5. However, if the restriction on ξ∗fix or ξ∗mv is not satisfied, the

global maximum value will be obtained on one of the four boundaries that are

reported in Proposition 3.3. For example, Table 4 shows that U∗
AMA = U∗

AMA3

for the Consumption-wealth ratio with T = 12, L = 4, n = 1 when con-

sidering the interior ξ∗fix = −0.0445(< 0) and, on the boundary case #3,

ξ∗fix = −0.0752(< 0). Also, from Table 5, it follows that the maximum ex-

pected log-utility of wealth is obtained on the boundary case #2 with respect

to the payout ratio, i.e., U∗
AMA = U∗

AMA2. In their numerical analysis, Zhu
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Table 3: Comparison of the optimal U1’s with respect to Dividend Yield

AMA GMA

ξ∗fix(n) ξ∗mv(n) CE Gain ξ∗fix ξ∗mv CE Gain

(T, L, n) = (12, 4, 1)

Interior 2.0011 0.4492 290.4789 2.2436 0.2519 290.9115

Case #1 2.4431 0 290.2898 2.4431 0 290.2898

Case #2 1.4591 1 290.1946 1.6513 1 285.4638

Case #3 0 2.4503 286.6822 0 2.4955 233.3012

Case #4 2.4431 0.0072 290.2928 2.4431 0.0525 290.4191

(T, L, n) = (6, 2, 2)

Interior 2.2874 0.1894 97.6364 2.2988 0.2006 97.6796

Case #1 2.4431 0 97.5575 2.4431 0 97.5575

Case #2 1.6211 1 96.1961 1.7237 1 95.7495

Case #3 0 2.4768 84.1161 0 2.4993 76.5973

Case #4 2.4431 0.0337 97.5716 2.4431 0.0563 97.5918

(T, L, n) = (3, 2, 4)

Interior 2.2504 0.2410 40.5801 2.2988 0.2006 40.5769

Case #1 2.4431 0 40.5552 2.4431 0 40.5552

Case #2 1.6438 1 40.3332 1.7237 1 40.2325

Case #3 0 2.4914 37.8887 0 2.4993 36.6688

Case #4 2.4431 0.0484 40.5602 2.4431 0.0563 40.5612

and Zhou [2] only give the interior optimal log-utility and optimal log-utility

of case #1, #2 for GMA and ignore the rationality of the optimal strategy

choices, ξ∗fix and ξ∗mv. Hence, the global optimal log-utility under GMA in Zhu

and Zhou [2] is always the interior optimal value, which will lead to wrong

results when ξ∗mv /∈ [0, 1] or ξ∗fix /∈ [0, ξ∗fix1].

Secondly, the results in the four tables (Table 2, 3, 4, 5) indicate the optimal

log-utility of wealth under the AMA is greater than the optimal fixed log-

utility of wealth, U∗
AMA > U∗

AMA1. That is, the AMA strategy can be adopted

to improve the popular fixed strategy in Markowitz [5] portfolio theory. For

instance, when T = 6, L = 2, n = 2, with respect to the Consumption-wealth

ratio, Table 4 shows that U∗
AMA = U∗

AMA0 = $1.3067 and U∗
AMA1 = $1.1758;

When T = 12, L = 4, n = 1, with respect to the Payout ratio, Table 5 shows
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Table 4: Comparison of the optimal U1’s with respect to C-W ratio

AMA GMA

ξ∗fix(n) ξ∗mv(n) CE Gain ξ∗fix ξ∗mv CE Gain

(T, L, n) = (12, 4, 1)

Interior −0.0445 0.9640 2.6694 1.1257 −0.5056 2.5105

Case #1 0.7793 0 2.3654 0.7793 0 2.3654

Case #2 −0.0752 1 2.6690 0.0934 1 1.2317

Case #3 0 0.9196 2.6687 0 0.6200 1.4658

Case #4 0.7793 0.1403 2.4096 0.7793 −0.1593 2.4111

(T, L, n) = (6, 2, 2)

Interior 0.2904 0.6950 1.3067 1.0250 −0.3887 1.2214

Case #1 0.7793 0 1.1758 0.7793 0 1.1758

Case #2 0.0758 1 1.2815 0.1473 1 0.6405

Case #3 0 0.9853 1.2742 0 0.6363 0.7206

Case #4 0.7793 0.2060 1.2146 0.7793 −0.1430 1.1926

(T, L, n) = (3, 2, 4)

Interior 0.2170 0.8246 0.6338 1.0250 −0.3887 0.5975

Case #1 0.7793 0 0.5862 0.7793 0 0.5862

Case #2 0.0974 1 0.6316 0.1473 1 0.4529

Case #3 0 1.0416 0.6290 0 0.6363 0.4728

Case #4 0.7793 0.2623 0.6013 0.7793 −0.1430 0.5904

that U∗
AMA = U∗

AMA2 = $623.3218 and U∗
AMA1 = $602.7591. However, with

respect to the Consumption-wealth ratio, the optimal value U∗
GMA = U∗

GMA2.

Therefore, the technical analysis from the GMA can not improve the fixed

strategy in this case. Moreover, this indicate the GMA rule can not replace

the AMA rule.

Lastly, we will discuss the difference be tween the AMA strategy and the

GMA strategy. Table 2 and Table 3 show that the optimal expected log-utility

of wealth under the GMA is a good approximation of the optimal one under the

AMA for those special parameters for the Term-spread and the Dividend yield.

For instance, with respect to the Term-spread in Table 2, U∗
AMA = $112.0150,

and U∗
GMA = $112.0196 when T = 6, L = 2; For the Dividend yield case

in Table 3 with T = 3, L = 2, U∗
AMA = $40.5801, and U∗

GMA = $40.5769.
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Table 5: Comparison of the optimal U1’s with respect to Payout ratio

AMA GMA

ξ∗fix(n) ξ∗mv(n) CE Gain ξ∗fix ξ∗mv CE Gain

(T, L, n) = (12, 4, 1)

Interior 0.7174 2.3498 633.6688 1.8100 1.3955 635.3674

Case #1 2.9385 0 602.7591 2.9385 0 602.7591

Case #2 1.9933 1 623.3218 2.1298 1 632.6934

Case #3 0 3.0672 630.5616 0 3.2054 569.1591

Case #4 2.9385 0.1287 604.4182 2.9385 0.2670 608.8835

(T, L, n) = (6, 2, 2)

Interior 1.5902 1.5941 171.79241 2.1760 1.0245 169.1129

Case #1 2.9385 0 165.0960 2.9385 0 165.0960

Case #2 2.0927 1 170.85231 2.1942 1 169.1106

Case #3 0 3.1843 163.9314 0 3.2005 145.6667

Case #4 2.9385 0.2458 166.1177 2.9385 0.2620 166.1177

(T, L, n) = (3, 2, 4)

Interior 1.7558 1.4469 63.7781 2.1760 1.0245 63.4310

Case #1 2.9385 0 62.8177 2.9385 0 62.8177

Case #2 2.1211 1 63.6862 2.1942 1 63.4307

Case #3 0 3.2027 62.0519 0 3.2005 59.7487

Case #4 2.9385 0.2643 62.9927 2.9385 0.2620 62.9743

However, this will not be the case in general. Table 5 and Table 4 provide

examples to show that there exists big difference between the optimal expected

log-utilities of wealth under the AMA rule and that under the GMA rule. For

the Payout ratio in Table 5 with T = 12, L = 4, U∗
AMA = U∗

AMA2 = $623.3218

which is less than U∗
GMA = U∗

GMA3 = $632.6934. The optimal expected log-

utility of wealth under the GMA overestimates the one under the AMA. When

it goes to T = 6, L = 2, U∗
AMA = U∗

AMA2 = $170.8523 which is greater than

U∗
GMA = U∗

GMA3 = $169.1106. Thus, the optimal log-utility under GMA, in

this case, under-estimates the actual AMA strategy. Table 4 shows the optimal

log-utilities under GMA under-estimate those under the actual AMA strategy

for the Consumption-wealth ratio. Therefore, one cannot simply replace the

AMA with the GMA. Zhu and Zhou [2] assume the GMA and the AMA
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would produce similar optimal values. Thus, they give a closed form answer

for GMA to avoid the difficult implementation for AMA. However, this will

result in misleading conclusion or suboptimal log-utility value.

In summary, the optimal (or maximal) expected log-utility of wealth can be

obtained either in the interior part or on one of the four boundaries reported

in Proposition 3.3. In general, the technical analysis from the AMA strategy

can be adopted to improve the popular fixed strategy in Markowitz [5]. The

AMA cannot be replaced by the GMA in the real world investment.

6 Conclusion

In this paper, we assume the general model developed by Merton [7] and the

dynamics for the cum-dividend stock price developed by Kim and Omberg

[8]. The main contributions of this study are three-folds. First, the utility of

the most popular technical trading method, the arithmetic moving average,

is analyzed. We provide a theoretical justification for an investor to buy the

stock when its current stock price is moving above the arithmetic average price

over a given period L for both constraints on the ratio of pure AMA rule and

the ratio without AMA rule. The technical analysis from the AMA therefore

can be adopted to maximize the expected log-utility and improve the popular

fixed strategy in Markowitz [5] portfolio theory. Second, an explicit implemen-

tation procedure for the optimal investment problem under the AMA rule is

constructed. The explicit approximated optimal strategy is given from the ap-

proximated strategy choices to the approximated optimal value of the expected

log-utility function. Third, by comparing the optimal log-utilities under the

AMA with those under the GMA, we find the big discrepancy between AMA

and GMA. The GMA rule can either overestimate or underestimate the prac-

tical AMA rule for the same set of parameters of the model. This indicates

that the optimal investment strategy from the GMA rule can be misleading in

practice.

Despite the vast literature on technical analysis and the numerous technical

indicators following some traders in practice, our study is the first theoretic

work to closely support the optimal strategy under the AMA rule, rather than

the GMA rule which is not adopted in practice, and also the first work to pro-

vide a complete implementation procedure with approximated solutions under
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the AMA rule. Although our model is based on Brownian motions, the main

optimal solution results and the convergence results of approximations pro-

posed can be easily carried to more general stochastic processes, such as, Lévy

process, when the weak convergence condition holds under the uniform topol-

ogy. It is an interesting and quite challenge question to investigate whether

the combination of the fixed rule with the AMA rule can outperform the the

fixed rule when the utility function is of power type. We will leave it in a

future study.

7 Appendix

Proof of Proposition 3.2: Recall (10)

UAMA = log W0 + rT +
(µ0 + µ1X̄ − r)2

2σ2
s

L

+ξfix

(
µ0 + µ1X̄ − r − σ2

s

2
ξfix

)
(T − L) + ξmvµ1A

+

[
ξmv

(
µ0 + µ1X̄ − r

)− σ2
s

2
ξ2
mv − σ2

sξfixξmv

]
B,

where A =
∫ T

L
b1(t)dt, B =

∫ T

L
b2(t)dt are defined in (11).

To find the maximal value of UAMA(ξfix, ξmv), we take the first partial

derivatives with respect to ξfix and ξmv, respectively, and set each of these two

partial derivatives be zero:

∂UAMA(ξfix, ξmv)

∂ξfix

∣∣∣∣
(ξ∗fix, ξ∗mv)

= 0, (28)

∂UAMA(ξfix, ξmv)

∂ξmv

∣∣∣∣
(ξ∗fix, ξ∗mv)

= 0. (29)

¿From (28) and (29), it follows that

(µ0 + µ1X − r − σ2
sξfix)(T − L)− σ2

sξmvB = 0 (30)

and

µ1A + (µ0 + µ1X − r)B − σ2
s(ξfix + ξmv)B = 0. (31)
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By solving the system of linear equation (30) and (31), we obtain that the

optimal strategy choice:

ξ∗fix =
µ0 + µ1X − r

σ2
s

− µ1A

(T − L−B) σ2
s

,

ξ∗mv =
µ1(T − L)A

B (T − L−B) σ2
s

.

Since the value function for log-utility associated with ξ∗fix1 is

U∗
fix1 = log W0 + rT +

(µ0 + µ1X − r)2

2σ2
s

T,

the proposition is obtain directly by plugging U∗
fix1, ξ∗fix and ξ∗mv into (10).

Proof of Proposition 3.3: (1) From ξmv = 0 and (30), it follows that

µs − r − σ2
sξfix = 0, which implies that ξ∗fix = ξ∗fix1 = µs−r

σ2
s

. By (10) and

definition of U∗
fix1, U∗

AMA1 = U∗
fix1.

(2) From ξmv = 1 and (30), it follows that

(µs − r)(T − L)− σ2
sξfix(T − L)− σ2

sB = 0,

which implies that ξ∗fix = µs−r
σ2

s
− 1

T−L
B. Then, by (10) and definition of U∗

fix1,

we get (14).

(3) By substituting ξfix = 0 into (31), we obtain that

µ1A + (µ0 + µ1X − r)B − σ2
sξmvB = 0,

which implies that

ξ∗mv =
µ1A + (µ0 + µ1X − r)B

σ2
sB

=
µ1A + (µs − r)B

σ2
sB

.

Then, by (10) and definition of U∗
fix1, (15) can be obtained.

(4) By ξfix = ξ∗fix1 = µs−r
σ2

s
and (31), we have that

µ1A + (µ0 + µ1X − r)B − σ2
s

(
µs − r

σ2
s

+ ξmv

)
B = 0,

which implies that ξ∗mv = µ1A
σ2

sB
. Thus, (16) can be obtained by simple algebra.

Proof of Theorem 3.5: We only need to show U∗
AMA0 ≥ U∗

AMAi, i = 2, 3, 4.

As a probability, b2(t) ∈ [0, 1]. So, B ∈ [0, T − L]. By comparing (13) and

(14), we obtain that
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U∗
AMA0 − U∗

AMA2

=
µ2

1A
2(T − L)

2B(T − L−B)σ2
s

− µ1A +
σ2

sB

2(T − L)
(T − L−B)

=
µ2

1A
2(T − L)2 − 2µ1A(T − L)σ2

sB(T − L−B) + σ4
sB

2(T − L−B)2

2B(T − L−B)σ2
s(T − L)

=
[µ1A(T − L)− σ2

sB(T − L−B)]
2

2B(T − L−B)σ2
s(T − L)

≥ 0.

That is, U∗
AMA0 ≥ U∗

AMA2. Secondly, we compare (13) and (15).

U∗
AMA0 − U∗

AMA3

=
µ2

1A
2(T − L)

2Bσ2
s(T − L−B)

− (µ1A + (µs − r)B)2

2σ2
sB

+
(µs − r)2(T − L)

2σ2
s

=
[µ1A− (µs − r)(T − L−B)]2

2σ2
s(T − L−B)

≥ 0,

where the second equality is from some basic algebraic calculations. Moreover,

U∗
AMA0 ≥ U∗

AMA3. At last, we are going to compare (13) and (16).

U∗
AMA0 − U∗

AMA4 =
µ2

1A
2(T − L)

2Bσ2
s(T − L−B)

− µ2
1A

2

2σ2
sB

=
µ2

1A
2B

2Bσ2
s(T − L−B)

≥ 0.

Hence, U∗
AMA0 ≥ U∗

AMA4. Thus, the theorem is proved.

Proof of equation (18): From (1), it follows that

St = S0 exp

{∫ t

0

(µ0 + µ1Xs − σ2
s

2
)ds + σsBt

}

= S0 exp

{
(µ0 − σ2

s

2
)t + σsBt + µ1

∫ t

0

Xsds

}
.

By equation (17), we have

∫ t

0

Xsds

=

(
X0

θ1

+
θ0

θ2
1

) (
eθ1t − 1

)− θ0t

θ1

+ ρσx

∫ t

0

∫ s

0

eθ1(s−u)dBuds

+σx

√
1− ρ2

∫ t

0

∫ s

0

eθ1(s−u)dZuds.
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Consider that

∫ t

0

∫ s

0

eθ1(s−u)dBuds =

∫ t

0

∫ t

u

eθ1(s−u)dsdBu

=

∫ t

0

1

θ1

(
eθ1(t−u) − 1

)
dBu

=
eθ1t

θ1

∫ t

0

e−θ1udBu − 1

θ1

Bt

=
eθ1t

θ1

(
e−θ1tBt + θ1

∫ t

0

e−θ1uBudu

)
− 1

θ1

Bt

=

∫ t

0

eθ1(t−u)Budu,

where the fourth equality comes from the Itó formula. Similarly, we can obtain

∫ t

0

∫ s

0

eθ1(s−u)dZuds =

∫ t

0

eθ1(t−u)Zudu.

Hence,

∫ t

0

Xsds =

(
X0

θ1

+
θ0

θ2
1

)
(eθ1t − 1)− θ0t

θ1

+ ρσx

∫ t

0

eθ1(t−u)Budu

+σx

√
1− ρ2

∫ t

0

eθ1(t−u)Zudu.

Therefore, St = Ct exp {SE(t)} can be obtained directly.

Proof of Theorem 4.2: By (25), (26) and (27), we have

A
(n)
t

S
(n)
t

=
1

L

∫ t

t−L

exp

[(
µ0 − σ2

s

2
− µ1θ0

θ1

)
(u− t)

]
exp

{
E(n)(u)

}
du,

where

E(n)(u) = µ1

(
X

(n)
0

θ1

+
θ0

θ2
1

)
(
eθ1u − eθ1t

)
+ σs

(
B(n)

u −B
(n)
t

)

+µ1σxρ

(∫ u

0

eθ1(u−v)B(n)
v dv −

∫ t

0

eθ1(t−v)B(n)
v dv

)

+µ1σx

√
1− ρ2

(∫ u

0

eθ1(u−v)Z(n)
v dv −

∫ t

0

eθ1(t−v)Z(n)
v dv

)
.
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Consider that

sup
0≤t≤T

∣∣∣∣
∫ t

0

eθ1(t−u)B(n)
u du−

∫ t

0

eθ1(t−u)Budu

∣∣∣∣

= sup
0≤t≤T

∣∣∣∣
∫ t

0

eθ1(t−u)
(
B(n)

u −Bu

)
du

∣∣∣∣

≤ sup
0≤t≤T

∫ t

0

eθ1(t−u)
∣∣B(n)

u −Bu

∣∣ du

≤ sup
0≤t≤T

T
∣∣∣B(n)

t −Bt

∣∣∣ ,

where the last inequality follows from that θ1 < 0. Then, by (20), we obtain

that

sup
0≤t≤T

∣∣∣∣
∫ t

0

eθ1(t−u)B(n)
u du−

∫ t

0

eθ1(t−u)Budu

∣∣∣∣ −→ 0 almost surely, as n →∞.

(32)

Similarly, by (21), we get that

sup
0≤t≤T

∣∣∣∣
∫ t

0

eθ1(t−u)Z(n)
u du−

∫ t

0

eθ1(t−u)Zudu

∣∣∣∣ −→ 0 almost surely, as n →∞.

(33)

¿From (20), (32), (33) and the triangle inequality, it follows that

E(n)(t)− µ1

(
X

(n)
0

θ1

+
θ0

θ2
1

)
(
eθ1t − eθ1T

)

−→ σs(Bt −BT ) + µ1σxρ

(∫ t

0

eθ1(t−u)Budu−
∫ T

0

eθ1(T−u)Budu

)

+µ1σx

√
1− ρ2

(∫ t

0

eθ1(t−u)Zudu−
∫ T

0

eθ1(T−u)Zudu

)
,

almost surely, as n →∞, under the uniform topology for t ∈ [0, T ].

Since X
(n)
0 −→ X0 in distribution as n →∞,

µ1

(
X

(n)
0

θ1

+
θ0

θ2
1

)
(
eθ1t − eθ1T

) £−→ µ1

(
X0

θ1

+
θ0

θ2
1

) (
eθ1t − eθ1T

)

in distribution uniformly on t ∈ [0, T ], as n →∞.

Because B(n)(t), Z(n)(t) and X0(n) are mutually independent, E(n)(·) −→
E(·), in distribution under the uniform topology with respect to t ∈ [0, T ], as
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n →∞. Hence,
A

(n)
t

S
(n)
t

−→ At

St
in distribution, as n →∞ by the Theorem 1.2 in

Berkes and Horváth [14].

Proof of Theorem 4.4: By the construction of X
(n)
0 in (24), we know that

E
(
X̂

(n)
t

)
= 0 and that V ar

(
X̂

(n)
t

)
= E

(
X̂

(n)
t

)2

= − σ2
x

2θ1
. Recall that X̂t is

normally distributed with E
(
X̂t

)
= 0 and V ar

(
X̂t

)
= E

(
X̂t

)2

= − σ2
x

2θ1
. By

the Cauchy-Schwartz inequality,

E

∣∣∣∣X̂
(n)
t η{S(n)

t >A
(n)
t }η{

��� bX(n)
t

���≥K}

∣∣∣∣ + E
∣∣∣X̂tη{St>At}η{| bXt|≥K}

∣∣∣

≤
√

E
∣∣∣X̂(n)

t

∣∣∣
2

E(η2

{S(n)
t >A

(n)
t }η

2

{
��� bX(n)

t

���≥K}
) +

√
E

∣∣∣X̂t

∣∣∣
2

E(η2
{St>At}η

2
{| bXt|≥K})

≤
√
− σ2

x

2θ1

P (
∣∣∣X̂(n)

t

∣∣∣ ≥ K) +

√
− σ2

x

2θ1

P (
∣∣∣X̂t

∣∣∣ ≥ K),

where the last inequality is from the fact that η2
{·} ∈ [0, 1]. Because X̂t is

normally distributed with variance − σ2
x

2θ1
,

P (
∣∣∣X̂t

∣∣∣ > K) = 1−Ψ(K

√
−2θ1

σ2
x

) → 0,

as K → ∞, where Ψ is the cumulative distribution function of a standard

normal distribution. By the Chebyshev’s Inequality,

P (
∣∣∣X̂(n)

t

∣∣∣ > K) ≤ 1

K2
V ar(X̂

(n)
t ) = − σ2

x

2θ1K2
→ 0

as K → ∞. Hence, for any ε > 0, there exists K = K(ε) > 0, such that

P (
∣∣∣X̂t

∣∣∣ > K) < ε and P (
∣∣∣X̂(n)

t

∣∣∣ > K) < ε. For this K, let

f(X̂t, At/St) = X̂tη{At/St<1}η{| bXt|<K} = X̂tη{St>At}η{| bXt|<K}.

Since P (At

St
= 1) = 0, and P (

∣∣∣X̂t

∣∣∣ = K) = 0, P ((X̂t, At/St) ∈ C) = 1, where

C is the continuity set of the bounded function f . Hence,

f(X̂
(n)
t , A

(n)
t /S

(n)
t )

D−→ f(X̂t, At/St)

follows from Theorem 4.2, the Continuous Mapping Theorem and the fact that

X̂
(n)
t

D−→ X̂t, where ”
D−→” means convergent in distribution. Moreover,

E

[
X̂

(n)
t η{A(n)

t /S
(n)
t <1}η{

��� bX(n)
t

���<K}

]
−→ E

[
X̂tη{At/St<1}η{| bXt|<K}

]
,
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as n →∞, because of the boundedness of f . Hence, there exists a positive N

such that, whenever n > N ,

∣∣∣∣E
[
X̂

(n)
t η{A(n)

t /S
(n)
t <1}η{

��� bX(n)
t

���<K}

]
− E

[
X̂tη{At/St<1}η{| bXt|<K}

]∣∣∣∣ < ε.

Above all,

E
[
X̂

(n)
t η{S(n)

t >A
(n)
t }

]
− E

[
X̂tη{St>At}

]

= E

[
X̂

(n)
t η{S(n)

t >A
(n)
t }η{

��� bX(n)
t

���<K}

]
− E

[
X̂tη{St>At}η{| bXt|<K}

]

+E

[
X̂

(n)
t η{S(n)

t >A
(n)
t }η{

��� bX(n)
t

���≥K}

]
− E

[
X̂tη{St>At}η{| bXt|≥K}

]

< ε +

√
−σ2

xε

2θ1

+

√
−σ2

xε

2θ1

as n > N . This proves Theorem 4.4.

Proof of Theorem 4.5: Consider that, for any t ∈ [L, T ],
∣∣∣b(n)

2 (t)
∣∣∣ =

P

(
A

(n)
T

S
(n)
T

< 1

)
≤ 1 and that

∣∣∣b(n)
1 (t)

∣∣∣ =
∣∣∣E

(
X̂

(n)
t η{S(n)

t >A
(n)
t }

)∣∣∣

≤
√

E
∣∣∣X̂(n)

t

∣∣∣
2

E
(
η2

{S(n)
t >A

(n)
t }

)
≤

√
E

∣∣∣X̂(n)
t

∣∣∣
2

=

√
− σ2

x

2θ1

,

where the first inequality is from the Chebyshev’s Inequality, the second from

η ∈ [0, 1] and the last equality from that X̂
(n)
t is normally distributed with

variance − σ2
x

2θ1
. By Corollary 4.3 and Theorem 4.4, Theorem 4.5 will be ob-

tained immediately by the Fatou-Lebesgue theorem.
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