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Abstract 

We construct and calculate static immunization bounds for hedging a single swap 

liability with two bonds in order to control the interest rate risk of these fixed 

income securities. These bounds are based on two kinds of duration and convexity 

measures, namely the traditional Fisher-Weil measures and the more recent 

stochastic measures of duration and convexity associated to affine models of the 

term structure of interest rates (e.g. the Vasicek and Cox-Ingersoll-Ross models). 

The immunization bounds are described for arbitrary portfolios that have 

deterministic future cash-flows with vanishing present value and can hitherto be 

used in this more general setting. 
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1  Introduction  

In the terminology of mathematical finance and portfolio theory, a (perfect) 

hedge refers to a self-financing portfolio that replicates some given financial claim 

at a future time point (e.g. [2]). Traditionally, in the field of fixed income 

securities, less stringent definitions of hedging have been considered, especially 

for the purpose of immunizing portfolios against changes in interest rates. In a 

partial hedge exact replication is relaxed to reduction of risk through minimization 

of risk with respect to some appropriate risk measure (e.g. mean-variance hedging) 

or through ordering of risk (e.g. variance order or convex order). Therefore, the 

considered hedges are throughout understood as partial hedges. In a fixed income 

framework, the goal of hedge optimization is the formulation and finding of good 

strategies that minimize (interest rate) risk as much as possible. Our goal is the 

construction of static immunization bounds for arbitrary portfolios of deterministic 

future cash-flows with vanishing present value in order to control the interest rate 

risk of fixed income securities. These bounds are based on two kinds of duration 

and convexity measures, namely the traditional Fisher-Weil measures and the 

more recent stochastic measures of duration and convexity associated to the 

Vasicek and Cox-Ingersoll-Ross affine models of the term structure of interest 

rates. The new main Theorem 4.4 for the affine risk measures has a more realistic 

and wider range of application than the previous Theorem 4.3, which has been 

initially derived in [14], Theorem 2.3. 

   We suppose the reader is familiar with the fundamentals of fixed income 

modelling as exposed in [25] or [1]. Our emphasis is on arbitrage free pricing 

(Section 2), interest rate risk measurement (Section 3) and interest rate risk 

management/optimal hedging (Section 4). The significance of the new formulation 

for hedge optimization is illustrated in Section 5, where static immunization 

bounds are calculated explicitly and numerically for hedging a single swap 

liability with two bonds. References that include further material on interest rate 

swaps and their hedging are [22] and [8]. 
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2  Pricing Fixed Income Securities 

The simplest fixed income securities are bonds, which are nothing but 

tradable loan agreements. We distinguish between a zero-coupon bond (single 

payment at a single future date, the maturity date of the bond) and other coupon 

bonds (more than one payment at some future dates). For simplicity, we assume 

that all fixed income securities have equally spaced payment dates  nTT ,...,1 , 

where  δ=−+ ii TT 1 . We refer to  δ−= 10 TT   as the starting date, and  

nTT =   as the maturity date of a given fixed income security. For derivative 

instruments like swaps we call  nTTT ,...,, 10   the reset dates, and  δ   the 

frequency or tenor. If time is measured in years, then typical bonds and swaps 

have  { }1,5.0,25.0∈δ . 

   For all coupon bonds the payment at date  iT   is denoted by  iY . The size 

of each of the payments is determined by the face value, the coupon rate, and the 

amortization principle of the bond. The face value is also called par value or 

principal of the bond, and the coupon rate is also called nominal rate or stated 

interest rate. Often, the coupon rate is quoted as an annual rate denoted  R , so 

that the corresponding periodic coupon rate is  R⋅δ . For convenience, 

cash-flows of financial instruments are summarized into a vector denoted by  

),...,,(
10 nTTT CCCc = . 

 

 

2.1 Zero-coupon bonds 
By convention, the face value of any zero-coupon bond is 1 unit of account 

(say a “dollar”). In the arbitrage free pricing theory of fixed income securities, it is 

well-known that prices depend upon the term structure of interest rates (TSIR), 

which itself is determined by the zero-coupon bond price structure defined and 

denoted by 
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   ( )stP ,  : price at time  t   of a bond with maturity  ts ≥ ,  TstT ≤≤≤0 . 

Suppose that many zero-coupon bonds with different maturities are traded on 

the financial market. Then, for a fixed time  t   the function  ),( TtPT →   is 

called the market discount function prevailing at time  t . Clearly, the discount 

function should be decreasing, i.e. 

STtStPTtP ≤≤≥≥≥ ,0),(),(1 .    (2.1) 

In case the starting date coincides with the current date  00 =T   one often writes  

),0()( sPsP = . 

 

 

2.2 Straight-coupon bonds 

In a straight-coupon bond (or bullet bond) all payments before the final 

maturity date payment are identical and equal to the threefold product of the 

(annualized) coupon rate  R , the payment frequency  δ , and the principal  H . 

To emphasize its defining parameters a straight-coupon bond will be denoted by  

),,,( δRHTBB = . Clearly, a bond generates exactly  δ⋅= Tn   payments 

occurring at the dates  niiTTi ,...,1,0 =⋅+= δ , determined by 





=iY
niRH

niRH
=⋅+⋅

−=⋅⋅
),1(

1,...,1,
δ

δ
    (2.2) 

We note that the special case  0,1 == RH   defines the zero-coupon bond. 

Since a coupon bond can be seen as a portfolio of zero-coupon bonds, namely a 

portfolio of  1Y   zero-coupon bonds maturing at  1T , 2Y   zero-coupon bonds 

maturing at  2T , and so on, and under the assumption that all zero-coupon bonds 

are tradable on the market, the price of the straight-coupon bond at any time  t   

is determined by 

∑ ⋅=
>tT

iit
i

TtPYB ),( ,      (2.3) 
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where the sum runs over all future payment dates of the bond. We note that if (2.3) 

is not satisfied, there will be an arbitrage opportunity in the market. The absence 

of arbitrage is a cornerstone of financial asset pricing theory (for a short review 

consult [25], Chap. 4). Finally, the cash-flows of a bond can be summarized into 

the vector denoted by 

),...,,0( 1 nB YYc = .      (2.4) 

 

 

2.3 Floating rate bonds 

Floating rate bonds have coupon rates that are reset periodically over the life 

of the bond. We assume that the coupon rate effective for the payment at the end 

of one period is set at the beginning of the period at the current market interest rate 

for that period. Therefore, the annualized coupon rate valid for the period  

[ ]ii TT ,1−   is the  δ -period market rate at date  1−iT   computed with a 

compounded frequency of  δ . This interest rate is defined and denoted by 

ni
TTP

TTTRR
ii

iiii ,...,1,1
),(

11),,(
1

11 =







−==

−
−− δ

,  (2.5) 

where  ),,( STtR   denotes the time  t   forward LIBOR rate for the period  

[ ]ST ,   defined by 









−

−
= 1

),(
),(1),,(

StP
TtP

TS
STtR .    (2.6) 

Summarizing the variable interest rates (2.5) into a vector  ),...,,( 21 nRRRr = , a 

floating rate bond  ),,,( δrHTBB flfl =   generates variable payments 

determined by 





=iY
niRH

niRH

n

i

=⋅+⋅
−=⋅⋅

),1(
1,...,1,

δ
δ

    (2.7) 
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It can be shown that immediately after each reset date the value of the bond is 

equal to its face value, i.e.  HB fl
Ti

=+ , and in this situation the floating rate bond 

is valued at par. More generally, the value of the floating rate bond at any time  

[ )nTTt ,0∈   is given by 

),(
),(

)()(

)(

titi

tifl
t TTP

TtP
HB

δ−
⋅= ,     (2.8) 

where the time index   

}:},...,1{min{)( tTniti i >∈= ,    (2.9) 

indicates that  )(tiT   is the nearest following payment date after time  t . The 

expression (2.9) also holds at payment dates iTt = , where it results in  H , 

which is the value excluding the payment at that date. Up to a straightforward 

rearrangement using (2.5), a proof of the relationship (2.8) is found in [25], 

Section 1.2.5. The cash-flows of a floating rate bond are summarized into the 

vector 

),...,,0( 1 nB YYc fl = .     (2.10) 

 

 

2.4 Interest rate swaps 

In general, an (interest rate) swap is an exchange of two cash-flow streams 

that are determined by certain interest rates. In the most common form, a plain 

vanilla swap, two parties exchange a stream of fixed interest rate payments, called 

fixed leg, and a stream of floating interest rate payments, called floating leg. The 

payments are in the same currency, and are computed from the same (hypothetical, 

i.e. not swapped) face value or notional principal, denoted by  H . The floating 

rate is usually a money market rate, e.g. a LIBOR rate, possibly augmented or 

reduced by a fixed margin. The fixed interest rate, denoted by K , is (usually) set 

such that the swap has zero net present value at contract agreement, a condition 
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assumed throughout. In a payer swap, or fixed-for-floating swap, the owner party 

pays a stream of fixed rate payments and receives a stream of floating rate 

payments. The receiver swap, or floating-for-fixed swap, is the counterpart, where 

the owner party pays a stream of floating rate payments and receives a stream of 

fixed rate payments. 

   Consider now a (plain vanilla) swap  ),,,,( δrKHTSWSW = , where the 

floating interest rate vector  ),...,,( 21 nRRRr =   is determined by the money 

market LIBOR rates (2.5). Without loss of generality one assumes that there is no 

fixed extra margin on these floating rates (such an extra charge can be treated in 

the same manner as the value of the fixed rate payments of the swaps, as done 

below). Combining the payments of the straight-coupon bond with those of the 

floating rate bond, the cash-flow vector of a payer swap can be summarized into 

the vector 

))(,...,)(,0( δδ ⋅−⋅⋅−⋅= KRHKRHc niSW p .   (2.11) 

The (market) value of a swap is determined by the value of the fixed rate 

payments ( fixV ) and the value of the floating rate payments ( flV ). Clearly, the 

value at time  t   of the fixed rate payments is determined by the value of the 

remaining fixed payments and is given by 

∑⋅⋅⋅=
=

n

tii
i

fix
t TtPKHV

)(
),(δ .     (2.12) 

Note that this coincides with (2.3) when omitting the final face value payment in 

(2.2). Similarly, the value at time  t   of the floating rate payments is determined 

by the value of the remaining floating payments and is given by 

nn
titi

tifl
t TtTTtP

TTP
TtP

HV <<












−
−

⋅= 0
)()(

)( ,),(
),(

),(
δ

.  (2.13) 

This is obtained from (2.8) by subtracting the value of the final repayment face 

value, which does not occur in a swap. Clearly, previously to or at the starting date 

we have 
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{ } 00 ,),(),( TtTtPTtPHV n
fl

t ≤−⋅= .    (2.14) 

It is worthwhile to mention the alternative expressions in [25], Section 6.5.1: 

.),(),,(,

,),(),,(),(),,(

0
1

0

1)(
)()()()(

TtTtPTTtRHVTtT

TtPTTtRTtPTTTRHV

n

i
iii

fl
tn

n

tii
iiititititi

fl
t

≤∑ ⋅−⋅⋅=<<







 ∑ ⋅−+⋅−−=

=

+=

δδ

δδδδ
(2.15) 

Through combination the values of a payer swap and receiver swap are 

respectively given by 
fix

t
fl

t
p

t VVSW −= , fl
t

fix
t

r
t VVSW −= .   (2.16) 

 

 

3  Interest rate risk measurement  

The values of bonds and other fixed income securities vary over time due to 

changes in the term structure of interest rates. To measure and compare the 

sensitivities of different securities to term structure movements, one uses various 

interest rate risk measures, which constitute an important input to portfolio 

management decisions. 

   We consider a portfolio of fixed income securities, typically a portfolio 

constituted of bonds (as assets) and swaps (as liabilities). The net positions 

between assets and liabilities generate a vector of cash-flows denoted by  

),...,,( 10 nCCCc = , where in contrast to the preceding Section 2, the time unit is 

now the tenor  δ . Therefore, the maturity date of the portfolio is  δ⋅= nT . The 

non-negative net positions generate a vector  ),...,,( 10
++++ = nCCCc   and the 

negative net positions a vector of positive numbers  ),...,,( 10
−−−− = nCCCc   such 

that  −+ −= ccc . Following Section 2.1, the market discount function prevailing 

at the current time  0=t   is denoted  ,,...,0),,0( niiPPi =⋅= δ  with  10 =P . 

The current price of a cash-flow is given by 
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∑=−=∑=
=

±

=
±−+

n

i
iiccc

n

i
iic CPPPPCPP

00
, . 

For simplicity, we assume that the cash-flows are independent of interest rate 

movements. 

 

 

3.1 Traditional risk measures as probabilistic risk measures 

Originally, the Macaulay [19] duration of a bond was defined as a weighted 

average of the time distance to the payment of the bond, that is as an “effective 

time-to-maturity”. As shown by [11], the Macaulay duration measures the 

sensitivity of the bond value with respect to changes in its own yield. Macaulay 

[19] also defined an alternative duration measure based on the zero-coupon yield 

curve rather than the bond’s own yield. After decades of neglect, the latter 

duration measure found a revival in [7], who demonstrated its relevance for the 

construction of immunization strategies. Following the modern approach, it is 

possible to define these risk measures for arbitrary portfolios of fixed income 

securities, and simplify their use by considering them as probabilistic risk 

measures. 

 

3.1.1 Macaulay duration and convexity of portfolio future cash-flows 

Usually these sensitivity measures are defined for non-negative cash-flows 

only. Their use is extended to arbitrary portfolios of future cash-flows  
−+ −= ccc   by defining them separately for the non-negative and negative 

components as follows. As only future cash-flows are involved we assume that  

00 =C . Let  ±y   be the yields to maturity of the cash-flows ±c , i.e. the unique 

solutions of the equations 

±
± =∑

=

−
c

n

i
i

iy PCe
1

δ .      (3.1) 
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Then the (modified) Macaulay duration and convexity of the cash-flow vectors  
±c   are defined by 

±∂

∂
⋅−=

±

±

± y
P

P
D c

c

M
c

1 ,    2

21

±∂

∂
⋅=

±

±

±

y

P
P

C c

c

M
c

.   (3.2) 

Given a shift in the term structure of interest rates, that is the zero-coupon bond 

price curve changes from  iP   to say  *
iP , one is interested in approximations 

to the current shifted arbitrage-free price  ∑=
=

n

i
iic CPP

1

** , which only depend on 

the initial term structure and the changes in cash flow yields  ±±± −=∆ yyy * , 

where  *
±y   are the shifted yields (theoretical solutions of the equations  

*

0

*

±
± =∑

=

⋅⋅−
c

n

i
i

iy PCe δ ). One considers the following first and second order (Macaulay) 

approximations to  *
cP   defined and denoted by 

.
))(())((

1

,1

2
2
12

2
1

)2(,

)1(,

c
c

c
M
c

M
cc

M
c

M
cM

c

c
c

c
M
cc

M
cM

c

P
P

PyCyDPyCyD
P

P
P

PyDPyD
P

⋅










 ∆+∆−∆+∆
−=

⋅










 ∆−∆
−=

−−−+++

−−++

−−++

−+

(3.3) 

Mathematically, these formulas are just the first and second order Taylor 

approximations of the price-yield function of the cash-flows  ±c   

(straightforward generalization of [16], Section 4, equation (4.2)). Some 

comments about this extended definition of the Macaulay duration and convexity 

follow in the Remarks 3.1 of the next Section. 

 

3.1.2 Fisher-Weil duration, convexity, and M-square index 

We use the modern probabilistic definitions of the Fisher-Weil sensitivity 

measures (of non-negative future cash-flows) as originally found in [33] and 

followed-up by [34], [26], Section 3.5, and [14]-[16]. Our (slight) extension to 

arbitrary portfolios  −+ −= ccc   along the line of [14] is straightforward. Let  
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+= kkk CPα   and  −= kkk CP   be the current prices of the future cash-flows  

nkCk ,...,1, =± . 

 

Definitions 3.1.  The random variable  +
cS   with support  { }δδ n,...,   and 

probabilities  { }nqq ,...,1 , where  ( ) 1
1

−
=∑⋅= n

i ikkq αα   is the normalized future 

cash inflow at time  k, is called positive cash-flow risk. Similarly, the random 

variable  −
cS   with support  { }δδ n,...,   and probabilities  { }npp ,...,1 , where  

( ) 1
1

−
=∑⋅= n

i ikkp    is the normalized future cash outflow at time  k, is called 

negative cash-flow risk. 

 

The Fisher-Weil duration, convexity and M-square index of the future 

cash-flow vectors  ±c   are defined as first and second order expected values, 

respectively variances, associated to the positive and negative cash-flow risks: 

[ ] [ ] [ ].,)(, 22 ±±± === ±±± cccccc SVarMSECSED    (3.4) 

With this the approximations (3.3) are replaced by 

.
))(())((

1

,1

2
2
12

2
1

)2(

)1(

c
c

cccccc
c

c
c

cccc
c

P
P

PyCyDPyCyD
P

P
P

PyDPyD
P

⋅










 ∆+∆−∆+∆
−=

⋅






 ∆−∆
−=

−−−+++

−−++

−−++

−+

 (3.5) 

 

Remarks 3.1.   

(i)   The Macaulay duration and convexity of the future cash-flows can also be 

interpreted in probabilistic terms. Let  +− += k
kyM

k Ce δα   and  −− −= k
kyM

k Ce δ
   

be the current yield to maturity discounted values of the future cash-flows  

nkCk ,...,1, =± . The random variable  +,M
cS   with support  { }δδ n,...,   and 

probabilities  { }M
n

M qq ,...,1 , with  ( ) 1
1

−
=∑⋅= n

i
M
i

M
k

M
kq αα , is called Macaulay 
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positive cash-flow risk. Similarly, the random variable  −,M
cS   with support  

{ }δδ n,...,   and probabilities  { }M
n

M pp ,...,1 , with  ( ) 1
1

−
=∑⋅= n

i
M
i

M
k

M
kp  , is 

called Macaulay negative cash-flow risk. Then, similarly to (3.4) we define the 

probabilistic notions of Macaulay duration, convexity and M-square index of the 

future cash-flow vectors  ±c   as 

[ ] [ ] [ ].,)(, ,2,2,, ±±± === ±±±
M
c

M
c

M
c

M
c

M
cc SVarMSECSED   (3.6) 

(ii)   On the other hand, as observed in [16], Section 5, it is not difficult to see 

that in general  M
cc DD ≠ , M

cc CC ≠ , hence  )1(,)1( M
cc PP ≠ , )2(,)2( M

cc PP ≠ , but 

the differences are usually negligible (see also [25], Section 12.3.3, p.333). Note 

that equality holds for flat term structures. Furthermore, simulation examples 

suggest that the approximations (3.5) outperform in accuracy the traditional ones 

(3.3). For these reasons, only the Fisher-Weil measures are retained for further 

analysis in Section 4. 

(iii)   From a more advanced point of view, we note that [3] has obtained simple 

composition formulas for the Macaulay sensitivity measures (3.2) applied to 

(economic) cash-flow sums and products. The Fisher-Weil probabilistic 

counterparts of them have been derived in [16], Theorems 5.1 and 5.2. It is also 

possible to use a multivariate model of so-called directional duration and 

convexity (consult [17] for a recent account). 

(iv)   Like [25], p.332, we like to emphasise that the Macaulay and Fisher-Weil 

duration and convexity risk measures are only meaningful in the context of 

cash-flows that are independent of the interest rate movements (e.g. portfolios of 

bonds), an assumption made at the beginning of Section 3.1. Of course, if a 

financial instrument can be reduced to interest rate independent cash-flows, then 

the traditional risk measures still apply. As shown later in Section 3.2.4, this is the 

case for swaps. For a more general use that includes interest rate derivatives (e.g. 

caps/floors and swaptions), one has to consider also stochastic risk measures of 

duration and convexity as those defined in the next Section. 
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3.2 Stochastic risk measures in one-factor diffusion models 
It is known that the Macaulay risk measures are not consistent with any 

arbitrage-free dynamic term structure model. Similarly, the Fisher-Weil measures 

are only consistent with the model by [20], which is a very unrealistic model (e.g. 

[25], Section 12.2.3). To obtain measures of interest rate risk that are more in line 

with a realistic evolution of the TSIR, it is natural to consider uncertain price 

movements in reasonable dynamic term structure models. 

 

3.2.1 Definitions and relationships 

We focus on the sensitivity of the prices with respect to a change in the state 

variable(s). For simplicity, we restrict the analysis to one-factor diffusion models, 

for which the instantaneous interest rate or short rate follows a stochastic process 

of the type 

( ) ( ) tttt dWrtdtrtdr ,, σµ += ,     (3.7) 

with  tW   the standard Wiener process. In applications, we consider a 

mean-reverting short rate with drift  ( ) ( )tt rrt −= θκµ , , and the instantaneous 

standard deviation is either constant  ( ) σσ =trt,   (model of Vasicek [35]) or of 

square-root type  ( ) tt rrt σσ =,   (model of Cox-Ingersoll-Ross [5] or CIR 

model). The condition 22 σ>ab  for the CIR model guarantees that the process 

never touches zero and implies a stationary gamma distribution. Similar 

calculations can be done for the Hull-White model with  ( ) ( )tt rtbart −= )(,µ   

and  ( ) σσ =trt,   following the specification and calibration in [12], (2003), 

Chap. 23. 

   For a non-negative cash-flow  c   with price process  ),( t
cc

t rtPP =   Itô’s 

Lemma implies that 
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( ) ( )

( ) .,
),(

),(
1

),(
),(

,
2
1),(

),(
,),(

),(
1

2

22

tt
t

c

t
c

t
c

t
c

tt
c

t
c

tt
c

t
cc

t

c
t

dWrt
r

rtP
rtP

dt
r

rtP
rtP

rt
r

rtP
rtP
rt

t
rtP

rtPP
dP

σ

σµ

∂
∂

+












∂
∂

+
∂

∂
+

∂
∂

=

 (3.8) 

Typically, for a bond, the derivative  ),( t
c

r rtP∂
∂   is negative for the above 

models, and the volatility of the bond is  ( )tt
c

t
c

r rtrtPrtP ,)),(/),(( σ⋅− ∂
∂ . Since 

it is natural to use the cash-flow specific part of the volatility as a risk measure, we 

define the (stochastic) cash-flow duration as (note the similarity with Macaulay 

duration) 

r
rtP

rtP
rtD t

c

t
ct ∂

∂−
=

),(
),(

1),( .     (3.9) 

According to (3.8) the unexpected relative return on the cash-flow is  

( ) ( ) ttt dWrtrtD ,, σ− . Furthermore, we define the (stochastic) cash-flow convexity 

as 

2

2 ),(
),(

1),(
r

rtP
rtP

rtC t
c

t
ct ∂

∂
= ,    (3.10) 

and the (stochastic) cash-flow time value as 

t
rtP

rtP
rt t

c

t
ct ∂

∂
=Θ

),(
),(

1),( .     (3.11) 

It follows that the rate of return (3.8) on the cash-flow over the next 

infinitesimal period of time can be rewritten as 

 

( ) ( ) ( ) ttttttttc
t

c
t dWrtrtDdtrtCrtrtDrtrt

P
dP

,),(),(,
2
1),(,),( 2 σσµ −






 +−Θ= . (3.12) 

Next, consider the market price of risk of the cash-flow, denoted  ( )trt,λ   

and also called Sharpe ratio, which is defined as excess expected return (above the 

risk-free rate) per unit of risk and with (3.12) is given by 
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( )
( ) ( )

( )tt

tttttt

t rtrtD

rrtCrtrtDrtrt
rt

,),(

),(,
2
1),(,),(

,

2

σ

σµ
λ

−

−+−Θ
= .  (3.13) 

One sees that (3.13) is equivalent with the relationship 

( ) ( ) tttttt rrtCrtrtDrtrt =+−Θ ),(,
2
1),(,ˆ),( 2σµ ,   (3.14) 

where  ( ) ( ) ( ) ( )tttt rtrtrtrt ,,,,ˆ λσµµ −=   is the risk-neutral drift of the short rate. 

Note that (3.14) also follows by substituting the definitions of duration, convexity 

and time value into the partial differential equation that the price process is known 

to satisfy, that is (e.g. [25], Section 4.8, Theorem 4.10) 

( ) ( ) 0),(
),(

,
2
1),(
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∂
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∂
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t
t

c

rtPr
r

rtP
rt

r
rtP

rt
t

rtP
σµ . (3.15) 

 

Remarks 3.2.  According to [25], p.330, the importance of (3.14) for the 

construction of interest rate risk hedging strategies has been first noticed by [6]. 

Within the context of the Black-Scholes-Merton return model, the time value and 

the  ∆  (delta) and  Γ (gamma) Greeks are related in a way similar to (3.14) 

(e.g. [12], (2009), Section 17.7). 

 

Further, we note that (3.12) can also be rewritten as 

( ) ( )( ) ( ) tttttttc
t

c
t dWrtrtDdtrtDrtrtr

P
dP

,),(),(,, σσλ −−= ,  (3.16) 

which only involves the duration, and not the convexity nor the time value. 

Through differentiation of the duration one obtains (e.g. [25], Exercise 12.1) 

),(),(
),( 2

tt
t rtCrtD

r
rtD

−=
∂

∂
,    (3.17) 

which shows that the convexity can be interpreted as a measure of the interest rate 

sensitivity of the duration.  

   In contrast to the Macauly and Fisher-Weil durations, the stochastic duration 

(3.9) is not measured in time units, but it can be transformed into such a new 
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measure, called time-denominated duration and denoted by  ),(*
trtD . For 

example, [4] define the time-denominated duration of a coupon-bond with price 

process  ),( rtB   as 

r
rtP

rtPr
rtB

rtB

rtDt

rtDt ∂
∂

=
∂

∂ +

+

),(
),(

1),(
),(

1 ).(

).(

*

* ,   (3.18) 

where  ),( t
T rtP   denotes the price at time  t   of a zero-coupon bond with 

maturity  T . 

 

3.2.2 Stochastic duration and convexity for affine models of the TSIR 

The zero-coupon bond prices in affine models of the TSIR, e.g. the Vasicek and 

CIR models, are of the form 
rtTbtTaT ertP )()(),( −−−= ,     (3.19) 

for some functions  )(),( ⋅⋅ ba . Now, the current price at time  0=t   of a vector  

),...,,0( 1 nCCc =   of non-negative future cash-flows, which is independent of any 

interest rate movements (under the assumptions made at the beginning of Section 

3), is given by 

∑ ⋅=
=

n

k
k

kc CrPrP
1

),0(),0( δ .     (3.20) 

Therefore, the current stochastic duration of the future cash-flows in affine models 

equals 

),0(
),0(
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1),0(
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∂
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The corresponding current stochastic convexity is similarly given by 

 ∑ ⋅⋅=
∂

∂
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rP
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1

2
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)(),0(
),0(

1),0( δ .   (3.22) 

A comparison of the traditional deterministic and stochastic risk measures for the 

CIR model is provided in [25], Section 12.3.3 (see also Section 5). 

   In the spirit of Section 3.1.2, and for later use, let us reinterpret these measures 
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in probabilistic terms. For an arbitrary portfolio of future cash-flows  −+ −= ccc , 

let  +⋅= k
kaff

k CrP ),0(δα   and  −⋅= k
kaff

k CrP ),0(δ
   be the current prices of 

the future cash-flows  nkCk ,...,1, =± , in an affine model of the TSIR. 

 

Definitions 3.2.  The random variable  +,aff
cS   with support  { })(),...,( δδ nbb   

and probabilities  { }aff
n

aff qq ,...,1 , with  ( ) 1
1

−
=∑⋅= n

i
aff
i

aff
k

aff
kq αα , is called affine 

positive cash-flow risk. Similarly, the random variable  −,aff
cS   with support  

{ })(),...,( δδ nbb   and probabilities  { }aff
n

aff pp ,...,1 , with  ( ) 1
1

−
=∑⋅= n

i
aff
i

aff
k

aff
kp  , 

is called affine negative cash-flow risk. 

 

Then, the (stochastic) affine duration, convexity and M-square index of the 

future cash-flow vectors  ±c   are defined similarly to (3.4) and (3.6) as 

 

[ ] [ ] [ ].,)(, ,,22,, ±±± === ±±±
aff
c

aff
c

aff
c

aff
c

aff
c

aff
c SVarMSECSED    (3.23) 

 

Examples 3.1:  Vasicek and CIR duration and convexity 

In the Vasicek model, the short rate follows an Ornstein-Uhlenbeck process of the 

form  ( ) ttt dWdtrdr ⋅+−= σθκ   and the functions  )(),( ⋅⋅ ba   in (3.19) with 

the time to maturity  tT −=τ   as argument are given by 

( ) ( ) ( )( ) ( )[ ] .
4
1

2
1,1 22

κ
τσττ

κ
σθτ

κ
τ

κτ bbaeb −−
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  (3.24) 

 

In the CIR model, the short rate follows the square-root process  

( ) tttt dWrdtrdr ⋅+−= σθκ   and one has 
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Inserting these functions into the defining equations (3.19)-(3.22) yield by 

definition (3.23) concrete affine measures called Vasicek (respectively CIR) 

duration, convexity and M-square index. They are denoted  V
c

V
c

V
c MCD ,2,, ±±±   

(respectively CIR
c

CIR
c

CIR
c MCD ,2,, ±±± ). 

 

 

3.3 Duration and convexity measures for swaps 
Based on the preliminaries of Section 2.4, we show the equivalence of a 

payer swap  ),,,,( δrKHTSW p   with a portfolio consisting of a long initial 

cash position of amount   H   and a short position in a bond  ),,,( δKHTB . 

This equivalent characterization of a swap follows immediately by considering the 

cash-flows associated to the fixed and floating legs. 

 

Lemma 3.1 (Cash-flows of a payer swap). The cash-flows  flfix cc ,   associated 

to the fixed and floating legs of a payer swap  ),,,,( δrKHTSW p   are given by 

),0,...,0,(),,...,,0( HHcHKHKc flfix −== δδ .   (3.26) 

Proof.  For the fixed leg this follows immediately by noting that the fixed 

payments of the payer swap are those of a straight-coupon bond  ),,,( δKHTB   

omitting the final face value payment. For the floating leg we use the 

representation (2.15) for the value of the floating leg. At the start date  0=t   

the market value (in the notations of Section 2) can be rewritten as 

{ }),0(1),0(),)1(,(
1

0 δδδδδ nPHiPiitRHV
n

i

fl −⋅=∑ ⋅−⋅⋅=
=

,  (3.27) 

which implies the desired result.  ◊ 
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Subtracting the floating leg and fixed leg cash-flow vectors in (3.26), one 

obtains the cash-flow vector of a payer swap, namely  

))1(,,...,,( δδδ KHHKHKHccc fixfl
SW p +−−−=−= , which implies the stated 

equivalence. Obviously, the duration and convexity of the future cash-flows of a 

payer swap, up to the sign, are identical to those of a bond  ),,,( δKHTB , 

whatever notion is used for the duration and convexity measures (Macaulay, 

Fisher-Weil, Vasicek, CIR). 

 

 

4  Hedging strategies for portfolios of fixed income securities  
Though interest rate risk management can and should be formulated for 

arbitrary portfolios of fixed income securities, our single illustration will focus for 

clearness on hedging portfolios of swaps through portfolios of bonds. Several 

motivations support this emphasis: 

(i)   The first one is directly related to the practical use of swaps (e.g. [25], 

Section 6.5.1). An investor can transform a floating rate loan into a fixed rate loan 

by entering into an appropriate swap, where the investor receives floating rate 

payments (netting out the payments on the original loan) and pays fixed rate 

payments. This process is called a liability transformation. Conversely, an investor 

who has lent money at a floating rate, that is owns a floating rate bond, can 

transform this to a fixed rate bond by entering into a swap, where he pays floating 

rate payments and receives fixed rate payments, a so-called asset transformation. 

Hence, interest rate swaps can be used for hedging interest rate risk on both 

(certain) assets and liabilities. On the other hand, interest rate swaps can also be 

used for taking advantage of specific expectations of future interest rates, that is 

for speculation. 

(ii)   A second explanation is related to the nature of the “first order interest rate 

risk”, also called delta vector (e.g. [22], Chap. 8). For any given set of cash-flows 
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the delta vector represents the sensitivity of the portfolio in units of account per 

basis point to a shift in any input rate (or price, in the case of futures). It is 

obtained through calculation of the price or present value of a basis point, 

abbreviated PVBP (e.g. [22], Section 9.3) or PV01 (e.g. [1], Section III.1.8). To 

cover the delta exposure of a long position into a swap, a trader has several 

options (e.g. [22], Section 9.1). A perfect hedge can only be obtained by paying 

fix to another market participant. Another possibility is to achieve a net zero delta 

across the whole yield curve by paying fixed in a different maturity date. In this 

situation, the size of the new deal will be different from that of the original 

(paying into a longer maturity requires a smaller nominal while a shorter maturity 

requires a larger nominal). The calculation of the exact required amount, i.e. the 

hedge ratio of swaps of different maturities, is considered in [22], Section 9.3. 

While achieving a total zero delta this strategy is coupled with a “yield curve 

position”, which may be quite risky in case rates do not move favourably. Since a 

perfect hedge is seldom achieved without any extra cost, the only effective way 

remains the possibility to hedge portfolios of swaps using other financial 

instruments than swaps. The only instruments that reduce the delta and do not 

introduce non-interest rate exposures are forward rate agreements (or FRAs), 

bonds and interest rate or bond futures. Of these the most common method of 

reducing absolute interest rate exposure is by hedging with government bonds, 

which have the advantage of liquidity. When there is a liquid bond market, the 

bond-swap spread (or simply the spread) is less volatile than the corresponding 

absolute swap rate, making the bond a natural hedging instrument (e.g. [22], 

Section 9.2, p.169). 

 

 

4.1 Classical static immunization theory and convex order 
In classical immunization theory ([26], Section 3), one assumes that 

cash-flows are independent of interest rate movements. In the situation of Section 
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3.1.2, consider a portfolio of future cash-flows  −+ −= ccc   with vanishing 

present value of future cash-flows at time  0=t , i.e. such that 

0
11

=∑−∑=
==

n

j
j

n

k
kcV α .     (4.1) 

This corresponds to the setting studied in [14]. One is interested in the 

possible changes of the value of a portfolio at a time immediately following the 

current time  0=t   under a change of the TSIR’s from  )(sP   to  )(* sP   

such that  
)(
)()(

*

sP
sPsf =   is the shift factor. Immediately following the initial 

time, the post-shift change in portfolio value is given by 

∑−∑=−=∆ ==
n
j j

n
k kccc jfkfVVV 11

* )()( δδα  .   (4.2) 

The classical immunization problem consists of finding conditions under 

which (4.2) is non-negative, and give precise bounds on this change of value in 

case it is negative. In the probabilistic setting of Section 3.1.2, the positive and 

negative cash-flow risks  +
cS   and  −

cS   associated to an arbitrary portfolio of 

future cash-flows  −+ −= ccc   have been introduced. In view of (4.1) the 

normalization assumption  1
11

=∑=∑
==

n

j
j

n

k
k α   will be made from now on. In this 

setting, the change in portfolio value (4.2) identifies with the mean difference 

[ ] [ ])()( −+ −=∆ ccc SfESfEV .     (4.3) 

Under duration matching, that is  0: =−= −+ ccc DDD , assumed in 

immunization theory, the non-negativity of the difference (4.3) is best analyzed 

within the context of stochastic orders. The notion of convex order, as first 

propagated by [28]-[30] ((see also [18] and [32]), yields the simplest and most 

useful results. 

 

Definition 4.1.  A random variable  X  precedes  Y  in convex order or 

stop-loss order by equal means, written  YX cx≤   or  YX sl =≤ , , if  
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[ ] [ ]YEXE =   and one of the following equivalent properties is fulfilled : 

(CX1) [ ] [ ])()( YfEXfE ≤   for all convex real functions  )(xf   for which 

the expectations exist 

(CX2) [ ] [ ]++ −≤− )()( dYEdXE   for all real numbers  d 

(CX3) [ ] [ ]dYEdXE −≤−   for all real numbers  d 

(CX4) There exists a random variable  YY d='   (equality in distribution) 

such that  [ ] XXYE ='   with probability one 

 

The equivalence of (CX1), (CX2) and (CX4) is well-known from the 

literature ([18], [32]). The equivalence of (CX2) and (CX3) follows immediately 

from the identity  ( ) { }dXdXdX −+−=− + 2
1   using that the means are equal. 

The partial order induced by (CX3) has also been called dilation order ([30], 

[31]). 

   Deterministic hedging strategies for portfolios of fixed income securities are 

based on the following three main results. 

Theorem 4.1.  Let  +
cS   and  −

cS   be the positive and negative cash-flow 

risks of a portfolio of future cash-flows  −+ −= ccc   with vanishing duration  

0=cD , and let  )(sf   be a convex shift factor of the TSIR. If  0=cV   the 

portfolio of future cash-flows is immunized, that is  

[ ] [ ] 0)()( ≥−=∆ −+
ccc SfESfEV   if, and only if, one has  +− ≤ ccxc SS . 

Proof.  This is immediate by the property (CX1).  ◊ 

 

Theorem 4.2.  Under the assumptions of Theorem 4.1, a portfolio of future 

cash-flows is immunized if, and only if, the difference between the mean absolute 

deviation indices of the positive and negative cash-flows is non-negative, that is 
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[ ] [ ] nkkSEkSE cc ,...,1, =−≥− −+ δδ .    (4.4) 

Proof.  This generalization of earlier results by [9], [10] (sufficient condition 

under constant shift factors) and [33] (necessary condition under convex shift 

factors) has been derived in [14]. ◊ 

 

In case the shift factor of the TSIR is not convex, immunization results can 

be obtained through generalization of the notion of convex function (see [15] for 

another extension). 

 

Definition 4.2.  Given are real numbers  α   and  β ,  and an interval  

RI ⊆ . A real function  )(xf   is called α -convex on  I   if  2
2
1)( xxf α−   

is convex on  I . It is called convex- β   on   I   if  )(2
2
1 xfx −β   is convex 

on  I . 

 

Note that a twice differentiable shift factor  )(sf   on the support  [ ]δδ n,   

is automatically α -convex with  
[ ]

{ })(''inf
,

sf
ns δδ

α
∈

= , and convex- β   with  

[ ]
{ })(''sup

,
sf

ns δδ
β

∈
= . 

 

Theorem 4.3.  Let  +
cS   and  −

cS   be the positive and negative cash-flow 

risks of a portfolio of future cash-flows  −+ −= ccc   with vanishing duration  

0=cD , and let the shift factor  )(sf   be α -convex and convex- β  on the 

support  [ ]δδ n, . If  0=cV   and  +− ≤ ccxc SS   the change in portfolio under 

the shift factor satisfies the upper and lower bounds 

[ ] [ ] )(
2
1)()()(

2
1 2222

−+−+ −⋅≤−=∆≤−⋅ −+
ccccccc MMSfESfEVMM βα .  (4.5) 

Proof. This result by [34], which expands on ideas by [23], is a simple 
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consequence of the characterizing property (CX1) in Definition 4.1. By 

assumption, one has the inequalities 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ].)()(
2
1)()(

2
1

,)(
2
1)()(

2
1)(

22

22

++−−

++−−

−⋅≤−⋅

⋅−≤⋅−

cccc

cccc

SfESESfESE

SESfESESfE

ββ

αα
  (4.6) 

Since  0=cD   one has  [ ] [ ] [ ] [ ] 2222 )()( −+ −=−=− −+−+
cccccc MMSVarSVarSESE , 

hence (4.5).  ◊ 

 

Remarks 4.1. 

(i)  In the terminology of [34] the condition  +− ≤ ccxc SS   means that the portfolio 

of future cash-flows  −+ −= ccc   is Shiu decomposable. In this situation, one 

has necessarily  0=cD   and  022 ≥− −+ cc MM  (Proposition 1 in [34]). An 

algorithm to generate Shiu decomposable portfolios by given negative cash-flow 

risk  −
cS   is found in [13], Corollary A.1. Half of the difference in M-square 

indices, that is  )( 22
2
1

−+ − cc MM , has been called Shiu risk measure. For further 

details consult [14]. 

(ii)  For the interested reader we mention that it is possible to extend some of the 

above results to the immunization of economic cash-flow products as considered 

first in [3] (for this consult [16], Sections 7 and 8). 

(iii)  An extension to directional immunization along the line of [17] can also be 

formulated. 

 

 

4.2 Static immunization bounds with stochastic affine measures of 

duration and convexity 
The three main results of Section 4.1 are also valid mutatis mutandis for the 

Macaulay and stochastic affine measures of duration and convexity. In particular, 
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Theorem 4.3 extends to the stochastic affine risk measurement context as follows. 

Theorem 4.4.  Let  +,aff
cS   and  −,aff

cS   be the affine positive and negative 

cash-flow risks of a portfolio of future cash-flows  −+ −= ccc   with vanishing 

affine duration  0: =−= −+
aff
c

aff
c

aff
c DDD , and let the shift factor  )(sf   be 

α -convex and convex- β  on the support  [ ])(),( δδ nbb . If  0=aff
cV   and  

+− ≤ ,, aff
ccx

aff
c SS   the change in portfolio under the shift factor satisfies the upper 

and lower bounds 

[ ] [ ]
)(

2
1

)()(
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2
1
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,2,2

aff
c

aff
c

aff
c

aff
c
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SfESfEV
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−+
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−⋅≤

−=∆≤

−⋅

−+

β

α

.        (4.7) 

   Similarly to the remark preceding Theorem 4.3 one notes that a twice 

differentiable shift factor  )(sf   on the support  [ ])(),( δδ nbb   is automatically 

α -convex with  
[ ]

{ })(''inf
)(),(

sf
nbbs δδ

α
∈

= , and convex- β   with  

[ ]
{ })(''sup

)(),(
sf

nbbs δδ
β

∈
= . As observed at the beginning of Section 3, the Fisher-Weil 

measures are only consistent with Merton’s model. Therefore, Theorem 4.4 has a 

more realistic and wider range of application than Theorem 4.3, which has been 

initially derived in [14], Theorem 2.3. The significance of the new formulation for 

hedge optimization is illustrated in Section 5. 

Remark 4.2.  The topic of dynamic immunization strategies, which is not 

touched upon within the present work, can be treated as in [25], Section 12.4. 

 

 

5  Static immunization bounds for a single swap liability 

As motivated at the beginning of Section 4, we illustrate the (static) hedging 

of portfolios of swaps (as liabilities) through portfolios of bonds (as assets). To 



Werner Hürlimann 47  

illustrate the main features we focus solely on hedging a single swap liability with 

two bonds (as assets), and observe that the general case can be treated similarly. 

For simplicity, we assume an affine TSIR such that  

nkrPkPP k
k ,...,1),,0()( === δδ , where  δnT =   is the maximum maturity of 

the considered swaps and bonds. We restrict ourselves to the Vasicek and CIR 

models described in the Examples 3.1. By the results of Section 3.3 the durations 

and convexities of a portfolio of bonds and swaps reduce to the durations and 

convexities of two bond portfolios corresponding to the asset respectively liability 

side. For simplicity, we fix the tenor  1=δ   and suppose the asset side is 

represented by a bond portfolio  { }+++ = 21 , BBB   with  

2,1),1,,,( ==+ iRHnBB iiii . Without loss of generality we assume that  21 nn < .  

Moreover, one usually has  21 RR ≤  (higher interest reward for longer bond 

maturities). Similarly, the liability side is represented by a bond  

)1,,,( KHmBB =− . Recall that the fixed interest rate of a swap, or swap rate (e.g. 

Munk (2011), Section 6.5.1, equation (6.32)), is set such that the swap has zero net 

present value at contract agreement, i.e. 

.)(/))(1(
1
∑−=
=

m

j
jPmPK       (5.1) 

For duration matching one needs the assumption  21 nmn << . Therefore, the 

maximum maturity  nT =   is described by the integer  2nn = . The cash-flow 

vector  −+ −= ccc   of this portfolio is given by 

[ ]

[ ] .,...,1,}{1}{1,),,...,,(

,,...,1,}{1}{1,0),,...,,(
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mjmjKmjHCHCCCCc
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(5.2)   

To be able to apply the static immunization bounds, the following assumptions are 

made (normalization and duration matching assumptions): 

1,1
1111

=∑=∑=∑=∑
====

n

j

aff
j

n

k

aff
k

n

j
j

n

k
k  αα ,    (5.3) 
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−+ = cc DD   (Fisher-Weil),   aff
c

aff
c DD −+ =   (affine risk measures).  (5.4) 

For a given TSIR the parameters of the swap liability are fixed, but those of the 

two bond assets may vary in order to obtain an “optimal” or best possible hedge. 

In the notations of Section 3, and with the above simplifying assumption on the 

TSIR, the current prices of the future liability cash-flows satisfy the following 

relationships 

.,...,1,)( mjCjP aff
jjj === −
     (5.5) 

Since  )1()(,1,...,1,)( KHmPmjHKjP mj +=−==  , and in virtue of the 

relations (5.1) and (5.5), the normalization assumptions  1
11

=∑=∑
==

m

j

aff
j

m

j
j    are 

fulfilled if, and only if, one has  1=H . The Fisher-Weil and affine durations of 

the future liability cash-flows are given by 

∑⋅+=∑⋅+=
==

−−

m

j
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m

jc jPjbKmPmbDjjPKmmPD
11

)()()()(,)()( . (5.6) 

For the bonds indexed  2,1=i   on the asset side consider the quantities defined 

and denoted by 

∑⋅+=
=

in

k
iii kPRnPV

1
)()(  :  present value of +

iB  per unit of principal 

∑⋅+=
=

in

k
iiii kkPRnPnD

1
)()(  :  Fisher-Weil duration of +

iB  per unit of principal 

∑⋅+=
=

in

k
iii

aff
i kPkbRnPnbD

1
)()()()(  : affine duration of +

iB  per unit of principal 

It is clear that  2,1, =≠ iDD aff
ii . Therefore, by fixed interest rates and maturities 

of the bonds, the duration matching assumptions can only be fulfilled if one 

assumes different bond principals in the Fisher-Weil and affine cases, that is  

2,1, =≠ iHH aff
ii . With these definitions the present value of the future asset 

cash-flows, denoted  V , is by no-arbitrage uniquely given by 

2211
1

2211
1

VHVHVHVHV affaffn

k

aff
k

n

k
k +=∑=+=∑=

==
αα ,   (5.7) 
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and the corresponding Fisher-Weil and affine durations are given by 
affaffaffaffaff

cc DHDHDDHDHD 22112211 , +=+= ++ .  (5.8) 

It follows that the normalization and duration matching assumptions are 

equivalent to the following systems of linear equations. For the Fisher-Weil 

duration one has the linear system 

−=+=+ cDDHDHVHVH 22112211 ,1 ,    (5.9) 

and for the affine duration one has 
aff
c

affaffaffaffaffaff DDHDHVHVH −=+=+ 22112211 ,1 .  (5.10) 

In the following the determinants of the linear systems (5.9)-(5.10) do not vanish, 

an assumption which holds in practical applications. Solving these equations one 

sees that under the normalization and duration matching assumptions the 

principals of the asset bonds are uniquely determined. For the Fisher-Weil 

duration one obtains 
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and for the affine duration one has 
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If short bond positions are allowed for hedging, i.e. 0<iH   for some 2,1=i , 

then there exists a unique bond portfolio satisfying the normalization and duration 

matching assumptions for all maturity choices  21 nmn << . A bond portfolio is 

strictly feasible if only long bond positions are allowed for hedging, i.e. for  

2,1=i  one has  ( )1,0∈iiVH   respectively  ( )1,0∈i
aff
i VH . The conditions 

under which (5.11) and (5.12) yield strictly feasible bond portfolios are not 

simple. Counterexamples to strict feasibility are found in the Tables below.  

   For hedge optimization it is further most important to find feasible bond 

portfolios such that the corresponding (affine) negative and positive cash-flow 
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risks are stochastically ordered in the convex sense, that is such that  +− ≤ ccxc SS   

respectively  +− ≤ ,, aff
ccx

aff
c SS . Indeed, according to Theorem 4.1 and its stochastic 

affine pendant, these stochastic inequalities are the necessary and sufficient 

conditions under which the swap liability will be immunized under arbitrary 

convex shift factors. A feasible bond portfolio satisfying the convex ordering will 

be called a convex hedge. With the Theorems 4.3 and 4.4 it is then possible to 

construct lower and upper static immunization bounds for the change in portfolio 

value. 

   The following numerical examples are based on a Vasicek model with 

parameters  015.0,05.0,15.0 === σθκ   and a CIR model with  

065.0,05.0,15.0 === σθκ , both with an initial short rate  055.0=r  (see the 

Examples 3.1). The shift factor reflects a change in the short rate of amount  

01.0−=∆r  (increase of 1% in the short rate) and takes the form  

})(exp{)( rsbsf ∆= . To evaluate the immunization bounds in the Theorems 4.3 

and 4.4 we need the second derivative  )(})(')(''{)('' 2 sfsbrsbrsf ⋅⋅∆+⋅∆=   

with 

}exp{)('' ssb κκ −⋅−= , Vasicek model,             (5.13) 

( ) ( )( ) γκγ γγ 21)(,12)(
),()()()},()(')('{)()('

)},(')('2)()('')(''{)()(''
11

1
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⋅=⋅−⋅=

⋅−⋅−⋅=
−−

−

ss eshesg
sgshsbsbshsgshsb

sbshsbshsgshsb
 CIR model, (5.14) 

The tenor of the bonds and swaps is fixed at  1=δ   and the interest rates of the 

bonds are set equal to  06.0,05.0 21 == RR . The Tables 1 to 4 list our results for 

some triples  21 nmn <<   with varying swap maturity  { }15,...,2∈m . 

   Let us comment on the obtained results. If short bond positions are allowed for 

hedging, then the narrowest triples  )1,,1( 21 +=−= mnmmn   in our numerical 

examples almost always lead to convex hedges. An exception is the triple (3, 4, 5) 

for the Fisher-Weil duration in both the Vasicek and CIR models, for which the 
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convex ordering  +− ≤ ccxc SS   only slightly fails. But, even in this case, the 

“formal” immunization bounds (4.5), marked bold in the Tables, seem to work 

well (though by Theorem 4.1 there will be some convex shift factor for which this 

does not hold). Another exception is the triple (14, 15, 16) for the affine CIR 

duration (exploding amounts of principals due to an almost vanishing 

determinant). Strictly feasible narrow triples  )1,,1( 21 +=−= mnmmn   seem to 

yield the best possible convex hedges with the smallest range of variation for the 

immunization bounds by fixed maturity of the swap liability. However, this is not 

true if short bond positions are allowed as counterexamples in the Tables suggest 

(e.g. the triples (12, 13, 14) for the affine Vasicek and CIR models). 

 

 

Table 1: Convex hedges and immunization bounds for a single swap  

(Fisher-Weil Vasicek) 
swap first bond second bond immunization bounds

m K n1 V1 D1 H1 n2 V2 D2 H2 ΔV_min ΔV ΔV_max
per mill

2 0.05571 1 0.99420 0.99420 0.48651 3 1.01270 2.87065 0.50984 0.44762 0.52839 0.62203
3 0.05529 1 0.99420 0.99420 0.31225 4 1.01795 3.74263 0.67740 0.72587 0.90661 1.18562
4 0.05488 3 0.98575 2.81771 0.48637 5 1.02356 4.57847 0.50857 0.29177 0.34316 0.55928
4 0.05488 2 0.98948 1.93161 0.31035 5 1.02356 4.57847 0.67697 0.58834 0.73347 1.12775
5 0.05448 4 0.98292 3.65737 0.48424 6 1.02946 5.38119 0.50903 0.23849 0.28062 0.53575
6 0.05411 5 0.98086 4.45485 0.48017 7 1.03555 6.15332 0.51086 0.19846 0.23486 0.52184
7 0.05376 6 0.97946 5.21380 0.47376 8 1.04177 6.89702 0.51448 0.16954 0.20388 0.52130
8 0.05343 7 0.97862 5.93736 0.46463 9 1.04805 7.61407 0.52030 0.14980 0.18583 0.53810
9 0.05312 8 0.97823 6.62821 0.45240 10 1.05434 8.30603 0.52872 0.13744 0.17901 0.57635
10 0.05283 9 0.97822 7.28865 0.43662 11 1.06059 8.97418 0.54016 0.13090 0.18190 0.64039
11 0.05257 10 0.97852 7.92066 0.41681 12 1.06677 9.61966 0.55508 0.12883 0.19314 0.73486
12 0.05232 11 0.97905 8.52597 0.39235 13 1.07284 10.24345 0.57405 0.13012 0.21164 0.86495
13 0.05210 12 0.97978 9.10607 0.36249 14 1.07879 10.84642 0.59774 0.13388 0.23653 1.03671
13 0.05210 12 0.97978 9.10607 0.61839 15 1.08459 11.42934 0.36337 0.10604 0.16534 0.95618
14 0.05189 13 0.98066 9.66229 0.32625 15 1.08459 11.42934 0.62702 0.13945 0.26723 1.25748
14 0.05189 13 0.98066 9.66229 0.60570 16 1.09023 11.99293 0.37241 0.09901 0.16792 1.03932
15 0.05170 14 0.98164 10.19583 0.28235 16 1.09023 11.99293 0.66301 0.14637 0.30350 1.53650
15 0.05170 14 0.98164 10.19583 0.59074 17 1.09571 12.53783 0.38341 0.09416 0.17505 1.15031  
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Table 2: Convex hedges and immunization bounds for a single swap  

(Fisher-Weil CIR) 
swap first bond second bond immunization bounds

m K n1 V1 D1 H1 n2 V2 D2 H2 ΔV_min ΔV ΔV_max
per mill

2 0.05570 1 0.99420 0.99420 0.48651 3 1.01270 2.87069 0.50983 0.46870 0.54801 0.63607
3 0.05528 1 0.99420 0.99420 0.31225 4 1.01796 3.74268 0.67739 0.76268 0.94554 1.21237
4 0.05487 3 0.98576 2.81774 0.48636 5 1.02357 4.57849 0.50858 0.30627 0.36044 0.57192
4 0.05487 2 0.98948 1.93162 0.31034 5 1.02357 4.57849 0.67697 0.61756 0.76929 1.15321
5 0.05448 4 0.98293 3.65742 0.48423 6 1.02944 5.38106 0.50905 0.24915 0.29450 0.54786
6 0.05411 5 0.98086 4.45487 0.48018 7 1.03548 6.15284 0.51088 0.20563 0.24530 0.53352
7 0.05377 6 0.97944 5.21367 0.47386 8 1.04163 6.89588 0.51447 0.17367 0.21125 0.53261
8 0.05345 7 0.97855 5.93688 0.46491 9 1.04781 7.61191 0.52020 0.15124 0.19057 0.54896
9 0.05315 8 0.97809 6.62709 0.45297 10 1.05397 8.30235 0.52843 0.13636 0.18146 0.58653
10 0.05288 9 0.97798 7.28652 0.43767 11 1.06007 8.96846 0.53956 0.12728 0.18217 0.64940
11 0.05263 10 0.97815 7.91706 0.41854 12 1.06606 9.61129 0.55401 0.12249 0.19314 0.74196
12 0.05240 11 0.97854 8.52036 0.39500 13 1.07284 10.23179 0.57231 0.12077 0.20707 0.86912
13 0.05220 12 0.97909 9.09789 0.36637 14 1.07765 10.83081 0.59509 0.12118 0.22888 1.03660
13 0.05220 12 0.97909 9.09789 0.62102 15 1.08320 11.40911 0.36185 0.09377 0.15355 0.95397
14 0.05200 13 0.97977 9.65093 0.33169 15 1.08320 11.40911 0.62317 0.12300 0.25584 1.25143
14 0.05200 13 0.97977 9.65093 0.60936 16 1.08858 11.96739 0.37018 0.08498 0.15335 1.02868
15 0.05183 14 0.98054 10.18064 0.28976 16 1.08858 11.96739 0.65763 0.12578 0.28756 1.52253
15 0.05183 14 0.98054 10.18064 0.59565 17 1.09378 12.50633 0.38028 0.07837 0.15752 1.12915  
 

Table 3: Convex hedges and immunization bounds for a single swap        

(affine Vasicek) 
swap first bond second bond immunization bounds

m K n1 V1 D1 H1 n2 V2 D2 H2 ΔV_min ΔV ΔV_max
per mill

2 0.05571 1 0.99420 0.92323 0.44884 3 1.01270 2.32498 0.54682 0.27013 0.30473 0.34537
3 0.05529 1 0.99420 0.92323 0.26449 4 1.01795 2.84464 0.72405 0.37381 0.43378 0.52636
4 0.05488 3 0.98575 2.28012 0.44740 5 1.02356 3.27605 0.54611 0.11205 0.12239 0.17135
4 0.05488 2 0.98948 1.67186 0.26181 5 1.02356 3.27605 0.72389 0.24326 0.27636 0.37202
5 0.05448 4 0.98292 2.77548 0.44378 6 1.02946 3.63597 0.54766 0.07527 0.08145 0.12354
6 0.05411 5 0.98086 3.17991 0.43695 7 1.03555 3.93779 0.55180 0.05335 0.05770 0.09304
7 0.05376 6 0.97946 3.51096 0.42553 8 1.04177 4.19226 0.55983 0.04110 0.04501 0.07550
8 0.05343 7 0.97862 3.78271 0.40758 9 1.04805 4.40803 0.57358 0.03533 0.03968 0.06786
9 0.05312 8 0.97823 4.00642 0.38009 10 1.05434 4.59204 0.59580 0.03412 0.03955 0.06811
10 0.05283 9 0.97822 4.19112 0.33810 11 1.06059 4.74991 0.63103 0.03649 0.04354 0.07526
11 0.05257 10 0.97852 4.34408 0.27251 12 1.06677 4.88617 0.68745 0.04225 0.05156 0.08965
12 0.05232 11 0.97905 4.47117 0.16467 13 1.07284 5.00453 0.78183 0.05234 0.06488 0.11381
13 0.05210 12 0.97978 4.57712 -0.03095 14 1.07879 5.10798 0.95507 0.07014 0.08784 0.15573
13 0.05210 12 0.97978 4.57712 0.47422 15 1.08459 5.19897 0.49361 0.02876 0.03531 0.06500
14 0.05189 13 0.98066 4.66576 -0.46277 15 1.08459 5.19897 1.34043 0.10766 0.13574 0.24336
14 0.05189 13 0.98066 4.66576 0.39526 16 1.09023 5.27949 0.56170 0.03527 0.04407 0.08098
15 0.05170 14 0.98164 4.74020 -2.05163 16 1.09023 5.27949 2.76453 0.24085 0.30500 0.55291
15 0.05170 14 0.98164 4.74020 0.25278 17 1.09571 5.35120 0.68619 0.04694 0.05930 0.10921  
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Table 4: Convex hedges and immunization bounds for a single swap        

(affine CIR) 
swap first bond second bond immunization bounds

m K n1 V1 D1 H1 n2 V2 D2 H2 ΔV_min ΔV ΔV_max
per mill

2 0.05570 1 0.99420 0.92262 0.44704 3 1.01270 2.31377 0.54858 0.27758 0.31009 0.34703
3 0.05528 1 0.99420 0.92262 0.26172 4 1.01796 2.82246 0.72674 0.38142 0.43801 0.52178
4 0.05487 3 0.98576 2.26906 0.44413 5 1.02357 3.23973 0.54925 0.11199 0.12170 0.16554
4 0.05487 2 0.98948 1.66790 0.25818 5 1.02357 3.23973 0.72739 0.24434 0.27546 0.36118
5 0.05448 4 0.98293 2.75365 0.43980 6 1.02944 3.58310 0.55147 0.07370 0.07942 0.11642
6 0.05411 5 0.98086 3.14425 0.43215 7 1.03548 3.86676 0.55638 0.05119 0.05517 0.08556
7 0.05377 6 0.97944 3.45923 0.41964 8 1.04163 4.10217 0.56545 0.03885 0.04244 0.06814
8 0.05345 7 0.97855 3.71342 0.39994 9 1.04781 4.29855 0.58087 0.03323 0.03725 0.06070
9 0.05315 8 0.97809 3.91881 0.36932 10 1.05397 4.46333 0.60606 0.03228 0.03733 0.06103
10 0.05288 9 0.97798 4.08502 0.32110 11 1.06007 4.60247 0.64710 0.03502 0.04162 0.06817
11 0.05263 10 0.97815 4.21978 0.24196 12 1.06606 4.72076 0.71603 0.04152 0.05035 0.08285
12 0.05240 11 0.97854 4.32928 0.10065 13 1.07284 4.82204 0.84102 0.05363 0.06590 0.10925
13 0.05220 12 0.97909 4.41850 -0.19770 14 1.07765 4.90943 1.10757 0.07836 0.09710 0.16245
13 0.05220 12 0.97909 4.41850 0.43860 15 1.08320 4.98540 0.52674 0.02788 0.03409 0.05866
14 0.05200 13 0.97977 4.49140 -1.14281 15 1.08320 4.98540 1.95688 0.15373 0.19147 0.32343
14 0.05200 13 0.97977 4.49140 0.32181 16 1.08858 5.05196 0.62898 0.03681 0.04564 0.07841
15 0.05183 14 0.98054 4.55119 46.744 16 1.08858 5.05196 -41.186 n.d. -4.47898 n.d.
15 0.05183 14 0.98054 4.55119 0.05617 17 1.09378 5.11074 0.86391 0.05667 0.07083 0.12198  
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