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On Directional Immunization and Exact Matching 
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Abstract 

The rigorous version of Redington's theorem by Montrucchio and Peccati [12] is 

shown to be valid in a multivariate framework. It provides necessary and 

sufficient conditions for immunizing a fixed-income portfolio of assets and 

liabilities against a fixed non-parallel shift direction of the term structure of 

interest rates. As a consequence, immunization against all possible shift directions 

leads necessarily to an exact matching strategy. 
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1  Introduction  

In recent years important advances on immunization theory have been 

achieved. Several authors have undertaken the task to extend the original model 
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by Redington [14] to take into account more realistic real-world assumptions. 

Fisher and Weil [6] have worked with a non-flat term structure of interest rates 

and have shown how to immunize a single liability for parallel shifts in the term 

structure. This approach was generalized to multiple liabilities by Shiu [21] who 

also obtained interesting connections with Linear Programming (see also [19], 

[20], [22]). Extension of this approach and a remarkable rigorous statement of 

Redington's theorem are discussed in Montrucchio and Peccati [12]. The author 

has derived in [9] some main immunization results based on some well-known 

equivalent characterizations of the stop-loss order by equal means, also called 

convex order. In a special case, the conditions by Fong and Vasicek [7], [8], and 

Shiu [21], are extended to a necessary and sufficient condition for immunization 

under arbitrary convex shift factors of the term structure of interest rates. Based on 

a linear control problem with the Shiu measure as objective function, the bounds 

by Uberti [21] on the change in portfolio value of Shiu decomposable portfolios 

under alpha-convex and convex-beta shift factors have also be analyzed in detail. 

Some of the latter results have also been extended to the immunization of 

economic cash-flow products as considered first in Costa [4] (for this consult [10], 

Sections 7 and 8). A multivariate model to deal with non-parallel shifts of the term 

structure has been motivated and developed in a series of papers by Reitano [15] 

to [18]. 

     All of the above concerns (mainly) deterministic immunization theory. To 

take into account also interest-sensitive cash flows, unknown random times of 

payments, and other stochastic modeling assumptions, further extensions are 

needed. Several authors have already worked along this line, e.g. Boyle [2], 

Albrecht [1], Castellani, DeFelice and Moriconi [3], Shiu [23] and Munk [13]. 

     A scrutiny look at the recent work in the deterministic framework shows 

that ultimate accomplishment in this direction of study is still not yet achieved. In 

this note a rigorous multivariate Redington theorem is formulated and proved for 

the case of non-parallel shifts of the term structure. This result extends Proposition 
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8 in Montrucchio and Peccati [12] applying the technic of multivariate 

immunization theory as developed by Reitano [18]. 

 

 

2  Multivariate Duration and Convexity Analysis 

In this communication we restrict ourselves to the financial context of 

fixed-income portfolios including investment in bonds. The goal of immunization 

theory is to protect the investment value of a portfolio of known asset and liability 

payments against interest rate fluctuations. 

     To describe the Term Structure of Interest Rates (TSIR) over the time 

horizon   T,0 , we work in a discrete time setting and assume throughout the 

time unit is chosen such that all payments are made at times an integer multiple of 

the time unit. For Tk ,...,1 , let kR  be the random rate of return over the period  

 kk ,1 , and let    kRRE kk /...ln 1  be the one-periodic instantaneous 

expected rate of return over the period  k,0 . In this notation 1)exp(  kki    

is the one-periodic spot rate over the period   k,0  and )exp( kk kd    is the 

discount factor used to calculate the present value of financial quantities to be paid 

at time k . The TSIR is assumed to be described by the vector ),...,( 1 T  , 

which is considered as an equivalent of the yield curve as given on the market 

place of fixed income securities. 

     Arbitrary shifts    of the TSIR can occur in the direction  

0),...,( 1  T  with a magnitude of , a real number. To normalize direction 

vectors one uses the standard Euclidean norm 


T

j
j

1

22  . We assume that  

T2  is the norm of a classical parallel shift )1,...,1( . Further, it is always 

assumed that the yield vector changes from   to  *  immediately 

after time 0, and remains at this level throughout the period. The meaning and 
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practical use of this assumption is explained in Reitano [18], section II.B.  

     Given a fixed stream  kP  of positive payments, where kP  is to be paid at 

time k , its price or present value is described by the multivariate function 

.)exp()(
1

 


T

k
kk kPP       (2.1) 

One is interested in the price )( *P  whenever   changes to  * . A 

second order multivariate Taylor expansion describes the price adjustments to be 

made as follows: 

.)()(1)()( 2
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In this approximation )(PD j  and )(PC jk  are partial durations and partial 

convexities, which are first and second order sensitivity measures to a price 

change due to a shift in the TSIR. In a general context and provided 0)( P   

they are defined by the partial derivatives 
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Under the assumption (2.1) one has 
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Besides these partial sensitivity measures, one considers also directional measures, 

namely notions of directional duration and directional convexity derived from the 

first and second order directional derivatives of )(P  in the direction of  : 
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where )(),( PCPD  denote a total duration vector, respectively a total convexity 

matrix. In this multivariate pricing model, the classical model of Redington with 



Werner Hürlimann 5 

parallel yield curve shifts and flat yield curve is recovered as the special case  

)1,...,1(  and ),...,(   . In this case the directional measures specialize to 

the more traditional measures of (modified) duration and convexity: 

.
)(
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Under the assumption (2.1), the directional duration and convexity measures have 

the following probabilistic interpretation, which will be used later on. Consider the 

discrete random variable X  defined by 

.,...,1,
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)exp(
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Then one has 

   2)(,)(  XEPCXEPD  .     (2.8) 

Furthermore, the variance of X  defines a notion of directional dispersion 

defined by 

  22 )()()( PDPCXVarPM   .    (2.9) 

 

 

3  A Multivariate Version of Redington’s Immunization 

Theorem  

In Montrucchio and Peccati [12], Proposition 8, a rigorous Redington 

immunization theorem has been formulated and proved. To immunize a portfolio 

of fixed assets and liabilities against interest rate fluctuations in the case of 

parallel shifts of the TSIR, it suffices, first, to equate the duration of the assets to 

the duration of the liabilities, second, to require more dispersion for the assets than 

for the liabilities and, third, to restrict the amplitude of the interest rate shock to a 

well-defined small number. In this communication we show that this result is a 

special case of a rigorous Redington directional immunization theorem valid for 
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shifts of the TSIR in a given fixed direction. As a consequence, the immunization 

of a portfolio of fixed assets and liabilities against arbitrary shifts of the TSIR is 

only possible through an exact matching strategy. 

     Given is a fixed-income portfolio consisting of a stream  kL  of liability 

payments to be paid at future times Tk ,...,1 . The liabilities are funded by a 

stream  kA  of asset cash flows, where the cash inflow kA  occurs at time k . 

The time ranges of the two payment streams are denoted by  

 AA nm ,    an   LL nm , , 

where 

              min : 0 ,A km k A      max : 0 ,A kn k A   

             min : 0 ,L km k L       0:max  kL Lkn .  

Suppose that the current TSIR is described by a function  Ttt ,0),(  , that 

represents an instantaneous rate of return or force of interest. A change in the 

TSIR occurs always immediately after time 0 through an interest rate shock 

function  Ttt ,0),(  , such that  )(t   changes to  )()( tt   . The link with 

the vectors     and      of section 2 is given by difference operators: 

     .1,,)(,)1()( 1   kktktkkkt kkkk   (3.1) 

For example, a classical parallel shift  )1,...,1(   has a constant shock 

function  )(t . In the multivariate framework, we assume that  )(),( tt    

are of the form (3.1). The prices of the individual asset and liability payments with 

respect to the yield curve vector     are denoted 

TjkjLkAaa jjjjkkkk ,...,1,),exp()(),exp()(    . (3.2) 

The total prices are denoted by 
k

kaAA )( , 
j

jaLL )( . We assume 

that the equivalence principle holds. That is the stream of liability payments is 

fully funded at time 0, and its price is given by 

)()()(  LAPP  .     (3.3) 
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The discount factor shock function of an interest rate shock    of magnitude 

  in direction 0  is denoted by 

.)(exp)(
0 









t

duutf       (3.4) 

If  1,...,0,10,  Tkuukt , then one has using (3.1) 

  .)(exp)( kk kukukf   .   (3.5) 

In the special case of parallel shifts, we write simply )(tf  instead of )(tf , and 

 Ttttf ,0),exp()(   .     (3.6) 

The present value of the portfolio as function of the yield curve vector   is 

denoted )(G . By assumption (3.3) one has 0)()()(   LAG . Whenever 

the TSIR changes from  to   , one has 
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To immunize the portfolio in direction   (notion of directional immunization), 

one requires the condition 0)(  G . 

     Let us state and prove the following main result, which is a direct 

generalization of Proposition 8 in Montrucchio and Peccati [12]. 

 

Theorem 3.1 Necessary conditions to achieve immunization in direction   for 

small shocks    of magnitude   are 

)()( LDAD          (directional duration principle),  (3.8) 

)()( 22 LMAM         (directional dispersion principle).  (3.9) 

Furthermore, if the magnitude     of the shock belongs to the interval 
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then the conditions (3.8) and (3.9) are also sufficient to achieve directional 

immunization. 
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Proof. We observe that the proof of Montrucchio and Peccati [12] carries over 

without difficulty. In fact, it suffices to work with discrete random variables of the 

kind defined in (2.7), and to consider the last relation in (3.7), which depends 

directly on the function )exp()( ttf    used in that proof. For convenience, 

we provide the main steps. 

     Given two real numbers   and   on an interval I , one says that a 

function f(t) is  -convex on I , respectively convex-   on I , if 2
2
1)( ttf  , 

respectively 2
2
1)( ttf  , is convex on I , respectively concave on I . First of 

all, one sees that )exp()( ttf    is A -convex and convex- A  on the 

interval   AA nm , , and )(tf  is also L -convex and convex- L  on  LL nm , . 

Appropriate values of A , L , A , L  are as follows: if 0    

    
    ,exp,:)(''sup

,exp,:)(''inf
2
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mnmttf

nnmttf








   (3.11) 

and, if 0  

   .exp,exp 22
AAAA nm      (3.12) 

Similar values are obtained for L  and L . Consider now discrete random 

variables X  and Y   defined as in (2.7) by 
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From Jensen's inequality and the above convexity properties one obtains the 

following two sets of inequalities : 
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Subtracting these inequalities in pairs using the probabilistic relations (2.8), (2.9) 

as well as (3.3) and (3.7), one obtains the bounds 
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from which one deduces the necessary condition for directional immunization 

 ,)()(
2

1
))(())(( 22 AMLMLDfADf AL      (3.17) 

and the sufficient condition 

 .)()(
2

1
))(())(( 22 AMLMLDfADf AL      (3.18) 

In case 0  the necessary condition (3.17) can be rewritten as 

     .)()exp()()exp(
2

1
)(exp)(exp 2222 AMmLMnLDAD AL     

Dividing by   and taking the limit as   goes to 0+, one obtains 

0)()(  ADLD  . 

A similar argument for 0  shows that  

0)()(  ADLD  . 

Therefore the directional duration principle (3.8) holds. Now the necessary 

condition reads 

   ).()exp()()exp( 2222 AMmLMn AL     

Dividing by 2  and taking the limit as   goes to 0, one obtains the directional 

dispersion principle (3.9). Consider now the sufficient condition (3.18). If 0   

one has 

   ).()exp()()exp( 22 AMnLMm AL     

Taking logarithms one obtains the upper bound of the interval (3.10). The 

inequality 0 LA mn  follows from the directional duration principle (3.8). 

Through similar calculation for 0  we obtain the lower bound in (3.10).    
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4  Conclusion 

To conclude this communication, a few remarks are in order. The necessary 

conditions (3.8) and (3.9) imply "local immunization of the surplus at all times  

0k   in the direction of   on the yield curve vector  " in the sense of 

Reitano [18], section II.B. This directional Redington immunization result is a 

particular case of Proposition 3 in Reitano [18], section IV, and is equivalent to 

the necessary part of the above Theorem. Passing to a non-directional 

immunization model, that is immunization against all possible shift directions 

from  , leads necessarily to exact matching programs in the context of 

asset/liability management with fixed-income portfolios. Indeed the validity of the 

directional duration principle )()( LDAD    for all 0  implies equality for 

all partial durations: TjLDAD jj ,...,1),()(  . Using formula (2.4) this means 

that TjLA jj ,...,1,  , which is exact matching. Finally, note that algorithms 

for exact matching are for example found in the book by Elton and Gruber [5], 

chap. 19, appendix B, as well as in the paper by Kocherlakota, Rosenbloom and 

Shiu [11]. 
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