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Abstract 

The analysis of time varying correlation between stock prices and exchange rates in the 

context of international investments has been well researched in the literature in last few 

years. In this paper we study the interdependence of US dollar exchange rates expressed in 

euro (EUR) and three major stock prices (Nikkei225, SSE and MSCI). Focusing on 

different phases of the Global financial crisis (GFC) and the Euro zone Sovereign Debt 

Crisis (ESDC), we adopt a multivariate asymmetric dynamic conditional correlation 

EGARCH framework and the DCC model into a multivariate fractionally integrated 

APARCH framework (FIAPARCH-DCC), during the period spanning from January 1, 

2000 until December 10, 2013. The empirical results suggest asymmetric responses in 

correlations among the three stock prices and exchange rate, a high persistence of the 

conditional correlation (the volatility displays a highly persistent fashion) and the dynamic 

correlations revolve around a constant level and the dynamic process appears to be mean 

reverting. 

Moreover, the results indicate an increase and a decrease of exchange rates and stock prices 

correlations during the crisis periods, suggesting the different vulnerability of the currencies. 

Finally, we find some significant decreases and increase in the estimated dynamic 

correlations, indicating existence of a “currency contagion effect” during turmoil periods. 
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1  Introduction  

Unlike past crises, such as the 1997 Asian financial crisis, the 1998 Russian crisis and the 

1999  Brazilian crisis, the recent 2007-2009 global financial crisis originated from the 

largest and most  influential economy, the US market, and was spreading over the other 

countries’ financial markets  worldwide. Global financial crisis resulted in sharp declines 

in asset prices, stock and foreign  exchange markets, and skyrocketing of risk premiums 

on interbank loans. It also disrupted country's  financial system and threatened real 

economy with huge contractions. 

In the economic theory, interaction between foreign exchange market and stock market is 

analysed through two theoretical approaches: the “stock oriented” approach (e.g. Branson, 

1983; Frankel, 1983) and the “flow oriented” approach (e.g. Dornbush and Fisher, 1980). 

In the first approach, the foreign exchange rate is determined by the demand and supply of 

financial assets such as equities and bonds. In the second approach, the exchange rate is 

determined by a country’s current account balance or trade balance. Flow oriented models 

provides a positive interaction between stock price and foreign exchange rate. 

In the literature, a positive relationship between the stock prices and exchange rate may 

result from a real interest rate disturbance as the real interest rises, the exchange rate falls 

and the capital inflow increases (Wu, 2001). 

On the other hand the theory of arbitrage suggests that a higher real interest rate causes the 

stock prices to fall and decrease the present value of the firms’ future cash-flows .Changes 

in the exchange rate affects the international competitiveness of countries where exports 

are strong and fluctuations in foreign exchange rates can lead to substantial changes in the 

relative performance of equity portfolios, when expressed in a common currency 

(Malliaropulos, 1998). 

Number of studies that attempt to examine the effect on stock prices of exchange rates, 

however, the findings are not uniform (Ibrahim, 2000). Some studies give evidence of 

negative effects on exchange rates on stock markets (Soenen and Henningar, 1988), while 

others found positive effects (Aggarwal, 1981). Other studies contribute this results and 

find that the exchange rate changes have no significant impact on the stock market (Solnik, 

1984). Thus, the existing literature provides mixed results when analysing the relationship 

between stock prices and exchange rate. 

In the financial econometrics literature, it has been well documented that stock market 

volatility and exchange rate increases more after a negative shock than after a positive shock 

of the same size. This asymmetry in stock market and exchange rate volatility has been 

extensively examined within univariate GARCH models (see Engle and Ng (1993)). 

The empirical evidence on the stock price – exchange rate relationships has been document 

by numerous studies. For example, Yang and Doong (2004) find that stock market 

movements have a significant effect on future exchange rate changes for the G7 countries 

over the period 1979-1999. Pan et al. (2007) use a VAR approach to analyze the interaction 

between stock markets and exchange markets for seven East Asian countries, and provide 

evidence of a significant bidirectional relationship between these markets before the Asian 

financial crisis. More recently, Chkili et al. (2011) use a Markov-Switching EGARCH 

model to analyze the dynamic relationships between exchange rates and stock returns in 

four emerging countries (Singapore, Hong Kong, Mexico and Malaysia) during both 

normal and turbulent periods. They provide evidence of regime dependent links and 

asymmetric responses of stock market volatility to shocks affecting foreign exchange 

market. 
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Our research employ a Markov-Switching EGARCH model to investigate the dynamic 

linkage between stock price volatility and exchange rate changes for four emerging 

countries over the period 1994–2009 (Chkili et al. (2011). Results distinguish between two 

different regimes in both the conditional variance and conditional mean of stock returns. 

Our results provide that foreign exchange rate changes have a significant impact on the 

probability of transition across regimes. 

To examine the impact on stock prices of exchange rates, we employed cross-correlation 

function approach (see Inagaki, 2007), vector autoregressive model and Granger causality 

tests (see Nikkinen et al., 2006), copulas with and without regime-switching (see Patton, 

2006; Boero et al., 2011), nonparametric approaches (see Rodriquez, 2007; Kenourgios et 

al., 2011) and multivariate GARCH processes (see Perez-Rodriguez, 2006; Kitamura, 2010; 

Dimitriou and Kenourgios, 2013; Tamakoshi and Hamori, 2014). However, most of these 

previous studies do not address how the interdependence between stock prices and 

exchange rates was affected by the recent global financial and European sovereign debt 

crises. The main objective of this work is to explore the asymmetric dynamics in the 

correlations among exchange rates and stock prices, as this remains under explored in 

empirical research. 

This paper focuses on the impact of the US dollar exchange rates expressed in (EUR) to 

three stock markets namely NIKKEI225, SSE and MSCI. Specifically, we empirically 

investigate the asymmetric effect of daily US dollar exchange rate, namely (EUR) about 

the major stock market returns from January 01, 2000 until December 10, 2013. We use a 

FIAPARCH model into an univariate fractionally integrated APARCH framework and the 

multivariate asymmetric DCC (A-DCC) model put forward by Cappiello et al. (2006) to 

investigate the asymmetric behavior of dynamic correlations among exchange rate and 

stock prices. 

The flexibility feature represents the key advantage of the FIAPARCH model of Tse (1998) 

since it includes a large number of alternative GARCH specifications. Specifically, it 

increases the flexibility of the conditional variance specification by allowing an asymmetric 

response of volatility to positive and negative shocks and long-range volatility dependence. 

In addition, it allows the data to determine the power of returns for which the predictable 

structure in the volatility pattern is the strongest (see Conrad et al., 2011). Although many 

studies use various multivariate GARCH models in order to estimate DCCs among markets 

during financial crises (see Chiang et al., 2007; Celic, 2012; Kenourgios et al., 2011), the 

forecasting superiority of FIAPARCH on other GARCH models is supported by Conrad et 

al. (2011), Chkili et al. (2012) and Dimitriou and Kenourgios (2013). The A-DCC model 

allows for conditional asymmetries in covariance and correlation dynamics, thereby 

enabling to examine the presence of asymmetric responses in correlations during periods 

of negative shocks. Finally, we evaluate how the global financial and European sovereign 

debt crises influenced the estimated DCCs among the foreign exchange rate and stock 

markets. 

The layout of the present study is as follows. Section 2 presents the empirical methodology. 

Section 3 provides the data and a preliminary analysis. The empirical results are displayed, 

analyzed and discussed in section 4. In section 5, we analyzethe DCC behavior during 

different phases of the global financial and European sovereign debt crises, while section 6 

reports the concluding remarks. 
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2  Econometric Methodology 

2.1. Univariate FIAPARCH Model 

The AR(1) process represents one of the most common models to describe a time series 𝑟𝑡 

of stock returns and foreign exchange rate. Its formulation is given as 

(1 − 𝜉𝐿)𝑟𝑡 = 𝑐 + 𝜀𝑡 ,   𝑡 ∈ ℕ                                             (1) 

with 

𝜀𝑡 = 𝑧𝑡√ℎ𝑡                                                           (2) 

where |𝑐| ∈ [0, +∞[, |𝜉| < 1 and {𝑧𝑡} are independently and identically distributed 

(𝑖. 𝑖. 𝑑. ) random variables with 𝐸(𝑧𝑡) = 0. The variance ℎ𝑡 is positive with probability 

equal to unity and is a measurable function of Σ𝑡−1, which is the 𝜎 −algebra generated 

by {𝑟𝑡−1, 𝑟𝑡−2, … }. Therefore, ℎ𝑡 denotes the conditional variance of the returns {𝑟𝑡}, 

that is: 

 

𝐸[𝑟𝑡/Σ𝑡−1] = 𝑐 + 𝜉𝑟𝑡−1                                                 (3) 

𝑉𝑎𝑟[𝑟𝑡/Σ𝑡−1] = ℎ𝑡                                                     (4) 

Tse (1998) uses a FIAPARCH(1,d,1) model in order to examine the conditional 

heteroskedasticity of the yen-dollar exchange rate. Its specification is given as 

 

(1 − 𝛽𝐿)(ℎ𝑡
𝛿/2

− 𝜔) = [(1 − 𝛽𝐿) − (1 − 𝜙𝐿)(1 − 𝐿)𝑑](1 + 𝛾𝑠𝑡)|𝜀𝑡|𝛿        (5) 

where 𝜔 ∈ [0, ∞[ , |𝛽| < 1 , |𝜙| < 1 , 0 ≤ 𝑑 ≤ 1 , 𝑠𝑡 = 1  if 𝜀𝑡 < 0  and  

otherwise, (1 − 𝐿)𝑑 is the financial differencing operator in terms of a hypergeometric 

function (see Conrad et al., 2011), 𝛾 is the leverage coefficient, and 𝛿 is the power term 

parameter (a Box-Cox transformation) that takes (finite) positive values. A sufficient 

condition for the conditional variance ℎ𝑡 to be positive almost surely for all 𝑡 is that 𝛾 >
−1 and the parameter combination (𝜙, 𝑑, 𝛽) satisfies the inequality constraints provided 

in Conrad and Haag (2006) and Conrad (2010).When 𝛾 > 0, negative shocks have more 

impact on volatility than positive shocks. 

The advantage of this class of models is its flexibility since it includes a large number of 

alternative GARCH specifications. When 𝑑 = 0, the process in Eq. (5) reduces to the 

APARCH(1,1) one of Ding et al. (1993), which nests two major classes of ARCH models. 

In particular, a Taylor/Schwert type of formulation (Taylor, 1986; Schwert, 1990)is 

specified when 𝛿 = 1, and a Bollerslev(1986) type is specified when 𝛿 = 2.When 𝛾 =
0and 𝛿 = 2, the process in Eq. (5) reduces to the 𝐹𝐼𝐺𝐴𝑅𝐶𝐻(1, 𝑑, 1) specification (see 

Baillie et al., 1996; Bollerslev and Mikkelsen, 1996) which includes Bollerslev's (1986) 

GARCH model (when 𝑑 = 0) and the IGARCH specification (when 𝑑 = 1) as special 

cases. 

 

2.2. Multivariate FIAPARCH Model with Dynamic Conditional Correlations 

In what follow, we introduce the multivariate FIAPARCH process (M-FIAPARCH) taking 

into account the dynamic conditional correlation (DCC) hypothesis (see Dimitriou et al., 

2013) advanced by Engle (2002). This approach generalizes the Multivariate Constant 
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Conditional Correlation (CCC) FIAPARCH model of Conrad et al. (2011). The 

multivariate DCC model of Engle (2002) and Tse and Tsui (2002) involves two stages to 

estimate the conditional covariance matrix 𝐻𝑡 . In the first stage, we fit a univariate 

FIAPARCH (1,d,1) model in order to obtain the estimations of √ℎ𝑖𝑖𝑡. The daily stock 

returns and exchange rate are assumed to be generated by a multivariate AR (1) process of 

the following form: 

 

𝑍(𝐿)𝑟𝑡 = 𝜇0 + 𝜀𝑡                                                      (6) 

 

where 

 

- 𝜇0 = [𝜇0,𝑖]𝑖=1,…,𝑛: the 𝑁 −dimensional column vector of constants; 

- |𝜇0,𝑖| ∈ [0, ∞[; 

- 𝑍(𝐿) = 𝑑𝑖𝑎𝑔{𝜓(𝐿)}: an 𝑁 × 𝑁 diagonal matrix ; 

- 𝜓(𝐿) = [1 − 𝜓𝑖𝐿]𝑖=1,…,𝑛 ; 

- |𝜓𝑖| < 1 ; 
- 𝑟𝑡 = [𝑟𝑖,𝑡]𝑖=1,…,𝑁: the 𝑁 −dimensional column vector of returns; 

- 𝜀𝑡 = [𝜀𝑖,𝑡]𝑖=1,…,𝑁: the𝑁 −dimensional column vector of residuals. 

 

The residual vector is given by 

 

𝜀𝑡 = 𝑧𝑡⨀ℎ𝑡
⋀1/2

                                                        (7) 

 

where 

 

- : the Hadamard product; 

- : the elementwise exponentiation. 

 

ℎ𝑡 = [ℎ𝑖𝑡]𝑖=1,…,𝑁 is Σ𝑡−1  measurable and the stochastic vector 𝑧𝑡 = [𝑧𝑖𝑡]𝑖=1,…,𝑁  is 

independent and identically distributed with mean zero and positive definite covariance 

matrix 𝜌 = [𝜌𝑖𝑗𝑡]𝑖,𝑗=1,…,𝑁  with 𝜌𝑖𝑗 = 1  for 𝑖 = 𝑗 .Note that 𝐸(𝜀𝑡/ℱ𝑡−1) = 0 and 

𝐻𝑡 = 𝐸(𝜀𝑡𝜀𝑡
′/ℱ𝑡−1) = 𝑑𝑖𝑎𝑔(ℎ𝑡

⋀1/2
) 𝜌 𝑑𝑖𝑎𝑔(ℎ𝑡

⋀1/2
) . ℎ𝑡 is the vector of conditional 

variances and 𝜌𝑖,𝑗,𝑡 = ℎ𝑖,𝑗,𝑡/√ℎ𝑖,𝑡ℎ𝑗,𝑡∀ 𝑖, 𝑗 = 1, … , 𝑁  are the dynamic conditional 

correlations. 

The multivariate FIAPARCH(1,d,1) is given by 

 

𝐵(𝐿)(ℎ𝑡
⋀𝛿/2

− 𝜔) = [𝐵(𝐿) − Δ(𝐿)Φ(𝐿)][Ι𝑁 + Γ𝑡]|𝜀𝑡|⋀𝛿                    (8) 

 

where|𝜀𝑡| is the vector 𝜀𝑡 with elements stripped of negative values. 

 

Besides, 𝐵(𝐿) = 𝑑𝑖𝑎𝑔{𝛽(𝐿)}  with 𝛽(𝐿) = [1 − 𝛽𝑖𝐿]𝑖=1,…,𝑁 and |𝛽𝑖| < 1 . 

Moreover, Φ(𝐿) = 𝑑𝑖𝑎𝑔{𝜙(𝐿)}  with 𝜙(𝐿) = [1 − 𝜙𝑖𝐿]𝑖=1,…,𝑁 and |𝜙𝑖| < 1 . In 

addition, 𝜔 = [𝜔𝑖]𝑖=1,…,𝑁  with 𝜔𝑖 ∈ [0, ∞[ and Δ(𝐿) = 𝑑𝑖𝑎𝑔{𝑑(𝐿)}with 𝑑(𝐿) =
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[(1 − 𝐿)𝑑𝑖]𝑖=1,…,𝑁  ∀ 0 ≤ 𝑑𝑖 ≤ 1 . Finally, Γ𝑡 = 𝑑𝑖𝑎𝑔{𝛾⨀𝑠𝑡}  with 𝛾 = [𝛾𝑖]𝑖=1,…,𝑁 

and 𝑠𝑡 = [𝑠𝑖𝑡]𝑖=1,…,𝑁 where 𝑠𝑖𝑡 = 1 if 𝜀𝑖𝑡 < 0 and 0 otherwise. 

 

In the second stage, we estimate the conditional correlation using the transformed stock 

return residuals and exchange returns residuals, which are estimated by their standard 

deviations from the first stage. The multivariate conditional variance is specified as follows: 

 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                          (9) 

where  𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ11𝑡
1/2

, … , ℎ𝑁𝑁𝑡
1/2

)  denotes the conditional variance derived from the 

univariate AR(1)-FIAPARCH(1,d,1) model and 𝑅𝑡 = (1 − 𝜃1 − 𝜃2)𝑅 + 𝜃1𝜓𝑡−1 +
𝜃2𝑅𝑡−1 is the conditional correlation matrix3. 

In addition, 𝜃1 and 𝜃2 are the non-negative parameters satisfying (𝜃1 + 𝜃2) < 1, 

𝑅 = {𝜌𝑖𝑗} is a time-invariant symmetric 𝑁 × 𝑁 positive definite parameter matrix with 

𝜌𝑖𝑖 = 1 and 𝜓𝑡−1  is the 𝑁 × 𝑁  correlation matrix of 𝜀𝜏  for 𝜏 = 𝑡 − 𝑀, 𝑡 − 𝑀 +
1, … , 𝑡 − 1. The 𝑖, 𝑗 − 𝑡ℎ element of the matrix 𝜓𝑡−1 is given as follows: 

 

𝜓𝑖𝑗,𝑡−1 =
∑ 𝑧𝑖,𝑡−𝑚𝑧𝑗,𝑡−𝑚

𝑀
𝑚=1

√(∑ 𝑧𝑖,𝑡−𝑚
2𝑀

𝑚=1 )(∑ 𝑧𝑗,𝑡−𝑚
2𝑀

𝑚=1 )

,      1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁                     (10) 

where𝑧𝑖𝑡 = 𝜀𝑖𝑡/√ℎ𝑖𝑖𝑡 is the transformed stock return and foreign exchange rate returns 

residuals by their estimated standard deviations taken from the univariate AR(1)-

FIAPARCH(1,d,1) model. 

The matrix 𝜓𝑡−1 could be expressed as follows: 

 

𝜓𝑡−1 = 𝐵𝑡−1
−1 𝐿𝑡−1𝐿𝑡−1

′ 𝐵𝑡−1
−1                                              (11) 

 

Where 𝐵𝑡−1  is a 𝑁 × 𝑁  diagonal matrix with 𝑖 − 𝑡ℎ  diagonal element given by 

(∑ 𝑧𝑖,𝑡−𝑚
2𝑀

𝑚=1 )  and 𝐿𝑡−1 = (𝑧𝑡−1, … , 𝑧𝑡−𝑀)  is a 𝑁 × 𝑁  matrix, with 𝑧𝑡 =

(𝑧1𝑡 , … , 𝑧𝑁𝑡)′. 

 

To ensure the positivity of 𝜓𝑡−1 and therefore of 𝑅𝑡, a necessary condition is that 𝑀 ≤
𝑁. Then, 𝑅𝑡  itself is a correlation matrix if 𝑅𝑡−1 is also a correlation matrix. The 

correlation coefficient in a bivariate case is given as: 

 

𝜌12,𝑡 = (1 − 𝜃1 − 𝜃2)𝜌12 + 𝜃2𝜌12,𝑡 + 𝜃1
∑ 𝑧1,𝑡−𝑚𝑧2,𝑡−𝑚

𝑀
𝑚=1

√(∑ 𝑧1,𝑡−𝑚
2𝑀

𝑚=1 )(∑ 𝑧2,𝑡−𝑚
2𝑀

𝑚=1 )
          (12) 

                                                 

3Engle (2002) derives a different form of DCC model. The evolution of the correlation in DCC is 

given by: 𝑄𝑡 = (1 − 𝛼 − 𝛽)�̅� + 𝛼𝑧𝑡−1 + 𝛽𝑄𝑡−1 , where 𝑄 = (𝑞𝑖𝑗𝑡) is the 𝑁 × 𝑁 time-varying covariance 

matrix of 𝑧𝑡, �̅� = 𝐸[𝑧𝑡𝑧𝑡
′] denotes the 𝑛 × 𝑛 unconditional variance matrix of 𝑧𝑡, while 𝛼 and 𝛽 are 

nonnegative parameters satisfying (𝛼 + 𝛽) < 1 . Since 𝑄𝑡  does not generally have units on the 

diagonal, the conditional correlation matrix 𝑅𝑡  is derived by scaling 𝑄𝑡  as follows: 𝑅𝑡 =

(𝑑𝑖𝑎𝑔(𝑄𝑡))−1/2𝑄𝑡(𝑑𝑖𝑎𝑔(𝑄𝑡))−1/2. 
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2.3 A-DCC-EGARCH Model 

To investigate the dynamics of the correlations between European exchange rate expressed 

in US dollar (USD) and three stock prices namely NIKKEI225, SSE and MSCI, we use the 

asymmetric generalized dynamic conditional correlation (AG-DCC) model developed by 

Cappiello et al. (2006). This approach generalizes the DCC model of Engle (2002) by 

introducing two modifications: asset-specific correlation evolution parameters and 

conditional asymmetries in correlation dynamics. In this paper, we adopt the following 

three step approach (see also Kenourgios et al., 2011; Toyoshima et al., 2012; Samitas and 

Tsakalos, 2013; Toyoshima and Hamori, 2013). In the first step,  we estimate the 

conditional variances of exchange rate returns and stock market returns using an 

autoregressive- asymmetric exponential generalized autoregressive conditional 

heteroscedasticity (𝐴𝑅(𝑚) − 𝐸𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞)) model4. For a more detailed analysis, we 

use the following equations: 

 

𝑟𝑡 = 𝜇0 + ∑ 𝜇𝑖𝑟𝑡−𝑖 + 𝜀𝑡
𝑚
𝑖=1                                              (13) 

 

𝑙𝑛(ℎ𝑡) = 𝜔 + ∑ [𝛼𝑖|𝑧𝑡−𝑖| + 𝛾𝑖𝑧𝑡−𝑖]
𝑞
𝑖=1 + ∑ 𝛽𝑖𝑙𝑛 (ℎ𝑡−𝑖)

𝑝
𝑖=1                   (14) 

 

where𝑟𝑡 indicates exchange rate and stock market returns, 𝜀𝑡 is the error term, ℎ𝑡 is the 

conditional volatility, and 𝑧𝑡 = 𝜀𝑡/√ℎ𝑡 is the standardized residual. 

 

The EGARCH model has several advantages over the pure GARCH specification. First, 

since 𝑙𝑛 (ℎ𝑡) is modelled, then even if the parameters are negative, ℎ𝑡will be positive. 

Thus, there is no need to artificially impose non-negativity constraints on the model 

parameters. Second, asymmetries are allowed for under the EGARCH formulation, since if 

the relationship between volatility and returns is negative, 𝛾𝑖 will be negative. Note that a 

negative value of 𝛾𝑖 means that negative residuals tend to produce higher variances in the 

immediate future. 

Furthermore, we assume that the random variable 𝑧𝑡  has a student distribution (see 

Bollerslev, 1987) with 𝜐 > 2 degrees of freedom with a density given by: 

 

𝐷(𝑧𝑡 , 𝜐) =
Γ(𝜐+

1

2
)

Γ(
𝜐

2
)√𝜋(𝜐−2)

(1 +
𝑧𝑡

2

𝜐−2
)

1

2
−𝜐

                                     (15) 

 

whereΓ(𝜐) is the gamma function and 𝜐 is the parameter that describes the thickness of 

the distribution tails. The Student distribution is symmetric around zero and, for 𝑣 > 4, 

the conditional kurtosis equals 3(𝑣 − 2)/(𝑣 − 4), which exceeds the normal value of 

three. For large values of 𝑣, its density converges to that of the standard normal. 

The log form of the EGARCH(p,q) model ensures the positivity of the conditional variance, 

without the need to constrain the parameters of the model. The term 𝑧𝑡−𝑖 indicates the 

asymmetric effect of positive and negative shocks. If 𝛾𝑖 > 0, then 𝑧𝑡−𝑖 = 𝜀𝑡−𝑖/𝜎𝑡−𝑖 is 

                                                 

4See Nelson (1991). 
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positive. The term ∑ 𝛽𝑖
𝑝
𝑖=1  measures the persistence of shocks to the conditional variance. 

The conditional mean equation (Eq. 13) is specified as an autoregressive process of order 

𝑚. The optimal lag length 𝑚 for each exchange return series is given by the Schwartz-

Bayesian Information Criterion (SBIC). Eq. (14) represents the conditional variance and is 

specified as and EGARCH(p,q) process. The optimal lag lengths 𝑝 and 𝑞 are determined 

by employing the SBIC criterion. From Eq. 14, we first obtain the conditional volatilities 

and then recover the conditional correlations. The conditional covariance matrix is then 

defined as follows: 

 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                         (16) 

where the diagonal matrix 𝐷𝑡 is the conditional standard deviation obtained from Eq. (14). 

The matrix of the standardized residuals 𝑍𝑡  is used to estimate the parameters of the 

asymmetric dynamic conditional correlation (A-DCC) model developed by Cappiello et al. 

(2006). The AG-DCC model is given as 

 

𝑄𝑡 = (�̅� − 𝐴′�̅�𝐴 − 𝐵′�̅�𝐵 − 𝐺′�̅�𝐺) + 𝐴′𝑍𝑡−1𝑍𝑡−1
′ 𝐴 + 𝐵′𝑄𝑡−1𝐵 + 𝐺′𝜂𝑡−1𝜂𝑡−1

′ 𝐺    (17) 

 

where�̅�  and 𝑁 = 𝐸(𝜂𝑡𝜂𝑡
′) are the unconditional correlation matrices of 𝑍𝑡  and 𝜂𝑡 . 

𝜂𝑡 = 𝐼[𝑍𝑡 < 0] ∘ 𝑍𝑡. 𝐼[. ]is an indicator function such that 𝐼 = 1 if  𝑍𝑡 < 0 and 𝐼 =
0 if  𝑍𝑡 ≥ 0, while " ∘ " is the Hadamard product. 

The A-DCC(1,1) model is identified as a special case of the AG-DCC(1,1) model if the 

matrices 𝐴, 𝐵 and 𝐺 are replaced by the scalars 𝑎1,  𝑏1 and 𝑔1. Cappiello et al. (2006) 

show that 𝑄𝑡  is positive definite with a probability of one if (�̅� − 𝐴′�̅�𝐴 − 𝐵′�̅�𝐵 −
𝐺′�̅�𝐺) is positive definite. The next step consists in computing the correlation matrix 𝑅𝑡 

from the following equation: 

 

𝑅𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1                                                     (18) 

 

where𝑄𝑡
∗ = √𝑞𝑖𝑖,𝑡 is a diagonal matrix with a square root of the 𝑖𝑡ℎ diagonal element of 

𝑄𝑡 on its 𝑖𝑡ℎ diagonal position. 

 

 

3  Data and Preliminary Analyses 

The data comprises daily American exchange rate expressed in euro (EUR) of the European 

foreign currencies and daily stock prices namely, NIKKEI225, SSE and MSCI. All data are 

sourced from the Board of Governors of the Federal Reserve System and (http// 

www.econstats.com). The sample covers a period from January 01, 2000 until December 

10, 2013, leading to a sample size of 3639 observations. For each currency and stock prices, 

the continuously compounded return is computed as: 𝑟𝑡 = 100 ∗ ln (
𝑝𝑡

𝑝𝑡−1
) for t = 1, 2, … 

T, where 𝑝𝑡 is the price on day t.  

Summary statistics for the exchange rate and stock market returns are displayed in Table 1 

(Panel A). From these tables, SSE is the most volatile, as measured by the standard 

deviation of 1.5456%, while USDEUR is the least volatile with a standard deviation of 

0.6366%. Besides, we observe that NIKKEI225 has the highest level of excess kurtosis, 
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indicating that extreme changes tend to occur more frequently for this stock price. In 

addition, all stock index and exchange rate returns exhibit high values of excess kurtosis. 

Furthermore, the Jarque-Bera statistic rejects normality at the 1% level for all stock index 

and exchange rate. Moreover, all exchange rate and stock market return series are stationary, 

I(0), and thus suitable for long memory tests. Finally, they exhibit volatility clustering, 

revealing the presence of heteroskedasticity and strong ARCH effects. 

In order to detect long-memory process in the data, we use the log-periodogram regression 

(GPH) test of Geweke and Porter-Hudak (1983) on two proxies of volatility, namely 

squared returns and absolute returns. The test results are displayed in Table 1 (Panel D). 

Based on these tests results, we reject the null hypothesis of no long-memory for absolute 

and squared returns at 1% significance level. Subsequently, all volatilities proxies seem to 

be governed by a fractionally integrated process. Thus, FIAPARCH seem to be an 

appropriate specification to capture volatility clustering, long-range memory characteristics 

and asymmetry. 

Fig. 1 illustrates the evolution of exchange rate and stock index during the period from 

January 1, 2000 until December 10, 2013. The figure shows significant variations in the 

levels during the turmoil, especially at the time of Lehman Brothers failure (September 15, 

2008). Specifically, when the global financial crisis triggered, there was a decline for all 

currencies. Fig. 2 plots the evolution of currencies returns and stock market returns over 

time. The figure shows that all exchange rate and stock index trembled since 2008 with 

different intensity during the global financial and European sovereign debt crises. Moreover, 

the plot shows a clustering of larger return volatility around and after 2008. This means that 

foreign exchange and stock markets are characterized by volatility clustering, i.e., large 

(small) volatility tends to be followed by large (small) volatility, revealing the presence of 

heteroskedasticity. This market phenomenon has been widely recognized and successfully 

captured by ARCH/GARCH family models to adequately describe exchange rate and stock 

market returns dynamics. 
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Table 1: Summary statistics and long memory test’s results. 

  USD/EUR   NIKKEI225   SSE   MSCI 

Panel A: descriptive statistics 

Mean -8.50E-03  -0.0053  0.0135  -1.77E-05 

Maximum 3.0031  13.235  9.4008  6.5246 

Minimum -4.6208  -12.111  -9.2562  -9.936 

Std. Deviation 0.6366  1.5304  1.5456  1.4641 

Skewness -0.0781*  -0.4348***  -0.0887**  -0.241*** 

 (0.0542)  (0.0000)  (0.0287)  (0.0000) 

ExcessKurtosis 2.2977***  6.8355***  4.7723***  3.0688*** 

 (0.0000)  (0.0000)  (0.0000)  (0.0000) 

Jarque-Bera 804.2***  7199.2***  3458.0***  1463.2*** 

 (0.0000)  (0.0000)  (0.0000)  (0.0000) 

        

Panel B: Serial correlation and LM-ARCH tests 

𝐿𝐵(20) 21.8227  14.4001  44.7177***  72.6072*** 

 (0.3502)  (0.8096)  (0.0012)  (0.0000) 

𝐿𝐵2(20) 662.323***  3792.4***  695.483***  1433.72*** 

 (0.0000)  (0.0000)  (0.0000)  (0.0000) 

ARCH 1-10 23.031***  141.66***  25.233***  44.144*** 

 (0.0000)  (0.0000)  (0.0000)  (0.0000) 

Panel C: Unit Root tests 

ADF test statistic -34.9843***  -36.819***  -33.7277***  -33.1275*** 

 -1.9409  -1.9409  -1.9409  -1.9409 

Panel D: long memory tests (GPH test−𝑑 estimates) 

 

Squared returns 

        

𝑚 = 𝑇0.5 0.4106  0.2687  0.4593  0.5946 

 [0.0968]  [0.0573]  [0.0813]  [0.0900] 

𝑚 = 𝑇0.6 0.5947  0.4649  0.369  0.3955 

 [0.0732]  [0.0498]  [0.0620]  [0.0580] 

        

Absolute returns       

𝑚 = 𝑇0.5 0.4825  0.3403  0.4781  0.5623 

 [0.0747]  [0.0812]  [0.0838]  [0.1050] 

𝑚 = 𝑇0.6 0.5804  0.4487  0.37002  0.4381 

  [0.0698]  [0.0570]  [0.0568]  [0.0697] 

        

Notes:Exchange rate and Stock market returns are in daily frequency. 𝒓𝟐and|𝒓| are squared 

log return and absolute log return, respectively. 𝒎denotes the bandwith for the Geweke and 

Porter-Hudak’s (1983) test. Observations for all series in the whole sample period are 3639. 

The numbers in brackets are t-statistics and numbers in parentheses are p-values. ***, **, 

and * denote statistical significance at 1%, 5% and 10% levels, respectively. 

𝑳𝑩(𝟐𝟎) and 𝑳𝑩𝟐(𝟐𝟎)  are the 20th order Ljung-Box tests for serial correlation in the 

standardized and squared standardized residuals, respectively. 
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Figure1: Exchange rate and stock index behavior over time 

 

 
Figure2: Exchange rate and stock market returns behavior over time. 

 

 

 

 

 

usdeur 

2000 2002 2004 2006 2008 2010 2012 2014

0.8

1.0

1.2 usdeur nikkei225 

2000 2002 2004 2006 2008 2010 2012 2014

10000

15000

20000 nikkei225 

sse 

2000 2002 2004 2006 2008 2010 2012 2014

2000

3000

4000

5000

6000
sse msci 

2000 2002 2004 2006 2008 2010 2012 2014

4000

6000

8000

10000 msci 

rusdeur 

2000 2002 2004 2006 2008 2010 2012 2014

-2.5

0.0

2.5
rusdeur rnikkei225 

2000 2002 2004 2006 2008 2010 2012 2014

-10

0

10

rnikkei225 

rsse 

2000 2002 2004 2006 2008 2010 2012 2014

-5

0

5

10
rsse rmsci 

2000 2002 2004 2006 2008 2010 2012 2014

-5

0

5
rmsci 



56                                           Riadh El Abed and Samir Maktouf 

4  Empirical Results 

4.1 Tests for Sign and Size Bias 

Engle and Ng (1993) propose a set of tests for asymmetry in volatility, known as sign and 

size bias tests. The Engle and Ng tests should thus be used to determine whether an 

asymmetric model is required for a given series, or whether the symmetric GARCH model 

can be deemed adequate. In practice, the Engle-Ng tests are usually applied to the residuals 

of a GARCH fit to the returns data. 

 

Define 𝑆𝑡−1
−  as an indicator dummy variable such as: 

 

𝑆𝑡−1
− = {

1  𝑖𝑓  �̂�𝑡−1 < 0
0     otherwise

                                                (19) 

 

The test for sign bias is based on the significance or otherwise of 𝜙1 in the following 

regression: 

 

�̂�𝑡
2 = 𝜙0 + 𝜙1𝑆𝑡−1

− + 𝜈𝑡                                                (20) 

 

Where 𝜈𝑡is an independent and identically distributed error term. If positive and negative 

shocks to �̂�𝑡−1  impact differently upon the conditional variance, then 𝜙1  will be 

statistically significant. 

It could also be the case that the magnitude or size of the shock will affect whether the 

response of volatility to shocks is symmetric or not. In this case, a negative size bias test 

would be conducted, based on a regression where 𝑆𝑡−1
−  is used as a slope dummy variable. 

Negative size bias is argued to be present if 𝜙1 is statistically significant in the following 

regression: 

 

�̂�𝑡
2 = 𝜙0 + 𝜙1𝑆𝑡−1

− 𝑧𝑡−1 + 𝜈𝑡                                            (21) 

 

Finally, we define𝑆𝑡−1
+ = 1 − 𝑆𝑡−1

− , so that 𝑆𝑡−1
+ picks out the observations with positive 

innovations. Engle and Ng (1993) propose a joint test for sign and size bias based on the 

following regression: 

 

�̂�𝑡
2 = 𝜙0+𝜙1𝑆𝑡−1

− +𝜙2𝑆𝑡−1
− 𝑧𝑡−1+𝜙3𝑆𝑡−1

+ 𝑧𝑡−1 + 𝜈𝑡                         (22) 

 

Significance of 𝜙1 indicates the presence of sign bias, where positive and negative shocks 

have differing impacts upon future volatility, compared with the symmetric response 

required by the standard GARCH formulation. However, the significance of 𝜙2 or 𝜙3 

would suggest the presence of size bias, where not only the sign but the magnitude of the 

shock is important. A joint test statistic is formulated in the standard fashion by calculating 

𝑇𝑅2  from regression (22), which will asymptotically follow a𝜒2  distribution with 3 

degrees of freedom under the null hypothesis of no asymmetric effects. 
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Table 2: Tests for sign and size bias for exchange rate and stock marketreturn series. 

Variables 

USD/EUR  NIKKEI225  SSE  MSCI 

Coeff StdError Signif  Coeff StdError Signif  Coeff StdError Signif  Coeff StdError Signif 

𝜙0 1.2461*** 0.0561 0.0000  1.0623*** 0.0734 0.0000  0.9628 0.0799 0.0000  1.0703*** 0.0721 0.0000 

𝜙1 -0.240*** 0.0845 0.0044  0.0468 0.0944 0.6197  0.0572 0.1065 0.5911  0.0786 0.0940 0.4033 

𝜙2 0.1511** 0.0624 0.0154  0.0067 0.0579 0.9072  -0.0614 0.0705 0.3837  0.0352 0.0584 0.5467 

𝜙3 -0.195*** 0.0567 0.0005  -0.235*** 0.0756 0.0018  -0.0352 0.0795 0.6576  -0.2810*** 0.0748 0.0001 

𝜒2(3) 33.041*** _ 0.0000   23.0797*** _ 0.0000   37.317* _ 0.0919   31.916*** _ 0.0000 

Note: The superscripts *, ** and *** denote the level significance at 1%, 5%, and 10%, 

respectively. 

 

Table 2 reports the results of Engle-Ng tests. First, the individual regression results show 

that the residuals of the symmetric GARCH model for the NIKKEI225 and MSCI series do 

not suffer from sign bias and/or negative size bias, but they do exhibit positive size bias. 

Second, for the SSE series, the individual regression results show that the residuals of the 

symmetric GARCH model do not suffer from sign bias. Third, the individual regression 

results show that the residuals of the symmetric GARCH model for the USDEUR series 

exhibit sign bias, negative size bias and/or positive size bias. Finally, the 𝜒2(3) joint test 

statistics have p-values of 0.0000 and 0.0919, respectively, demonstrating a very rejection 

of the null of no asymmetries. The results overall would thus suggest motivation for 

estimating an asymmetric volatility model for these particular series. 

 

4.2 The univariate FIAPARCH estimates 

In order to take into account the serial correlation and the GARCH effects observed in our 

time series data, and to detect the potential long range dependence in volatility, we estimate 

the student5-t-AR(0)-FIAPARCH(1,d,1)6 model defined by Eq. (1) and Eq. (5). Table 3 

reports the estimation results of the univariate FIAPARCH(1,d,1) model for each stock 

prices exchange rate returns series of our sample. 

The estimates of the constants in the mean are statistically significant for all the series 

except for NIKKEI225 stock price. Besides, the constants in the variance are significant 

except for USDEUR and MSCI. In addition, for all currencies, the estimates of the leverage 

term (γ) are statistically significant, except for the USDEUR indicating an asymmetric 

                                                 

5The 𝑧𝑡 random variable is assumed to follow a student distribution (see Bollerslev, 1987) with 𝜐 >

2 degrees of freedom and with a density given by: 

𝐷(𝑧𝑡 , 𝜐) =
Γ(𝜐 +

1
2

)

Γ(
𝜐
2

)√𝜋(𝜐 − 2)
(1 +

𝑧𝑡
2

𝜐 − 2
)

1
2−𝜐 

where Γ(𝜐)  is the gamma function and 𝜐  is the parameter that describes the thickness of the 

distribution tails. The Student distribution is symmetric around zero and, for 𝑣 > 4, the conditional 

kurtosis equals 3(𝑣 − 2)/(𝑣 − 4), which exceeds the normal value of three. For large values of 𝑣, its 

density converges to that of the standard normal. 

For a Student-t distribution, the log-likelihood is given as: 𝐿𝑆𝑡𝑢𝑑𝑒𝑛𝑡 = 𝑇 {𝑙𝑜𝑔Γ (
𝑣+1

2
) − 𝑙𝑜𝑔Γ (

𝑣

2
) −

1

2
𝑙𝑜𝑔[𝜋(𝑣 − 2)]} −

1

2
∑ [log(ℎ𝑡) + (1 + 𝑣)𝑙𝑜𝑔 (1 +

𝑧𝑡
2

𝑣−2
)]𝑇

𝑡=1  

where𝑇 is the number of observations, 𝑣 is the degrees of freedom, 2 <  𝜐 ≤ ∞ and 𝛤(. ) is the gamma 

function. 
6 The lag orders(1, 𝑑, 1)and (0,0) for FIAPARCH and ARMA models, respectively, are selected by 

Akaike (AIC) and Schwarz (SIC) information criteria. The results are available from the author upon 

request. 
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response of volatilities to positive and negative shocks. This finding confirms the 

assumption that there is negative correlation between returns and volatility. 

Moreover, the estimates of the power term (δ) are highly significant for all currencies and 

ranging from 1.4198 to 1.9252.Conrad et al. (2011) show that when the series are very 

likely to follow a non-normal error distribution, the superiority of a squared term (δ = 2) 

is lost and other power transformations may be more appropriate. Thus, these estimates 

support the selection of FIAPARCH model for modeling conditional variance of exchange 

rate returns and stock market returns. Besides, all currencies display highly significant 

differencing fractional parameters(𝑑), indicating a high degree of persistence behavior. 

This implies that the impact of shocks on the conditional volatility of exchange rates’ 

returns and stock market consistently exhibits a hyperbolic rate of decay. In all cases, the 

estimated degrees of freedom parameter (v) is highly significant and leads to an estimate 

of the Kurtosis which is equal to 3(v − 2)/(v − 4) and is also different from three. 

 

Table 3: Univariate FIAPARCH(1,d,1) models (MLE). 
 USDEUR   NIKKEI225  SSE   MSCI  

  Coeff t-prob  Coeff t-prob  Coeff t-prob  Coeff t-prob 

Estimate            

𝑐 -0.0182** 0.0480  0.0269 0.1760  0.0291* 0.0946  0.0483*** 0.0046 

𝜔 0.0049 0.2689  0.1353*** 0.0014  0.2771*** 0.0080  0.0450 0.2037 

𝑑 0.9225*** 0.0000  0.4102*** 0.0000  0.3146*** 0.0000  0.3132*** 0.0000 

𝜙 -0.0223 0.6737  0.1116** 0.0368  -0.1097 0.3816  0.1731*** 0.0091 

𝛽 0.9461*** 0.0000  0.4919*** 0.0000  0.1428 0.3486  0.4571*** 0.0000 

𝛾 0.0136 0.8531  0.4465*** 0.0010  0.3323*** 0.0000  0.5574*** 0.0032 

𝛿 1.4198*** 0.0037  1.4582*** 0.0000  1.9252*** 0.0000  1.6832*** 0.0000 

𝑣 8.8139*** 0.0000  8.2601*** 0.0000  3.6846*** 0.0000  6.1827*** 0.0000 

Diagnostic            

𝐿𝐵(20) 12.9805 0.8782  11.7653 0.9239  53.5749*** 0.0000  45.0142*** 0.0010 

𝐿𝐵2(20) 20.5600 0.3021  31.2876** 0.0266  10.6958 0.9068  29.9101 0.3359 

Notes:For each of the five exchange rates, Table 2 reports the Maximum Likelihood 

Estimates (MLE) for the student-t-FIAPARCH(1,d,1) model. 𝑳𝑩(𝟐𝟎)and𝑳𝑩𝟐(𝟐𝟎) indicate 

the Ljung-Box tests for serial correlation in the standardized and squared standardized 

residuals, respectively. 𝒗denotes the the t-student degrees of freedom.parameter ***, ** 

and * denote statistical significance at 1%, 5% and 10% levels, respectively. 

 

In addition, all the ARCH parameters (𝜙) satisfy the set of conditions which guarantee 

the positivity of the conditional variance, except for the two series (USDEUR and SSE). 

Moreover, according to the values of the Ljung-Box tests for serial correlation in the 

standardized and squared standardized residuals, there is no statistically significant 

evidence, at the 1% level, of misspecification in almost all cases. 

Numerous studies have documented the persistence of volatility in stock and exchange rate 

returns (see Ding et al., 1993; Ding and Granger, 1996, among others). The majority of 

these studies have shown that the volatility process is well approximated by an IGARCH 

process. Nevertheless, from the FIAPARCH estimates reported in Table 3, it appears that 

the long-run dynamics are better modeled by the fractional differencing parameter. 

To test for the persistence of the conditional heteroskedasticity models, we examine the 

Likelihood Ratio (LR) statistics for the linear constraints d =  0 (APARCH(1,1) model) 

and d ≠  0 (FIAPARCH(1,d,1) model). We construct a series of LR tests in which the 
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restricted case is the APARCH(1,1) model (d = 0) of Ding et al. (1993). Let l0 be the 

log-likelihood value under the null hypothesis that the true model is APARCH(1,1) and l 

the log-likelihood value under the alternative that the true model is FIAPARCH(1,d,1). 

Then, the LR test, 2(l − l0), has a chi-squared distribution with 1 degree of freedom when 

the null hypothesis is true. 

For reasons of brevity, we omit the table with the test results, which are available from the 

author upon request. In summary, the LR tests provide a clear rejection of the APARCH(1,1) 

model against the FIAPARCH(1,d,1) one for all currencies. Thus, purely from the 

perspective of searching for a model that best describes the volatility in the exchange rate 

and stock price series, the FIAPARCH(1,d,1) model appears to be the most satisfactory 

representation. This finding is important since the time series behavior of volatility could 

affect asset prices through the risk premium (see Christensen and Nielsen, 2007; 

Christensen et al., 2010; Conrad et al., 2011). 

With the aim of checking for the robustness of the LR testing results discussed above, we 

apply the Akaike (AIC), Schwarz (SIC), Shibata (SHIC) or Hannan-Quinn (HQIC) 

information criteria to rank the ARCH type models. According to these criteria, the optimal 

specification (i.e., APARCH or FIAPARCH) for all currencies is the FIAPARCH one. The 

two common values of the power term (δ) imposed throughout much of the GARCH 

literature are δ = 2 (Bollerslev's model) and δ = 1 (the Taylor/Schwert specification). 

According to Brooks et al. (2000), the invalid imposition of a particular value for the power 

term may lead to sub-optimal modeling and forecasting performance. For that reason, we 

test whether the estimated power terms are significantly different from unity or two using 

Wald tests (results not reported). 

We find that all four estimated power coefficients are significantly different from unity. 

Furthermore, each of the power terms is significantly different from two. Hence, on the 

basis of these findings, support is found for the (asymmetric) power fractionally integrated 

model, which allows an optimal power transformation term to be estimated. The evidence 

obtained from the Wald tests is reinforced by the model ranking provided by the four model 

selection criteria (values not reported). This is a noteworthy result since He and Teräsvirta 

(1999) emphasized that if the standard Bollerlsev type of model is augmented by the 

‘heteroskedasticity’ parameter, the estimates of the ARCH and GARCH coefficients almost 

certainly change. More importantly, Karanasos and Schurer (2008) show that, in the 

univariate GARCH-in-mean level formulation, the significance of the in-mean effect is 

sensitive to the choice of the power term. 

 

4.3 The Bivariate FIAPARCH(1,d,1)-DCC Estimates 

The analysis above suggests that the FIAPARCH specification describes the conditional 

variances of the exchange rate and three stock prices well. Nevertheless, exchange rate 

market and stock market volatilities move together across assets and markets. According to 

Bauwens and Laurent (2005), Bauwens et al. (2006) and Silvennoinen and Terasvirta 

(2007), among others, recognizing this feature through a multivariate modeling structure 

could lead to obvious gains in efficiency compared to working with separate univariate 

specifications. Therefore, the multivariate FIAPARCH model seems to be essential for 

enhancing our understanding of the relationships between the (co)volatilities of economic 

and financial time series. 

In this section, within the framework of the multivariate DCC model, we analyze the 
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dynamic adjustments of the variances for the three stock prices and exchange rate. Overall, 

we estimate three bivariate specifications for our analysis. Table 4 (Panels A and B) reports 

the estimation results of the bivariate student-t-FIAPARCH(1,d,1)-DCC model. The ARCH 

and GARCH parameters (a and b) of the DCC(1,1) model capture, respectively, the effects 

of standardized lagged shocks and the lagged dynamic conditional correlations effects on 

current dynamic conditional correlation. They are statistically significant at the 1% and 5% 

levels, indicating the existence of time-varying correlations. Moreover, they are non-

negative, justifying the appropriateness of the FIAPARCH model. When 𝑎 =  0and𝑏 =
 0, we obtain the Bollerslev’s (1990) Constant Conditional Correlation (CCC) model. As 

shown in Table 4, the estimated coefficients a and b are significantly positive and satisfy 

the inequality a +  b < 1 in each of the pairs of exchange rate and stock prices. Besides, 

the t-student degrees of freedom parameter (v) is highly significant, supporting the choice 

of this distribution. 

The statistical significance of the DCC parameters (a and b) reveals a considerable time-

varying comovement and thus a high persistence of the conditional correlation. The sum of 

these parameters is close to unity and range between 0.9825 (USDEUR-NIKKEI225) and 

0.9995 (USDEUR-MSCI). This implies that the volatility displays a highly persistent 

fashion. Since a +  b < 1, the dynamic correlations revolve around a constant level and 

the dynamic process appears to be mean reverting. The multivariate FIAPARCH-DCC 

model is so important to consider in our analysis since it has some key advantages. First, it 

captures the long range dependence property. Second, it allows obtaining all possible pair-

wise conditional correlation coefficients for the exchange rate returns and stock prices in 

the sample. Third, it’s possible to investigate their behavior during periods of particular 

interest, such as periods of the global financial and European sovereign debt crises. Fourth, 

the model allows looking at possible financial contagion effects between international 

foreign exchange and stock markets. 

Finally, it is crucial to check whether the selected exchange rate and stock price series 

display evidence of multivariate Long Memory ARCH effects and to test ability of the 

Multivariate FIAPARCH specification to capture the volatility linkages among currencies. 

Kroner and Ng (1998) have confirmed the fact that only few diagnostic tests are kept to the 

multivariate GARCH-class models compared to the diverse diagnostic tests devoted to 

univariate counterparts. Furthermore, Bauwens et al. (2006) have noted that the existing 

literature on multivariate diagnostics is sparse compared to the univariate case. In our study, 

we refer to the most broadly used diagnostic tests, namely the Hosking's and Li and 

McLeod's Multivariate Portmanteau statistics on both standardized and squared 

standardized residuals. According to Hosking (1980), Li and McLeod (1981) and McLeod 

and Li (1983) autocorrelation test results reported in Table 4 (Panel B), the multivariate 

diagnostic tests allow accepting the null hypothesis of no serial correlation on both 

standardized and squared standardized residuals and thus there is no evidence of statistical 

misspecification. 
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Figure 3: The DCC behavior over time 

 

In order to further examine whether the conditional correlations changed over time, we use 

the LM Test for Constant Correlation of Tse (2000) and the Engle and Sheppard (2001) test 

for dynamic correlation (results are not reported and are available from the author upon 

request). Tests results show a statistically significant rejection of the constant conditional 

correlation (CCC) hypothesis for all pair-wise conditional correlations among currencies. 

Figure 3 illustrates the evolution of the estimated dynamic conditional correlations 

dynamics among foreign exchange market and stock prices. Compared to the pre-crises 

period, the estimated DCCs show a decline during the post-crises period. Such evidence is 

in contrast with the findings of previous research on foreign exchange and stock markets, 

which show increases in correlations during periods of financial turmoil (see Kenourgios 

et al., 2011; Dimitriou et al., 2013; Dimitriou and Kenourgios, 2013).Nevertheless, the 

different path of the estimated DCCs displays fluctuations for all pairs of exchange rate and 

stock prices across the phases of the global financial and European sovereign debt crises, 

suggesting that the assumption of constant correlation is not appropriate. The above 

findings motivate a more extensive analysis of DCCs, in order to capture contagion 

dynamics during different phases of the two crises. 
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Table 4: Estimation results from the bivariate FIAPARCH(1,d,1)-DCC model. 

  

USDEUR-NIKKEI225  USDEUR-SSE  USDEUR-MSCI 

coefficient t-prob  coefficient t-prob  coefficient t-prob 

Panel A: Estimates of Multivariate DCC         

𝑎 0.0088** 0.0449  0.0022 0.4961  0.0028*** 0.0071 

𝑏 0.9737*** 0.0000  0.9944*** 0.0000  0.9967*** 0.0000 

𝑣 9.9540*** 0.0000  6.9175*** 0.0000  9.0447*** 0.0000 

Panel B : Diagnostic tests         

𝐻𝑜𝑠𝑘𝑖𝑛𝑔(20) 63.0281 0.9187  123.299*** 0.0013  108.048** 0.0200 

𝐻𝑜𝑠𝑘𝑖𝑛𝑔2(20) 78.8312 0.4523  58.3638 0.9528  92.1543 0.1305 

𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑(20) 63.0694 0.9181  123.181*** 0.0013  108.002** 0.0202 

𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑2(20) 78.8311 0.4523  58.4263 0.9522  92.1043 0.1313 

Notes:The superscripts ***, ** and * denote the statistical significance at 1%, 5% and 10% 

levels, respectively. 𝑣 indicates the student’s distribution’s degrees of freedom. 

𝐻𝑜𝑠𝑘𝑖𝑛𝑔 (20)and𝐻𝑜𝑠𝑘𝑖𝑛𝑔2(20)  denote the Hosking's Multivariate Portmanteau Statistics on 

both standardized and squared standardized Residuals. 𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑 (20)and𝐿𝑖 − 𝑀𝑐𝐿𝑒𝑜𝑑2(20) 

indicate the Li and McLeod's Multivariate Portmanteau Statistics on both Standardized and 

squared standardized Residuals. 

 

4.4 AR-EGARCH Specification 

The first step of this specification is to estimate the univariate𝐴𝑅(𝑚) − 𝐸𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) 

models for each exchange rate and stock market return series (see Table 5). This paper 

considers the asymmetric effect, while Tamakoshi and Hamori (2014) did not. The AR(0)-

EGARCH(1,1) model is choosen for all exchange rate and stock market return series.The 

estimated parameters of the EGARCH(1,1) model are statistically significant at the 1% 

significance level or better for the four variables, except the γ parameter for the USDEUR 

variable.Table 5 also reports the estimates of the parameter β, which measures the degree 

of volatility persistence. We find that 𝛽 for European exchange rate returns expressed in 

US dollar, and major stock market returns are 0.9951, 0.9743, 0.9865 and 0.9910, 

respectively. From these estimates, we could infer that the persistence in shocks to volatility 

is relatively large. 

In addition, Table 4 depicts the diagnostics of the empirical findings of the AR(0)-

EGARCH(1,1) model. 𝐿𝐵 − 𝑄(20) and 𝐿𝐵 − 𝑄2(20) are the Ljung-Box test statistics 

for the null hypothesis that there is no serial correlation up to order 20 for standardized and 

squared standardized residuals, respectively. The null hypothesis of no autocorrelation up 

to order 20 for squared standardized residuals is also accepted at the 1% level of 

significance. 

Since our analysis focused on the dynamics of the correlations among the exchange rate 

and stock market returns, the well-fitted variance equations described above led us to 

conclude that our AR-EGARCH models fit the data rationally well. 
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4.5 Multivariate Asymmetric DCC Results 

The second step of our analysis is to estimate the multivariate A-DCC model developed by 

Cappiello et al. (2006). The estimation results of the DCC and A-DCC models are reported 

in Table 6.We use this methodology to test the correlation among the selected three stock 

market returns and exchange rate.Generally, we find that the A-DCC model seems to be 

specified reasonably well.Indeed, the estimates of the parameter of standardized residuals 

(a1) and of innovations in the dynamics of the conditional correlation matrix (b1) are 

significant at the 1% level or better.Most remarkably, the estimate of the parameter of the 

asymmetric term (g1) is significant at the 10% level or better, thus providing evidence of 

an asymmetric response in correlations. In other words, the conditional correlation among 

the currencies exhibits higher dependency when it is driven by negative innovations to 

changes than it is by positive innovations. This result is rather interesting because it 

suggests that the reasons for the identified asymmetric correlation differ from the theoretical 

explanation of the “currency portfolio rebalancing” hypothesis, which argues that exchange 

rates tend to display a higher degree of co-movement during periods of their depreciation 

than during periods of their appreciation against the USD. 

 

Table 5: AR(0)-EGARCH(1,1) estimation results. 

  
USDEUR   NIKKEI225 

Coefficient Std.Error p-value  Coefficient Std.Error p-value 

𝜇0 -0.0215** 0.0088 0.0156  0.0261 0.0172 0.1292 

𝜔 -0.054*** 0.0069 0.0000  -0.096*** 0.0111 0.0000 

𝛼 0.0651*** 0.0081 0.0000  0.1465*** 0.0154 0.0000 

𝛽 0.9951*** 0.0017 0.0000  0.9743*** 0.0049 0.0000 

𝛾 0.007 0.0058 0.2291  -0.083*** 0.0119 0.0000 

Student-t parameter (𝜐) 8.4739*** 1.1829 0.0000 
 

8.2359*** 1.0793 0.0000 

        

Student-t parameter (𝜐) -3287.36 _ _  -6182.78 _ _ 

𝐿𝐵 − 𝑄(20) 14.2471 _ 0.8177  10.3289 _ 0.9618 

𝐿𝐵 − 𝑄2(20) 27.5035* _ 0.0700   27.8325* _ 0.0646 

Notes : 𝒓𝒕 = 𝝁𝟎 + 𝜺𝒕 and 𝒍𝒏(𝒉𝒕) = 𝝎 + 𝜶|𝒛𝒕−𝟏| + 𝜸𝒛𝒕−𝟏 + 𝜷𝒍𝒏 (𝒉𝒕−𝟏) , where 𝒓𝒕  represents exchange 

rate returns and stock prices, 𝜺𝒕 is the error term, 𝒉𝒕 is the conditional volatility and 𝒛𝒕 =

𝜺𝒕/𝝈𝒕  is the standardized residual. 𝑳𝑩 − 𝑸(𝟐𝟎)and𝑳𝑩 − 𝑸𝟐(𝟐𝟎)  are the Ljung-Box statistics 

with 20 lags for the standardized and squared standardized residuals, respectively. The 

superscripts *, ** and *** denote the level significance at 1%, 5%, and 10%, respectively 
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Table 5 (continued): AR(0)-EGARCH(1,1) estimation results. 

  SSE  MSCI 

  Coefficient Std.Error p-value  Coefficient Std.Error p-value 

𝜇0 0.0344** 0.0158 0.0293  0.0518*** 0.0167 0.0019 

𝜔 -0.091*** 0.0139 0.0000  -0.079*** 0.0103 0.0000 

𝛼 0.1508*** 0.0249 0.0000  0.1120*** 0.0146 0.0000 

𝛽 0.9865*** 0.0051 0.0000  0.9910*** 0.0026 0.0000 

𝛾 -0.034*** 0.0112 0.0021  -0.057*** 0.0089 0.0000 

Student-t parameter (𝜐) 3.6516*** 0.2692 0.0000 
 

5.8489*** 0.6016 0.0000 

   

        

Student-t parameter (𝜐) -6171.71 _ _  -5952.15 _ _ 

𝐿𝐵 − 𝑄(20) 51.7303*** _ 0.0001  43.1426*** _ 0.0019 

𝐿𝐵 − 𝑄2(20) 10.2005 _ 0.9251   35.7654*** _ 0.0075 

Notes : 𝒓𝒕 = 𝝁𝟎 + 𝜺𝒕 and 𝒍𝒏(𝒉𝒕) = 𝝎 + 𝜶|𝒛𝒕−𝟏| + 𝜸𝒛𝒕−𝟏 + 𝜷𝒍𝒏 (𝒉𝒕−𝟏) , where 𝒓𝒕  represents exchange 

rate returns and stock prices, 𝜺𝒕 is the error term, 𝒉𝒕 is the conditional volatility and 𝒛𝒕 =

𝜺𝒕/𝝈𝒕  is the standardized residual. 𝑳𝑩 − 𝑸(𝟐𝟎)and𝑳𝑩 − 𝑸𝟐(𝟐𝟎)  are the Ljung-Box statistics 

with 20 lags for the standardized and squared standardized residuals, respectively. The 

superscripts *, ** and *** denote the level significance at 1%, 5%, and 10%, respectively 

 

In Fig. 4, we plot the rolling correlations between each pair of exchange rate and stock 

prices with time spans of four months, eight months, one year, two years and four years, 

respectively. Interestingly, we find more fluctuations of the rolling correlations in 

downward directions between each pair, particularly after 2007, regardless of the selected 

time spans.  
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(a) Four-month rolling correlation 
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(b) Eight-month rolling correlation 
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(c) One-year rolling correlation 

-.4

-.3

-.2

-.1

.0

.1

.2

00 02 04 06 08 10 12

USDEUR vs NIKKEI225

USDEUR vs SSE

USDEUR vs MSCI  
 

 

(d) Two-year rolling correlation 
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(e) Four-year rolling correlation 
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Figure 4: Rolling correlations between exchange rate and stock index pair. (a) Four-

month rolling correlation. (b) Eight-month rolling correlation. (c) Two-year rolling 

correlation. (d) Two-year rolling correlation. (e) Four-year rolling correlation. 

 

Table 6: Empirical results of the DCC model(whole sample analysis). 

  

Sampleperiod (January 1, 2000-December 10, 2013) 

Symmetric DCC  Asymmetric DCC 

Coefficient Std.Error p-value  Coefficient Std.Error p-value 

a1 0.0713*** 0.0065 0.0000  0.0706*** 0.0071 0.0000 

b1 0.9969*** 0.0006 0.0000  0.9967*** 0.0008 0.0000 

g1 _ _ _  -0.0332* 0.0292 0.0549 

Log Likelihood   5423.36    5658.87 _ _ 

BIC 42949.369 _ _  42957.2111 _ _ 

Notes:The superscripts *, ** and *** denote the level significance at 1%, 5%, and 10%, 

respectively. 𝑸𝒕 = (𝟏 − 𝒂𝟏 − 𝒃𝟏)�̅� − 𝒈𝟏�̅� + 𝒂𝟏𝒁𝒕−𝟏𝒁𝒕−𝟏
′ + 𝒃𝟏𝑸𝒕−𝟏+𝒈𝟏𝜼𝒕−𝟏𝜼𝒕−𝟏

′  where 𝑸𝒕  is the 

conditional covariance matrix between the standardized residuals; 𝒁𝒕 is the matrix of the 

standardized residuals; �̅� and �̅� are the unconditional correlation matrices of 𝒁𝒕 ; 𝜼𝒕 =

𝑰[𝒁𝒕 < 𝟎] ∘ 𝒁𝒕  and 𝑰[. ]  is a 𝒌 × 𝟏  indicator function such as 𝑰 = 𝟏  if  𝒁𝒕 < 0  and 𝑰 = 𝟎  if  

𝒁𝒕 ≥ 𝟎, while " ∘ " is the Hadamard product. 

 

Figure 5 plots the estimated DCCs between each pair of the exchange rate and stock prices. 

First, the time path of the DCC series fluctuates over the whole sample period for all pairs, 

thereby suggesting that the assumption of constant correlations may not be appropriate. 

This result is generally in line with empirical studies such as Perez-Rodriguez (2006) and 

Tamakoshi and Hamori (2014). Second, the estimated DCCs between all pairs remain at a 

relatively high level (i.e., above 0.9) before 2007. This implies the development of a 

considerable degree of market integration, which has occurred since the inception of the 

euro. Third, the DCC series between all pairs of exchange rate and stock prices show sharp 
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declines during the financial crisis since 2007 and further declines since late 2009 in 

particular.  

 

(F) The DCC between the USDEUR and NIKKEI225 

 
 

(G) The DCC between the USDEUR and SSE 

 
 

(H) The DCC between the USDEUR and MSCI 

 
Figure 5: Dynamic conditional correlations between each foreign exchange rate and stock 

prices pair. (a) The DCC between the USDEUR  and NIKKEI225. (b) The DCC between 

the USDEUR and SSE. (c) The DCC between the USDEUR and MSCI. 
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5  The DCC Behavior during different Phases of the Global Financial 

and European Sovereign Debt Crises  

In what follows, we examine the DCCs shifts behavior during different phases of the global 

financial and European sovereign debt crises. In order to identify which of the sub-periods 

exhibit significant linkages among the selected stock prices and foreign exchange rate, we 

create numerous dummy variables, which are equal to unity for the corresponding phase of 

the crisis and zero otherwise. In order to describe the behavior of the DCCs over time, the 

dummies are created to the following mean equation: 

 

𝜌𝑖𝑗,𝑡 = 𝜔𝑖𝑗 + ∑ 𝜑𝑝𝜌𝑖𝑗,𝑡−𝑝
𝑃
𝑝=1 + ∑ 𝛽𝑘𝑑𝑢𝑚𝑚𝑦𝑘,𝑡 + 𝑒𝑖𝑗,𝑡

𝜆
𝑘=1                   (23) 

 

where ωij is a constant term, ρij,t is the pair-wise conditional correlation of the exchange 

rate and three stock prices, such that i, j =USDBRL, NIKKEI225, SSE, and MSCI(i ≠ j), 

and k = 1, … , λ are the number of dummy variables corresponding to the different phases 

of the two crises, which are identified based on the economic approach. Optimal lag length 

(p) is selected by Akaike (AIC) and Schwarz (SIC) information criterion. Based on the 

economic approach, dummyk,t (k = 1,2, … ,6) corresponds to the four phases of the 

global financial crisis and the two phases of the European sovereign debt crisis. 

Next, we examine whether the conditional variance equation of the DCCs series exhibit 

symmetries or asymmetries behavior following Engle and Ng (1993). These authors 

propose a set of tests for asymmetry in volatility, known as sign and size bias tests. The 

Engle and Ng tests should thus be used to determine whether an asymmetric model is 

required for a given series, or whether the symmetric GARCH model can be deemed 

adequate. In practice, the Engle-Ng tests are usually applied to the residuals of a GARCH 

fit to the returns data. 

 

Define 𝑆𝑡−1
−  as an indicator dummy variable such as: 

 

𝑆𝑡−1
− = {

1  𝑖𝑓  �̂�𝑡−1 < 0
0     otherwise

                                                (24) 

 

The test for sign bias based on the significance or otherwise of 𝜙1  in the following 

regression: 

 

�̂�𝑡
2 = 𝜙0 + 𝜙1𝑆𝑡−1

− + 𝜈𝑡                                                (25) 

 

where𝜈𝑡is an independent and identically distributed error term. If positive and negative 

shocks to �̂�𝑡−1  impactdifferently upon the conditional variance, then 𝜙1  will be 

statistically significant. 

 

It could also be the case that the magnitude or size of the shock will affect whether the 

response of volatility to shocks is symmetric or not. In this case, a negative size bias test 

would be conducted, based on a regression where 𝑆𝑡−1
−  is used as a slope dummy variable. 

Negative size bias is argued to be present if 𝜙1 is statistically significant in the following 

regression: 
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�̂�𝑡
2 = 𝜙0 + 𝜙1𝑆𝑡−1

− 𝑧𝑡−1 + 𝜈𝑡                                            (26) 

 

Finally, we define 𝑆𝑡−1
+ = 1 − 𝑆𝑡−1

− , so that 𝑆𝑡−1
+  picks out the observations with positive 

innovations. Engle and Ng (1993) propose a joint test for sign and size bias based on the 

following regression: 

 

�̂�𝑡
2 = 𝜙0+𝜙1𝑆𝑡−1

− +𝜙2𝑆𝑡−1
− 𝑧𝑡−1+𝜙3𝑆𝑡−1

+ 𝑧𝑡−1 + 𝜈𝑡                         (27) 

 

Statistical significance of 𝜙1  indicates the presence of sign bias, where positive and 

negative shocks have differing impacts upon future volatility, compared with the symmetric 

response required by the standard GARCH formulation. However, the significance of 𝜙2 

or 𝜙3 would suggest the presenceof size bias, where not only the sign but the magnitude 

of the shock is important. A joint test statistic is formulated in the standard fashion by 

calculating 𝑇𝑅2  from regression (27), which will asymptotically follow a 𝜒2 

distribution with 3 degrees of freedom under the null hypothesis of no asymmetric effects. 

Table 7 reports the results of Engle-Ng tests. As shown in the table, the 𝜒2(3) joint 

test statistics demonstrates a very acceptance of the null of no asymmetries for the 

𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑛𝑖𝑘𝑘𝑒𝑖225 , and 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑠𝑠𝑒  and 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑚𝑠𝑐𝑖 series (AR(0)-FIAPARCH(1,d,1) 

model) and a rejection for the null hypothesis for the 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑛𝑖𝑘𝑘𝑒𝑖225, , 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑠𝑠𝑒, 

and 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑚𝑠𝑐𝑖 series (AR(0)-EGARCH(1,1) model). The results overall would thus 

suggest motivation for estimating symmetric and asymmetric GARCH volatility models, 

respectively, for these particular series. 

 

Table 7: Tests for sign and size bias for DCCs. 

        AR(0)-EGARCH(1,1)       

Variable 
          

Coefficient p-value  Coefficient p-value  Coefficient p-value 

𝜙0 1.3522 0.3385  2.3657*** 0.0000  1.0675** 0.0182 

𝜙1 -0.7688 0.59001  -1.529*** 0.0005  -0.5887 0.2173 

𝜙2 -0.706*** 0.0003  -0.2395* 0.0651  -0.779*** 0.0000 

𝜙3 -2.0691 0.5481  -7.513*** 0.0000  -0.4772 0.6662 

𝜒2(3)   13.4475*** 0.0037   19.8351*** 0.0001   32.0432*** 0.0000 

Note: The superscripts ***, ** and * denote the statistical significance at 1% and 5% levels, 

respectively. 

 

Table 7 (continued): Tests for sign and size bias for DCCs. 

        AR(0)-FIAPARCH(1,d,1)       

Variable 
          

Coefficient p-value  Coefficient p-value  Coefficient p-value 

𝜙0 1.0356*** 0.0000  0.8447*** 0.0000  1.3492*** 0.0000 

𝜙1 -0.0362 0.7642  0.1899 0.1506  -0.428*** 0.0000 

𝜙2 0.0144 0.8776  0.0271 0.7265  -0.0774 0.3188 

𝜙3 -0.0231 0.7627  0.1467 0.1732  -0.348*** 0.0000 

𝜒2(3)   0.4488 0.9299   2.4501 0.4843   2.9656 0.2900 

Note: The superscripts ***, ** and * denote the statistical significance at 1% and 5% levels, 

respectively. 
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Furthermore, the conditional variance equations of the 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑛𝑖𝑘𝑘𝑒𝑖225, , 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑠𝑠𝑒, 

and 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑚𝑠𝑐𝑖  series are assumed to follow an asymmetric GARCH specification 

under a student distributed innovations (AR(0)-EGARCH(1,1) model). In our analysis, we 

choose the student-t-GJR-GARCH(1,1) model (see Glosten et al.,1993) including the 

dummy variables identified by the two approaches: 

ℎ𝑖𝑗,𝑡 = 𝛼0 + 𝛼1ℎ𝑖𝑗,𝑡−1 + ∑ 𝜉𝑘𝑑𝑢𝑚𝑚𝑦𝑘,𝑡 + 𝜈1𝑒𝑖𝑗,𝑡−1
2 + 𝛼2𝑒𝑖𝑗,𝑡−1

2 𝐼(𝑒𝑖𝑗,𝑡−1 < 0)𝜆
𝑘=1                      (28) 

Moreover, the conditional variance equations of the 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑛𝑖𝑘𝑘𝑒𝑖225 , , 𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑠𝑠𝑒 

series are assumed to follow a symmetric student-t-GARCH (1,1) specification (AR(0)-

FIAPARCH(1,d,1) model). 

ℎ𝑖𝑗,𝑡 = 𝛼0 + 𝛼1ℎ𝑖𝑗,𝑡−1 + 𝜈1𝑒𝑖𝑗,𝑡−1
2 + ∑ 𝜉𝑘𝑑𝑢𝑚𝑚𝑦𝑘,𝑡

𝜆
𝑘=1                     (29) 

 

Table 8: Tests of changes in dynamic conditional correlations among exchange rate and 

stock market returns during the phases of global financial and European sovereign debt 

crises (AR(0)-GJR-GARCH(1,1) approach). 

Variable 

𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑛𝑖𝑘𝑘𝑒𝑖225   𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑠𝑠𝑒   𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑚𝑠𝑐𝑖 

Coeff Signif  Coeff Signif  Coeff Signif 

Mean Equation         

𝜔 -0.0001*** 0.0000  -0.0002*** 0.0000  -0.0001** 0.0372 

𝛽1 0.0002 0.1696  0.0004*** 0.0000  -5E-05*** 0.0000 

𝛽2 -0.0005* 0.0566  0.0002 0.3713  -0.0002 0.7879 

𝛽3 -0.0002 0.2620  -0.0001 2.0042  -0.0004 0.4181 

𝛽4 0.0003** 0.0240  -0.0003 0.3697  -0.0002** 0.0348 

𝛽5 -0.0004** 0.0339  -0.0001 0.3554  -0.0003 0.2036 

𝛽6 -0.0001*** 0.0052  -0.0001 0.8475  -0.0002* 0.0894 

Variance Equation         

𝛼0 -2.2328*** 0.0000  -2.9834 0.4836  -2.366* 0.0566 

𝛼1 0.1083*** 0.0000  0.1104 0.2714  0.1055*** 0.0000 

𝜈1 0.5111*** 0.0000  0.5487*** 0.0000  0.5616*** 0.0000 

𝛼2 -0.0117*** 0.0000  -0.0423*** 0.0000  -0.0219*** 0.0000 

𝜉1 0.1035** 0.0476  0.1263*** 0.0000  0.0047*** 0.0000 

𝜉2 0.2700*** 0.0092  0.1298*** 0.0000  -0.1175 0.9143 

𝜉3 -0.1224 0.3098  -0.2236** 0.0192  -0.2666 0.2706 

𝜉4 -0.1244* 0.0793  0.0275 0.2681  -0.1998** 0.0126 

𝜉5 -0.18553** 0.0146  -0.0447* 0.0550  -0.1476*** 0.0002 

𝜉6 -0.0641*** 0.0000  -0.0548 0.6930  -0.0733** 0.0241 

𝑣 2.0008*** 0.0000  2.0042 0.4878  2.0017*** 0.0000 

Diagnostics         

𝐿𝐵(20) 192.726*** 0.0000  175.002*** 0.0000  139.467*** 0.0000 

𝐿𝐵2(20)  0.4468 1.0000     29.8808**  0.0386    1.8675  0.9999 

Notes: Estimates are based on mean Eq. (23) and variance Eq. (28) and Eq. (29) in the text. 

The lag length is determined by the SIC criteria (Box-Jenkins procedure). 𝜷𝒌,𝒕and 𝝃𝒌,𝒕 , 

where 𝒌 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, are the dummy variable coefficients corresponding to the four phases 

of the global financial crisis and the two phases of the European sovereign debt crisis. 𝜶𝟏is 

the coefficient of 𝒉𝒕−𝟏 and 𝜶𝟐 is the asymmetric (GJR) term.𝑳𝑩(𝟐𝟎)and𝑳𝑩𝟐(𝟐𝟎) denote the 

Ljung-Box tests of serial correlation on both standardized and squared standardized 

residuals.***, **, and * represent statistical significance at 1%, 5%, and 10% levels, 

respectively. 

 

According to Eqs. (23) and (28) (respectively Eqs. (23) and (29)), we could analyze whether 
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each phase of the global financial and European sovereign debt crises significantly alter the 

dynamics of the estimated DCCs and their conditional volatilities. In other words, the 

statistical significance of the estimated dummy coefficients indicates structural changes in 

mean and/or variance shifts of the correlation coefficients due to external shocks during the 

different periods of the two crises. According to Dimitriou and Kenourgios (2013), a 

positive and statistically significant dummy coefficient in the mean equation indicates that 

the correlation during a specific phase of the crisis is significantly different from that of the 

previous phase, supporting the presence of spillover effects among stock prices and 

exchange rate. This implies that the benefits from portfolio diversification strategies 

diminish. Furthermore, a positive and statistically significant dummy coefficient in the 

variance equation indicates a higher volatility of the correlation coefficients. This suggests 

that the stability of the correlation is less reliable, causing some doubts on using the 

estimated correlation coefficient as a guide for portfolio decisions. 

Table 8 reports the estimation results of the AR(0)-GJR-GARCH(1,1) model.At the phase 

2 of the global financial crisis, the dummy coefficient (β2) is negative and statistically 

significant for the pair of USDEUR-NIKKEI225, supporting a decrease in 

DCCs.Nevertheless, the 𝛽2 parameter is positive and statistically no significant for the 

pair of USDEUR-SSE, indicating the absence of a “contagion effect”. Moreover, this 

parameter is negative and no significant for the pair of USDEUR-MSCI, supporting an 

increase in DCCs.During the phase 3 of macroeconomic deterioration, negative and 

statistically no significant dummy coefficients β3 exist for each pairs, implying a decrease 

of DCCs and thus suggesting that the relationship among these currencies is actually 

decreased during this phase. This result can be viewed as a “contagion effect”.  

 

Table 9: Tests of changes in dynamic conditional correlations among exchange rate and 

stock market returns during the phases of global financial and European sovereign debt 

crises (AR(0)-GARCH(1,1) model). 

Variable 

𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑛𝑖𝑘𝑘𝑒𝑖225  𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑠𝑠𝑒  𝜌𝑢𝑠𝑑𝑒𝑢𝑟−𝑚𝑠𝑐𝑖 

Coeff Signif  Coeff Signif  Coeff Signif 

Mean Equation         

𝜔 -0.0001** 0.0114  -0.0002*** 0.0000  -0.0001* 0.0510 

𝛽1 0.0001 0.2596  0.0003 0.8130  -0.0003 0.8647 

𝛽2 -0.0005 0.1639  0.0002 0.2968  -0.0001 0.5946 

𝛽3 -0.0003 0.3057  -0.0001 0.4338  -0.0003 0.1851 

𝛽4 0.0003 0.1080  -0.0002 0.8861  -0.0002 0.2320 

𝛽5 -0.0004** 0.0354  -0.0001 0.4485  -0.0003* 0.0960 

𝛽6 -0.0001 0.1901  -0.0001 0.3198  -0.0002 0.1009 

Variance Equation         

𝛼0 0.0012*** 0.0001  0.0002*** 0.0000  0.0001*** 0.0000 

𝛼1 -0.5516** 0.0246  0.1603* 0.0532  -0.3857*** 0.0000 

𝜈1 0.3474 0.1596  0.8476*** 0.0000  0.9973*** 0.0000 

𝜉1 0.0003 0.1244  0.0008* 0.0633  0.0004 0.1685 

𝜉2 0.0008 0.1325  0.0001 0.2759  -0.0002* 0.0589 

𝜉3 -0.0002 0.2538  -0.0001*** 0.0020  0.0001 0.9163 

𝜉4 -0.0002* 0.0901  0.0001 0.7587  -0.0005 0.2452 

𝜉5 -0.0004* 0.0510  0.0003 0.9504  0.0003 0.9500 

𝜉6 -0.0001 0.1543  -0.0002 0.2081  -0.0002** 0.0120 

𝑣 2.0044*** 0.0000  2.0033*** 0.0000  2.0036*** 0.0000 

Diagnostics         

𝐿𝐵(20) 2780.81*** 0.0000  60.5135 0.9706  5908.16*** 0.0000 

𝐿𝐵2(20) 10.2637 0.9229  14.2764 0.8658  19.3384 0.7385 

         

Notes:Estimates are based on mean Eq. (23) and variance Eq. (28) and Eq. (29) in the text. 



Long Memory and Asymmetric Effects between Exchange Rates and Stock Returns     73 

The lag length is determined by the SIC criteria (Box-Jenkins procedure). 𝜷𝒌,𝒕and 𝝃𝒌,𝒕 , 

where 𝒌 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, are the dummy variable coefficients corresponding to the four phases 

of the global financial crisis and the two phases of the European sovereign debt crisis.𝜶𝟏is 

the coefficient of 𝒉𝒕−𝟏 and 𝜶𝟐 is the asymmetric (GJR) term.𝑳𝑩(𝟐𝟎)and𝑳𝑩𝟐(𝟐𝟎) denote the 

Ljung-Box tests of serial correlation on both standardized and squared standardized 

residuals.***, **, and * represent statistical significance at 1%, 5%, and 10% levels, 

respectively. 

 

During the last phase of the European sovereign debt crisis, significantly negative dummy 

coefficients (β6) correspond to the pair of USDEUR-NIKKEI225 and USDEUR-MSCI. 

Finally, the dummy coefficients’ estimates of the variance Eq. (29), are negative and 

statistically significant in most cases cross several phases of the global financial and 

European sovereign debt crises. This finding indicates a more stable structure of correlation, 

suggesting the use of the correlation coefficients as a guide for portfolio decisions during 

specific phases of the two crises.However, the dummy coefficients ξ1 for each pairs, ξ2 

for USDEUR-NIKKEI225 and USDEUR-SSE are positive and statistically significant. 

This means that the volatility of correlation coefficients is increased, implying that the 

stability of the correlations is less reliable for the realization of investment strategies. The 

dummy coefficientξ4 , ξ5  and ξ6  for USDEUR-NIKKEI225 and USDEUR-MSCI are 

negative and no significant, suggesting that the volatility of correlation coefficients is 

decreased, implying that the stability of the correlations is more reliable for the realization 

of investment strategies. 

The estimation results of the AR(0)-GARCH(1,1) model are displayed in Table 9.The 

constant terms ωij is statistically significant for all pairs. At the phase 2 of the global 

financial crisis, the dummy coefficients (β2) is negative and statistically no significant for 

only the pair of USDEUR-NIKKEI225 and USDEUR-MSCI, supporting a decrease in 

DCCs. During the phase 3 of macroeconomic deterioration, negative and statistically no 

significant dummy coefficients β3 exist for each pairs, implying a decrease of DCCs and 

thus suggesting that the relationship among these currencies is actually decreased during 

this phase. This result can be regarded as a “contagion effect”. 

The first phase of ESDC exhibits only one case of significantly negative dummy 

coefficients (𝛽5) for the pair of USDEUR-NIKKEI225 and USDEUR-MSCI.This period 

is characterized by a sharp depreciation of EUR due to the “Greek problem” and the 

uncertainty about the future of euro as a single Eurozone currency. This finding can be 

viewed as a “contagion effect” as both foreign exchange rate and stock prices seem to be 

substantially influenced by the European sovereign debt crisis. 

Finally, the dummy coefficients’ estimates of the variance Eq. (29), are either positive or 

negative and statistically significant or no significant in most cases across several phases 

of the global financial and European sovereign debt crises. The no significant positive 

dummy coefficients ξk means that the volatility of correlation coefficients is increased, 

implying that the stability of the correlations is less reliable for the implementation of 

investment strategies. However, the significant negative dummy coefficients ξk indicates 

a more stable structure of correlation, suggesting the use of the correlation coefficients as a 

guide for portfolio decisions during specific phases of the global financial and European 

sovereign debt crises. 
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6  Conclusion 

While time varying correlations of stock market returns and foreign exchange rate have 

seen voluminous research, relatively little attention has been given to the dynamics of 

correlations within a market. 

In this paper, we analyze the dynamic conditional correlation between the US dollar (USD) 

exchange rates expressed in Euro (EUR) and three stock markets using a DCC model into 

a multivariate fractionally integrated APARCH framework (FIAPARCH-DCC model), 

which provides the tools to understand how financial volatilities move together over time 

and across markets, and the Asymmetric Dynamic Conditional Correlation (A-DCC) model 

developed by Cappiello et al. (2006). We also use an AR-GARCH model for statistical 

analysis of the time-varying correlations by considering the major financial and economic 

events relative to the subprime crisis and global financial crisis. 

The FIAPARCH model is identified as the best specification for modeling the conditional 

heteroscedasticity of individualtime series.We then extended the above univariate GARCH 

models to a bivariate framework with dynamic conditional correlation parameterization in 

order to investigate the interaction between stock markets and exchange rate. 

Our empirical results indicate that foreign exchange market and european stock markets 

exhibit asymmetry and no asymmetry in the conditional variances. Therefore, the results 

point to the importance of applying an appropriately flexible modeling framework to 

accurately evaluate the interaction between exchange market and stock market co-

movements. the conditional correlation among the USD/EUR and the three stock index 

exhibits higher dependency when it is driven by negative innovations to changes than it is 

by positive innovations. Moreover, the stock market and foreign exchange rate correlations 

become more volatile during the global financial crisis. Moreover, results document strong 

evidence of time-varying comovement, a high persistence of the conditional correlation (the 

volatility displays a highly persistent fashion) and the dynamic correlations revolve around 

a constant level and the dynamic process appears to be mean reverting. 

Our empirical findings seem to be important to researchers and practitioners and especially 

to active investors and portfolio managers who include in their portfolios equities from the 

European exchange markets. Indeed, the high correlation coefficients, during crises periods, 

imply that the benefit from international diversification, by holding a portfolio consisting 

of diverse stocks from the contagious stock markets, decline.  

The findings lead to important implications from investors’ and policy makers’ perspective. 

They are of great relevance for financial decisions of international investors on managing 

their risk exposures to exchange rate and stock prices fluctuations and on taking advantages 

of potential diversification opportunities that may arise due to lowered dependence among 

the exchange rates and stock prices. The increase of exchange rates and stock prices 

linkages during crisis periods shows the different vulnerability of the currencies and implies 

a decrease of portfolio diversification benefits, since holding a portfolio with diverse 

currencies is less subject to systematic risk. Moreover, this correlations’ behavior may be 

considered as evidence of non-cooperative monetary policies around the world and 

highlight the need for some form of policy coordination among central banks. Finally, the 

different patterns of dynamic linkages among stock prices and exchange rate may influence 

transnational trade flows and the activities of multinational corporations, as they create 

uncertainty with regard to exports and imports. 
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