
Advances in Management & Applied Economics, vol. 3, no.6, 2013, 27-52 

ISSN: 1792-7544 (print version), 1792-7552(online) 

Scienpress Ltd, 2013 

 

Chaos Detection in Economic Time Series: Metric versus 

Topological Tools 

 

Marisa Faggini1 

 

 

Abstract 

From an empirical point of view, it is difficult to distinguish between fluctuations 

provoked by random shocks and endogenous fluctuations determined by the nonlinear 

nature of the relation between economic aggregates. For this purpose, chaos tests are 

developed to investigate the chaotic phenomena of basic features: nonlinearity, fractal 

attractor, and sensitivity to initial conditions. The application of these tests to economic 

and financial time series produced controversial results. Investigators found substantial 

evidence for nonlinearity but relatively weak evidence for chaos per se.  

The aim of the paper is twofold. In the first place, to compare the different techniques 

with which to analyse chaotic time series highlighting their potentiality and limitations. 

Secondly, to apply in an empirical exercise a topological tool - Recurrence Analysis - 

using data already analysed with metric tests in order to show whether the result of this 

analysis could change if performed with tools more appropriate for discovering chaos in 

short and noisy time series. 
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1  Introduction  

The way to identify movements of economic indicators is a central and conflicting debate 

in macroeconomics that arises around two opposite approaches: 

The exogenous-shocks-equilibrium and the endogenous-cycles-disequilibrium. For the 

former, fluctuations are deviations from a steady growth path determined by exogenous 

"shocks" such as fiscal and monetary policy changes, and changes in technology. 

Stochastic exogenous disturbances are superimposed upon (usually linear) deterministic 

models to produce the stochastic appearance of actual economic time series [1]. 
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Economic fluctuations, seemingly as complex as noise, are considered fluctuations like 

identically independently distributed (i.i.d.) events [2].  

According to the latter, deviations from growth trends are consequences of endogenous 

shocks, which arise from imperfections of the market. In this sense endogenous cycles are 

represented by deterministic oscillators including harmonic cycle and limit cycle [3].  

But the real economic time-series do not show the kind of regularity and symmetry that is 

predicted by those models. Irregular frequencies and different amplitudes are the real 

feature of fluctuations in economic indicators.  

The poor results in terms of description and forecasting obtained by using those models 

and the contrast with real behaviour of economic variables gave place to a challenging 

focus that considers economic fluctuations responding to a non-linear structure.  

The nonlinear approach is well suited for examining economic fluctuations because it is 

able to capture stylized facts observed in many financial and economic time series such as 

asymmetries, jumps and time irreversibility, and to model any oscillating phenomenon. 

In the literature, there many examples of nonlinear methods used to analyse time series. 

These are the so-called “ARCH-type” models proposed by [4] and generalised by [5]. 

Among the “ARCH-type” models - Exponential GARCH, Asymmetric Power ARCH, 

Threshold GARCH - the so-called integrated model (IGARCH) and fractionally 

integrated model (FIGARCH) have recently been the most popular. These models are 

based on the assumption that data are nonlinear stochastic functions of their past values. 

However, it is also possible that data can be generated by deterministic processes.  

Nonlinear deterministic systems with a few degrees of freedom can create output signals 

that appear complex and mimic stochastic signals from the point of view of conventional 

time series analysis but are chaotic. 

Economists began to look at chaos theory in the late 1980s with important works like 

those by [6, 7, 8, 9, 10], just to name few. A common feature of these chaos models is that 

nonlinear dynamics tend to arise as the result of relaxing the assumptions underlying the 

competitive market general equilibrium approach.  

However, showing that a mathematical model exhibits chaotic behaviour is no proof that 

chaos is also present in the corresponding experimental system. To convincingly show 

that an experimental system behaves chaotically, chaos has to be directly identified from 

the experimental data [11]. 

In economics data sets are the outcome of a complex process including institutional or 

structural changes and monetary regime switches, shocks, wars, political crises etc. The 

rich nature as well as the impact of those changes reveals interesting features in time 

series (structural instability and nonlinearity) that needs to be studied by developing new 

techniques, able to filter these complex dynamics [12]. The application of nonlinear tools 

for identifying causal relationships between economic variables can provide information 

that the linear tools could miss [13]. 

Researchers in economics and finance have been interested in testing nonlinear 

dependence and chaos for almost two decades. A wide variety of reasons for this interest 

have been suggested, including an attempt to improve the forecasting accuracy of linear 

time series models and to better explain the dynamics of the underlying variables of 

interest using a richer class of models than that permitted by limiting the set to the linear 

case.  

During these two decades the search for chaos in economics has gradually became less 

enthusiastic, as no empirical support for the presence of chaotic behaviours in economics 

has been found. The literature did not provide a solid support for chaos as a consequence 
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of the high noise level that exists in most economic time series, the relatively small 

sample sizes of data, and the weak robustness of chaos tests for these data.  

From an empirical point of view, it is difficult to distinguish between fluctuations 

provoked by random shocks and endogenous fluctuations determined by the nonlinear 

nature of the relation between economic aggregates. For this purpose, chaos tests are 

developed to investigate the chaotic phenomena of basic features: nonlinearity, fractal 

attractor, and sensitivity to initial conditions. The application of these tests to economic 

and financial time series produced controversial results. Investigators found substantial 

evidence for nonlinearity but relatively weak evidence for chaos per se. 

Starting from this state of the art, the aim of the paper is twofold. In the first place, to 

compare the different techniques with which to analyse chaotic time series highlighting 

their potentiality and limitations. Secondly, to apply in an empirical exercise a topological 

tool - Recurrence Analysis - using data already analysed with metric tests in order to 

show whether the result of this analysis could change if performed with tools more 

appropriate for discovering chaos in short and noisy time series.  

The paper is set up as follows. In section 2 metric and dynamical tools features are 

described. Section 3 focuses on the description of the alternative to overcome the 

weakness of these tests. In section 4 we describe the application of Recurrence Analysis 

with Visual Recurrence Analysis software to macroeconomic time series analysed by [14] 

in their paper “International chaos?” using metric and dynamical tools. Section 5 presents 

the main results and conclusions. 

 

 

2  Metric and Dynamical Tools 

There are different signs, or invariants, that are representative of chaos in a system: 

nonlinearity, dependence on initial conditions, and presence of an attractor with fractal 

dimension, known as a strange attractor. Based on these signs, several tools have been 

developed in order to investigate the chaotic properties of a system from a time series. 

These tools could be classified in metric - correlation dimension
2
 and BDS test, 

dynamical- Lyapunov exponent
3

, and topological [15] - Close Return Test and 

Recurrence Analysis. 

 

2.1 Correlation Dimension. 

A necessary but not sufficient condition in order to define a system as being chaotic is 

that the strange attractor has a fractal dimension. 

The notion of dimension refers to the degree of complexity of a system expressed by the 

minimum number of variables that is needed to replicate the system [16]. For example, a 

cube has three dimensions, a square has two dimensions, and a line has one. A chaotic 

system has non-integer dimensionality called fractal dimension.  

                                                 

2
The correlation dimension is a metric method because it is based on the computation of distances 

on the system's attractor. 
3
Lyapunov exponent instead, is a dynamical method because it is based on computing the way 

close to where orbits diverge. 
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In the literature, there are many methods
4
 for calculating the fractal dimension 

(Hausdorff dimension, the box-counting dimension, the information dimension, and the 

correlation dimension), which nevertheless do not provide equivalent measures [17]. 

Among these different algorithms, the correlation dimension proposed by [18], based on 

phase space reconstructions of the process to estimates
5
, and has the advantage of being 

straightforward and quickly implemented. 

Let us suppose that
 ),,( mNC  is the number of points separated by a distance less than 

  for a given embedding dimension (Takens,1981), the correlation function
6
 is given by 
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where )(zH  is the Heaviside function given by 01)(  zallforzH  and 0 

otherwise, is the sufficiently small distance between vectors tX and sX , and .  is the 

norm operator. 

The correlation function ),,( mNC gives the probability that a randomly selected pair 

of delay coordinate points is separated by a distance less than  . It measures the 

frequency with which temporal patterns are repeated in the data. 

To determine the correlation dimension from (1), we have to determine how ),,( mNC  

changes as   changes. As   grows, the value of ),,( mNC  grows because the 

number of near points to be included in (1) increases. Grassberger and Procaccia (1983) 

show that for sufficiently small  , ),,( mNC  grows at rate CD and can be well 

approximated by 

 
CD

mNC  ),,(                                                                     (2) 

 

That is, the correlation function is proportional to the same power of CD  that represents 

the value of the correlation dimension.  

More formally, the dimension associated with the reconstructed dynamic is given by: 
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That is, it is given by the slope of the regression of log ),,( mNC  versus log  for 

small values of  and depends on the chosen embedding dimension. 

If, as m  increases CD  continues to rise, then this relationship is symptomatic of a 

                                                 

4
See [19, 20, 21, 22]. 

5
This procedure is based upon the method of delay time coordinates by [23]who showed that this 

type of reconstruction yields a topological equivalent attractor leaving the dynamic parameters 

invariant. 
6
Example by [24]. 
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stochastic system. If the data are generated by a chaotic system, CD  will reach a finite 

limit at some relatively small m  (saturation point). The importance of the correlation 

dimension arises from the fact that the minimum number of variables required to model a 

chaotic attractor is the smallest integer greater than the correlation dimension itself. 

The reliability of implementing this algorithm suffers from some problems. Because it is 

based on the method of delay time coordinates introduced by Takens (1981), the estimates 

of the embedding dimension and delay time are so crucial that an unfortunate embedding 

variables choice yields misleading results concerning the dimension of well-known 

attractors. 

Other than the problems associated with these estimates, the correlation dimension suffers 

from two other problems related to the choice of sufficiently small ε and the norm 

operator. With the limited length of the data, it will almost always be possible to select 

sufficiently small ε so that any two points will not lie within ε of each other [25] 

Regarding the norm operator, while Brock’s [26] theorem gives the conditions under 

which the correlation function remains independent of the choice of norm even if 

Kugiumtzis [27] shows the invalid application of this theorem for short noisy time series, 

such as economic and financial series. Therefore, under such circumstances, the most 

reliable results are obtained by using the Euclidian norm [28]. 

Reliability could also be compromised by using short data sets [29, 30]. In fact, in the 

case of high-dimensional chaos, it will be very difficult to make estimates without an 

enormous amount of data. This suggests that the correlation dimension can only 

distinguish low-dimensional chaos from high-dimensional stochastic processes, 

particularly with economic data. Furthermore, if the fractal dimension is found, the 

correlation dimension, as in all nonparametric methods, does not provide information 

about the dynamics of the process that generated it because it does not preserve 

time-ordering data [31]. 

 

2.2 BDS Test 

The BDS test
7
 introduced by [32] is a non-parametric method based on the correlation 

function developed by [18], defined in (1), and used to test for serial dependence and 

nonlinear structures
8
 in a time series

9
. 

The BDS test is not considered to be a direct test for chaos; rather, it is used as a model 

selection tool to obtain some information about what kind of dependency exists after 

removing nonlinear dependency from the data.  

The standardised residuals extracted from an ARCH-type model are tested for nonlinear 

dependence. If there is no dependence, the data are not chaotic because the ARCH-type 

model has captured all nonlinearities [36]; otherwise, the BDS test is applied to residuals 

                                                 

7
Subsequent to its introduction, the BBS test was generalized by [33, 34] and more recently, [35] 

introduced an iterative version of the BBS test. 
8
“There are three particularly well known tests currently in use for testing for nonlinearity: BDS 

test, White’s neural network test and the Hinich bispectrum test, [38], p. 8. 
9
The BDS test incorporates the embedding dimensions, but it assumes the delay time equals 1. See 

[38, 39] for the problems when fixing delay time to one. Moreover we have to consider The 

BDS-G test suggested by [39] as a new way for selecting an adequate delay time which allows to 

obtain a good approximation of the correlation dimension. 
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to check if the best-fit model for a given time series is a linear or nonlinear model. 

The BDS tests the null hypothesis that the variable of interest is independently and 

identically distributed (IID). Because IID implies randomness, if a series is proved to be 

IID, it is random [38].  

Under the null hypothesis of whiteness, the BDS statistic is obtained by
10
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The correlation function asymptotically follows standard normal distribution )1,0(N : 

),,(lim mNWN ~ ,),1,0( mN  ; 

),,(ˆ  mN is the standard sample deviation of 
mNCmNC ),1,(),,(   . 

Moving from the hypothesis that a time series is IID, the BDS tests the null hypothesis 

that
mNCmNC ),1,(),,(   , which is equivalent to the null hypothesis of whiteness 

against an unspecified alternative. 

Hsieh (1991) shows that the BDS test can detect the presence of four types of non-IID 

behaviours resulting from a non-stationarity of the series: a linear stochastic system (such 

as ARMA processes), a nonlinear stochastic system (such as ARCH/GARCH processes), 

or a nonlinear deterministic system, or low-order chaos [40]. If series are IID so that 

linear or even conditional heteroskedasticity can describe the relations between data, 

chaotic tests will not be required. However, if this is not the case, investigating the main 

properties of chaoticity should not be disregarded. 

Because it is based on the correlation dimension, the BDS test suffers from the same 

limitations. In particular, its performance depends on the size of data sets (N) and ε
11

, 

even though [41] showed how the statistics of this test are correctly approximated in finite 

samples if: 

- the number of data N is greater than 500. 

- ε lies between 0.5 θ and 2 θ, where θ is the standard deviation of the series. 

- the embedding dimension m is lower than N/200. 

Moreover, it has been found that the BDS test has low power against certain forms of 

nonlinearity, such as self-exciting threshold AR processes and neglected asymmetry in 

volatility [42]. 

 

2.3 Lyapunov Exponents. 

The time series analysis tools described above—the BDS test and the correlation 

dimension— allow for the distinction between nonlinear systems with a certain degree of 

complexity and those without, relying on specific features of these systems: nonlinearity 

for the BDS test and fractal dimension for the correlation dimension.  

The Lyapunov exponent may provide a more useful characterisation of chaotic systems 

because unlike the correlation dimension, which estimates the complexity of a nonlinear 

                                                 

10
Example by [24]. 

11
To deepen this point see [43]. 



Chaos Detection in Economic Time Series: Metric versus Topological Tools         33 

system, it indicates a level of chaos of the systems, investigating another different, and 

perhaps more specific, characteristic of chaotic systems: their sensitivity to initial 

conditions. 

This exponent measures average exponential divergence or convergence between 

trajectories that differ only in having an ‘‘infinitesimally small’’ difference in their initial 

conditions. If the trajectories remain within a bounded set the dynamic system is chaotic. 

To estimate the greatest exponent or Lyapunov characteristic exponent
12

 (λ) from 

experimental or observational data, there are two classes of methods, both based on 

reconstructing the space state by the delay coordinates methods. The direct methods
13

 

proposed by [44, 45] based on the calculation of the growth rate of the difference between 

two trajectories with an infinitesimal difference in their initial conditions and Jacobian 

methods
14

 where data are used to estimate the Jacobians of underlying processes, and to 

calculate λ from these. [46] proposed a regression method similar in some respects to the 

test in [47], which involves the use of neural networks to estimate the Jacobians and λ; it 

is known as the NEGM test. Some remarkable advantages of the Jacobian methods over 

the direct methods are their robustness to the presence of noise and their satisfactory 

performance in moderate sample sizes [48]. 

The general idea on which all methods are based is to follow two nearby points and 

calculate their average logarithmic rate of separation. 

Consider 0x  and 
'

0x  as two points in the state space with distance 

1
0

'

00  xxx  . 

Here, 
xt  is the distance after T iterations between two trajectories emerging from these 

points; thus, 
T

xxt e
0

 where T is the iteration number and   is the maximal 

Lyapunov exponent, which measures the average rate of divergence or convergence of 

two nearby trajectories. This process of averaging is the key to calculating accurate values 

of λ using small, noisy data sets. 

In a system with attracting fixed points of periodic orbit, the distance ),( 0 txx diminishes 

asymptotically with time. If the system is unstable, the trajectories diverge exponentially 

for a while but eventually settle down. If the system is chaotic, ),( 0 txx behaves 

erratically.  

Hence, it is better to study the mean exponential rate of divergence of trajectories from 

two initially close points using the following algorithm: 

 

                                                 

12
“[…] maximal Lyapunov exponent […] is the inverse of a time scale and quantifies the 

exponential rate by which two typical nearby trajectories diverge in time. In many situations the 

computation of only this exponent is completely justified, […]. However, when a dynamical 

system is defined as a mathematical object in a given state space, […] there exist as many different 

Lyapunov exponents as there are space dimensions”, [49], p. 174. 
13

Some limitations of this methods are highlighted in [48]. 
14

To obtain the Lyapunov exponent from observational data, [50, 51] proposed a method, known as 

the Jacobian method, which is based on nonparametric regression. 
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The exponents can be positive or negative, but at least one exponent must be positive for 

an attractor to be classified as chaotic.  

In particular, if 0 , the system converges to a stable fixed point or stable periodic 

orbits. A negative value of the Lyapunov exponent is characteristic of dissipative or 

non-conservative systems. If 0 , the system is conservative and converges to a stable 

cycle limit. If 0 , the system is unstable and chaotic. Therefore, if the system is 

chaotic, it will at least have a positive Lypunov exponent
15

. In fact, one definition of 

chaotic systems is based on a positive Lyapunov exponent [44, 52, 53]. Finally, if  , 

the system is random. 

Positive Lyapunov exponent is generally regarded as necessary but not sufficient for 

presence of chaos. As for correlation dimension, the estimate of Lyapunov exponent 

requires a large number of observations. Since few economic series of such a large size 

are available, Lyapunov exponent estimates of economic data may not be so reliable. 

 

 

3  Topological Tools: Recurrence Analysis. 

The tests used to detect chaotic structure often fail to find evidence of chaos in aggregated 

economic data, even if those data are generated by a nonlinear deterministic process. This 

difficulty is a direct consequence of some problems related to the application of metric 

and dynamical techniques to economic data. First of all, data quantity and data quality are 

crucial when applying these techniques, and the main obstacle in empirical economic 

analysis is addressing short and noisy data sets. 

Little or no evidence for chaos has been found in macroeconomic time series. 

Investigators have found substantial evidence for nonlinearity but relatively weak 

evidence for chaos per se. 

That is due to the small samples and high noise levels for most macroeconomic series; 

they are usually aggregated time series coming from a system whose dynamics and 

measurement probes may be changing over time. 

In contrast to the laboratory experiments where a large amount of data points can easily 

be obtained, most economic time series consist of monthly, quarterly, or annual data, with 

the exception of some financial data with daily or weekly time series.  

The analysis of financial time series has led to results which are, as a whole, more reliable 

than those of macroeconomic series. Financial time-series are a good candidate for 

analyzing chaotic behaviour. The reason is the much larger available sample sizes and the 

superior quality of financial data. 

Controversial results also arise from using inappropriate analytical methodologies that are 

more similar to standard statistical protocol. To distinguish between chaotic and 

non-chaotic behaviours, all researchers, before applying chaos tests, filtered the data using 

either linear or nonlinear models.  

                                                 

15
“[…] the magnitude of the exponent reflecting the time scale on which system dynamics become 

unpredictable”, [44] p. 285. 
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The filtering procedure was supported by [26], who stated that before testing for a 

possible nonlinear dependency among the observations, we need to remove all linear 

correlations that may cause the null hypothesis to be rejected. He also argued that with an 

infinite amount of noise-free data, possible nonlinear structures should be unaffected by 

the implementation of a linear filtering process. Removing all linear structure is difficult, 

but a good approximation can be achieved by using an autoregressive moving average 

(ARMA) fit to stationary data. With the assumption that the residuals are filtered for 

linear dependence, it is reasonable to assert that any resulting dependence found in the 

residuals must be nonlinear. Then when nonlinearity is found, ARCH-type models are 

applied to detect the source. If unexplained nonlinearity remains, chaos tests are applied. 

This linear filtering procedure is irrelevant if the data are infinite, noise-free, and 

stationary, conditions that are not testable for economic and financial data. 

But more generally, the open question is whether the chaotic properties of a phenomenon 

are invariant to linear and nonlinear transformations. It has been proved that linear and 

nonlinear filters can distort potential chaotic structures [54, 55] and may affect the 

dimensionality of the original data [54, 56, 57], providing a false indication of chaos. [54] 

showed that the correlation dimension is not invariant to filtering by the MA (moving 

average model) because, in this way, the fractal structure of the dynamics is lost. 

The failure to find convincing evidence for chaos in economic time series redirected the 

interest to additional tests that work with small data sets and that are robust against noise. 

This goal seems to be reached by topological tools [58] based on topological invariant 

testing procedure (close return test and recurrence analysis). Compared to the existing 

metric and dynamical classes of testing procedures - correlation dimension, the BBS test, 

and Lyapunov exponent - these tools could be better suited to testing for chaos in 

financial and economic time series and to provide information about the underlying 

system responsible for chaotic behaviour [59]. 

Topological tools are characterised by studying the organisation of the strange attractor 

because they exploit an essential property of a chaotic system, i.e. the tendency of the 

time series to nearly, although never exactly, repeat itself over time. This property is 

known as the recurrence property.  

Unlike the metric approach, as the topological method preserves time ordering [31], that’s 

the temporal correlation in a time series in addition to the spatial structure of the data, 

where evidence of chaos is found, the researcher may proceed to characterise the 

underlying process in a quantitative way. Thus, one is able to reconstruct the stretching 

and compressing mechanisms responsible for generating the strange attractor.  

Examples of these tests are Close Returns Test and Recurrence Analysis. Both tests 

consist of two parts. For Close Returns Test we have a qualitative component, that is a 

graphical representation of the presence of chaotic behaviours - the Close Returns Plot 

(CRP) - and a quantitative one that tests the null hypothesis that the data are IID against 

both linear and nonlinear alternatives. It exhibits the same performance as the BDS test 

even if it detects the recursive behaviour of chaotic time series.  

Recurrence Analysis is composed by the Recurrence Plot (RP) developed by [51], the 

graphical tool that evaluates the temporal and phase space distance, and Recurrence 

Quantification Analysis (RQA), the statistical quantification of RP [60]. 

Recurrence Analysis and the Close Returns Test are more similar because they are based 

on the same methodology but differ in the plot construction. RPs are symmetrical over the 

main diagonal. Moreover, while the CRP analyses the time series directly and fixes a 

value   to estimate nearby points, the RP is based on the reconstruction of time series 
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and an estimation of the points that are close. The starting point of the RPs is based on the 

time delay method through which the original series is transformed into a set of 

m-histories. 

How the information can be recovered from time series was first suggested by [23, 61]. 

They highlighted that a phase space analogous to that of underlying dynamical system 

could be reconstructed from time derivative formed from the data. The original series is 

transformed into an m-dimensional system that, depending on the fulfilment of certain 

conditions, is topologically equivalent to the original system from which the series was 

supposedly determined. The one-dimensional signal )(tX  
is expanded into an 

m-dimensional phase space by substituting each observation with vector: 

 

 dmididiii xxxxY )1(2 ,...,,                                           (6) 

 

As a result, we have a series of vectors:  

 

 dmNyyyyY )1((),...3(),2(),1(                                       (7) 

 

where N is the number of observations, m is the embedding dimension and d is the delay 

time. If the unknown system that generated  n

ttx
1
 is N-dimensional, and provided that 

embedding dimension
16

 is 12  nm
17

, the set of m-histories recreates the dynamics of 

the data-generating system and can be used to analyse its dynamics [23, 61]. 

 

3.1 Recurrence Plot 

The Recurrence Plot is a two dimensional representation of those m-histories whose 

coordinates are the present and lagged values of the series. 

By using an appropriate norm and fixing a threshold ε 
18

 that determines if vectors x(i) 

and x(j) are sufficiently close together – distance between them below or equal to ε - we 

obtain a recurrence matrix formally expressed as following: 

 

MjiforjxixjiR  ,),()((),(                            (8) 

 

                                                 

16
Basic elements to reconstruct the time series from the original one are the delay-time and the 

embedding dimension. In the literature there are some techniques like the False Nearest Neighbor 

and the Mutual Information Function in order to choose respectively the embedding dimension and 

the delay-time. 
17

According to the numerical results provided by [61] it is possible to get reasonable results with 

much smaller embedding dimensions. This point is particularly interesting in different economic 

applications since in such cases the dimension of the true phase space is often not known a priori. 

Over the years this insight has been widely adopted in economic literature on chaos where 

common practice is to choose m around 10–12. [16]. 
18

A crucial parameter of an RP is the threshold ε. Therefore, special attention has to be required for 

its choice. See [62] 
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where M=N-(m-1)d, Θ is the Heaviside function, and || || is a norm, generally Euclidian
19

.  

The matrix R consists of values 0 (no recurrence) and 1 (recurrence).  

More formally: 
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The RP is obtained by plotting these binary entries using different colours. Generally dark 

colour marks nonzero values, that is, short distances, and a light colour zero values, that is, 

the long distance. Both axes of the RP are time axes and show rightwards and upwards 

(convention). Since Ri,i ≡ 1 |N i=1 by definition the RP always has a black main diagonal 

line, the line of identity and it is symmetric with respect to the main diagonal, i.e. Ri,j ≡ 

Rj,I (Marwan et al., 2007).  

The points along the parallels to the 45 degree line are characterized by the same grey 

tone and this indicates that the couples of observations that keep the same temporal 

distance are also characterized by the same spatial distance (represented by the same grey 

tone) [2] 

This graphic tool shows different structures depending on the nature of the series under 

study. 

In particular, it is capable of detecting the time recurrence patterns underlying 

deterministic systems (whether they are chaotic or not). Non-chaotic deterministic 

systems exhibit very simple regular structures, while the RPs of chaotic systems also 

show a certain regularity but with more complex and denser features. On the other hand, 

the RPs obtained from purely random systems do not show distinguishable patterns, 

appearing as a cloud of points with no apparent structure. 

To illustrate the basic ideas behind RP some examples by Visual Recurrence Analysis 

(VRA)
20

 are used. We start by considering a random time series (White noise). The plot 

(fig. 1b) has been built using delay 1 and dimension 12 as selected respectively from 

Mutual Information Function (MIF) [63], and False Nearest Neighbours (FNN) [64], both 

calculated by the software. As we can see in fig.1b, the plot of random time series shows 

recurrent points distributed in homogenous random patterns - a cloud of points. This 

means that the random variable lacks deterministic structures. Always in Fig.1 it is 

possible to characterize stationary and non-stationary processes. If the texture of the 

pattern within such a block is homogeneous, stationarity can be assumed for the given 

signal within the corresponding period of time; non-stationary systems cause changes in 

the distribution of recurrence points in the plot which is visible by brightened areas. 

Diagonal structures show (fig. 1c) the range in which a piece of the trajectory is rather 

close to another piece of the trajectory at different times. From the occurrence of lines 

                                                 

19
The most frequently used norms are the L1-norm, the L2-norm (Euclidean norm) and the 

L∞-norm (Maximum or Supremum norm). Note that the neighbourhoods of these norms have 

different shapes (Fig. 4). Considering a fixed ε, the L∞-norm finds the most, the L1-norm the least 

and the L2-norm an intermediate amount of neighbours. To compute RPs, the L∞-norm is often 

applied, because it is computationally faster and allows to study some features in RPs analytically. 

See [62] 
20

Eugene Kononov http://home.netcom.com/~eugenek/download.html 
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parallel to the diagonal in the recurrence plot, it can be seen how fast neighboured 

trajectories diverge in phase space. These lines would not occur in a random as opposed 

to deterministic process. Thus, if the analysed time series is chaotic, then the recurrence 

plot shows short segments parallel to the main diagonal: chaotic behaviour causes very 

short diagonals, whereas deterministic behaviour causes longer diagonals (fig.1a vs. fig.c). 

If the series is white noise, then the recurrence plot does not show any kind of structure: 

there are no segments parallel to the main diagonal.  

 

          
      (a)          (b) 

 
(c) 

Figure 1: Examples by VRA. (a) Periodic time series; (b) White Noise; c) Henon equation 

 

This procedure has some advantages such as simplicity of implementation, robustness to 

sample length, high dimensionality, noisy dynamics in the underlying equations of motion 

and fewer prior requirements of the database used [65]. RP analysis is independent of 

limiting constraints such as data set size, noise, and stationarity; prewhitening of the data 

(linear filtering, detrending, or transforming the data to conform to any particular 

distribution) is not necessary as stationarity is not as essential like for the metric approach 

[66].  

Nevertheless some limitations are present. The first one is the construction of RPs and 

obtaining the Recurrence Matrix (RM). Because they are carried out on the basis of the 
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time delay method, which requires previously fixing the values of the embedding 

dimension and the time delay, the results obtained from the RP application are sensitive to 

the values chosen for these parameters [67, 68, 69]. Time delay determines the time 

separation or predictability of the components in the reconstructed vectors of the system 

state. It should be chosen so that the elements in the embedding vectors are no longer 

correlated, thus subsequent analysis would reveal spatial (or geometrical) structures. 

Since the system is unknown, we estimate optimal time delay as the one where average 

mutual information (MIF) reaches its first minimum. 

The embedding dimension determines the number of the components in the reconstructed 

vector of the system state. It should be large enough to unfold the system trajectories from 

self-overlaps, but not too large as the noise will amplify. For a rough selection of the 

embedding dimension for our one-dimensional time series, we employ the false nearest 

neighbour (FNN) method suggested by [64]. 

Even though [70] state that these graphics are independent of these parameters, that is to 

say, they remain qualitatively stable when the parameters change, other investigations 

have shown strong evidence to the contrary [71, 72]. [73] (p. 242) conclude that “both 

groups are in some sense right”, showing that some indicators obtained from the RPs are 

independent from the embeddings while others are not. 

The second one is the difficulty to interpret the graphical output of RP. Sometimes the 

signature of determinism, the set of lines parallel to the main diagonal, might not be so 

clear. [74, 75] recognised this disadvantage and tried to overcome it by proposing a 

statistical quantification of RP, which is well known as Recurrence Quantification 

Analysis (RQA). 

 

3.2 Recurrence Quantification Analysis 

The RQA considers that it is possible to quantify the information supplied by RP and, 

using certain simple pattern recognition algorithms, to summarize the information in a set 

of indicators or statistics. In this way more objective information than that which could be 

derived from a purely visual analysis are obtained. 

Considering that RP is symmetric, the set of indicators is obtained using the upper or 

lower triangular part of RP excluding the main diagonal. The main indicators are 

recurrence rate, determinism, averaged length of diagonal structures, entropy and trend. 

Recurrence rate (REC): recurrence points percentage defined as (Aparicio et al. 2008): 

 

100% x
NP

NREC
REC                                                   (10) 

 

where NREC is the number of recurrent points and NP is the total element of the 

recurrence matrix. Roughly speaking REC is what is used to compute the correlation 

dimension of data (Eq. 6). 
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Determinism rate (DET) is the ratio of recurrence points forming diagonal structures to 

all recurrence points. DET
21

 measures the percentage of recurrent points forming line 

segments that are parallel to the main diagonal and is calculated as 

 

100% x
NREC

NPD
DET                                                   (11) 

 

where NPD is the number of points on lines parallel to the main diagonal caused by the 

existence of time correlation within the trajectory. 

The presence of such diagonal structuring in RM is assumed to be a distinctive feature of 

deterministic structures, absence, instead, of randomness. DET is related with the 

determinism of the system: the greater the number of points is on line segments, the 

greater the general dependence of the series will be. 

 

Maxline (MAXLINE) represents the averaged length of diagonal structures and indicates 

the longest line segments that are parallel to the main diagonal. Unlike the %DET counts 

all the points on the parallel lines equally regardless of their size, this indicator considers 

the length of the different lines. It is claimed to be proportional to the inverse of the 

largest positive Lyapunov exponent. A periodic signal produces long line segments, while 

the noise does not produce any segments. Short segments indicate chaos. 

 

Entropy (ENT) (Shannon entropy) measures the distribution of those line segments that 

are parallel to the main diagonal and reflects the complexity of the deterministic structure 

in the system. This ratio indicates the time series structuredness so high values of ENT 

are typical of periodic behaviours, while low values are typical of chaotic behaviours. A 

high ENT value indicates a large diversity in diagonal line lengths; low values indicate 

small diversity in diagonal line lengths [77]. “[...] short line max values therefore are 

indicative of chaotic behaviours” [70, 71]). 

The value trend (TREND) measures the paling of the patterns of RPs away from the main 

diagonal used for detecting drift and non-stationarity in a time series. It is calculated as a 

slope of the %REC as a function of the displacement of the main diagonal [78]. 

In the fig. 1b the visual features are confirmed by the ratios calculated with RQA. We can 

see that the REC and DET assume values equal to zero, so, in time series there are no 

recurrent points and no deterministic structures. These features are more evident if we 

compare REC and DET of time series with one of sine function (fig. 1a). The plots of sine 

function are more regular and REC shows not only the recurrent point in each epoch but 

also that this value is the same. DET values are high meaning strong structures in the time 

series confirmed by the MAXLINE values which are also high, so deterministic rules are 

present in the dynamics. Comparing fig. 1a and fig. 1c it is possible to see that if the 

analyzed series is generated from a determinist process in the RP there are long segments 

parallels to the main diagonal. If the data are chaotic these segments are short. 

                                                 

21
“This is a crucial point: a recurrence can, in principle, be observed by chance whenever the 

system explores two nearby points of its state space. On the contrary, the observation of recurrent 

points consecutive in time (and then forming lines parallel to the main diagonal) is an important 

signature of deterministic structuring” [76].
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4  International chaos 

In their paper [14] analyze the quarterly macroeconomic data of GDP from 1960 to 1988 

for West Germany, Italy, Japan and England. The goal was to check for the presence of 

deterministic chaos. To ensure that the data analysed was stationary they used a first 

difference
22

 then tried a linear fit.  

Using a reasonable AR specification for each time series their conclusion was that time 

series showed different structures. In particular non linear structure was present in the 

time series of Japan. Nevertheless the application of typical tools for detecting chaos 

(correlation dimension and Lyapunov exponent) didn’t show presence of chaos in any 

time series. Therefore, although the presence of nonlinearity and correlation dimension 

values led to admit chaotic behaviour in the time series, Lyapunov exponent test did not 

support this hypothesis. Probably, as admitted by the same authors, this conclusion could 

be given by the shortness of series. “With longer time series matters could change”
23

. 

The conclusion of authors was that none of the countries’ income appeared to be well 

interpreted as being chaotic. The authors ascribe their result to shortness of time series 

highlighting that with longer time series it could be possible to reach a contrary result. 

This conclusion is our starting point. By applying Visual Recurrence Analysis
24

 we will 

analyse these time series with the purpose of verifying if the analysis performed by a 

topological tool
25

 could give different results from ones obtained using a metric tool. 

The time series
26

 chosen were GDP of Japan and GDP of the United Kingdom. The 

choice was based on the fact that Japan is considered among four of the most dissimilar 

ones. In fact, in order to filter this series, the authors used an Ar-4, while for the others an 

Ar-2 was used. For this series they refused the hypothesis IID and the correlation 

dimension value calculated for various values of M, (the embedding dimension), grew 

less than the growth of the value of the embedding dimension. There was a saturation 

point. 

In fact for calculated values of M, 5, 10, 15, the dimension of correlation was respectively, 

1.3, 1.6, 2.1, against values of 1.2, 3.8, 6.8 of the series shuffled for which aThe rejection 

of the IID hypothesis, the value of correlation dimension compared with value of shuffled 

series, and the presence of nonlinearity led the authors to suspect that time series could be 

chaotic. However, tested with the Lyapunov exponent, the conclusion was that data didn’t 

manifest chaotic behaviour.  

In fact the value of the Lyapunov exponent test was negative
27

. They showed that Japan’s 

economy is the most stable of the analysed countries. 

                                                 

22
In economics, Gross Domestic Product (GDP) is used to measure of the size of the 

macroeconomy, but given that this variable is non-stationary and measured using current prices, 

the main metric for economic expansion that economists use to assess the rate of growth of the 

macroeconomy is the change in real (inflation-adjusted) GDP over time [79] 
23

[14], p. 1581. 
24

Recurrence Analysis software used for our analysis is Visual Recurrence Analysis by Eugene 

Kononov. http://home.netcom.com/~eugenek/download.html An extensive survey of different 

software used to apply these techniques is provided in [15]. 
25

An extensive survey of different software used to apply these techniques is provided in [15]. 
26

In the analysis performed by [14] the data are for the Japan Real GNP seasonally adjusted, 

quarterly from 1960 to 1988 and for United Kingdom from 1960 to 1988. Source Datastream. 
27

See “Table 4” p. 1580, in [14]. 
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The GDP time series of United Kingdom was chosen because, as emphasized by the 

authors, for it, as for Germany, time series is not rejected by the hypothesis IID. The 

behaviour of correlation dimension is the same for all three European countries
28

. 

The increase of the embedding dimension corresponds to sustained increase of the 

dimension of correlation. Such increase is also characterised in time series shuffled 

obtained from the time series fits with Ar-2. From this conclusion and considering that the 

values of Lyapunov exponent test were negative the authors conclude that European time 

series didn’t show non-linearity and in particular chaotic behaviour. 

The GDP data of Japan and United Kingdom were analysed with Visual Recurrence 

Analysis. Following the consideration reported in the paragraph 2.4 and supported by [66] 

the data were implemented and analysed without prewhitening. 

The Recurrence Plot (RP) of Japan GDP is shown in Fig.2a. This was built using a 

delay-time and embedding dimension respectively equal to 2 and 7. Embedding 

parameters are determined by the method of false nearest neighbours and the delay by 

mutual information, and the results are displayed in table 1 for the euro area member 

states and table 2 for non-euro area countries and the euro area aggregate. 

The analysis of VRA using the shuffled series of Japan is described in Fig. 2b. 

Comparison between RP of the original time series (Fig.2a) and RP of the shuffled series 

(Fig. 2b) allows to highlight that the first is non-stationary. The different and diversified 

colours allow us to support that the more homogenous coloration from the shuffled series 

(Fig. 2b) is typical of stationary data. Moreover if some nearly continuous lines may be 

noticed in the plot of shuffled series is due to the random number generator, which is a 

mathematical algorithm and therefore does not produce purely unstructured time series [2]. 

The absence of deterministic structure is confirmed by ratios of RQA. 

 

               
(a)                 (a)                                                     (b) 

Figure 2: (a) RP of Japan GDP; (b) shuffled time series 

 

 

 

In table 1, RQA results are indicated for both time series: shuffled and not. For the 

original series REC is positive meaning that the data are correlated. DET is also positive 

indicating that roughly 43% of the recurrent points are consecutive in time, that is, form 

                                                 

28
Table 2, p. 1579 in [14]. 
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segments parallel to the main diagonal. This indicates that in the data there is some type 

of structure. As we saw in fig. 1a long segments indicate that the series is periodic, short 

segments that the series is chaotic (fig. 1c). 

The value of MAXL is 28. This value indicates length of the longer segment in terms of 

recurrent points of the longer segment and makes it possible to say that the data are 

non-linear and it is not possible to exclude the presence of chaotic behaviour. 

 

Table 1: RQA Statistics of original and shuffled time series 

 Japan  

GDP 1960-1988 Shuffled 

Delay 2 2 

Dimension 7 8 

REC 2.314 0.0 

DET 48.485 0.0 

ENT 1.00 0.0 

MAXL 28 0.0 

TREND -87.39 0.0 

 

The statistics of the RQA (Tab.1) indicate that the shuffled series has lost all information, 

there are no recurrent points (REC), or segments parallel to the main diagonal (DET). 

Therefore, no type of deterministic structure is present. This consideration is confirmed 

by the fact that the value of the MAXL is zero. By comparing original time series with its 

shuffling we can conclude that the data of Japanese GNP are characterised by 

non-linearity, confirming the result presented by [14], and they are non stationary. 

Our conclusion regarding the presence of chaotic behaviour is different
29

: the data can be 

chaotic. Therefore, if the authors ascribe the result of their analysis to the shortness of the 

time series highlighting that with longer time series it could be possible to reach a 

contrary result
30

, the VRA analysis, which can be applied and gives reliable results also 

with short data sets, shows presence of chaotic behaviour in those data. 

In fig. 3 we can see the RP of the United Kingdom GDP. This was built with delay-time 

and embedding dimension respectively equal to 1 and 8. By comparing the RP of the 

original time series (Fig. 3a) and its shuffling (Fig.3b) we deduce that the time series is 

non-stationary: the economy of the United Kingdom is characterised by a period of 

structural change
31

. 

                                                 

29
“[…] None of these countries’ national income would appear to be well interpreted as being 

chaotic.”, [14] p. 1581. 
30

“[…] When interpreting the findings one must be cautions given the shortness of the series. With 

longer time series matters could change”, [14], p. 1581. 
31

For three decades from 1960, Japan experienced rapid economic growth, which was referred to 

as the Japanese post-war economic miracle. With average growth rates of 10% in the 1960s, 5% in 

the 1970s, and 4% in the 1980s, Japan was able to establish and maintain itself as the world's 

second largest economy from 1968 until 2010, when it was supplanted by the People's Republic of 

China. 
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(a)                    (a)                                                 (b) 

Figure 3: (a) RP of UK GDP; (b) shuffled time series 

 

Table 2 summarises the statistics of RQA for original time series and its shuffling. The 

statistics of original time series indicate that in the data there are recurrent points (REC 

positive), that is, more than 8% of the points that compose the area of the RP’s triangle 

are correlated.  

Of this 8%, 32% (DET) shapes segments parallel to the main diagonal, indicating the 

presence of determinist structures. This conclusion is confirmed by the presence of a 

positive value of the MAXL. The same ratios of shuffled series are characterised by zero 

values or negative. 

 

Table 2: RQA Statistics of original and shuffled time series 

 United Kingdom  

GDP 1960-1988 Shuffled 

Delay 1 1 

Dimension 8 9 

REC 8.458 0.0 

DET 32.009 0.0 

ENT 1.972 0.0 

MAXL 26 0.0 

TREND 77.803 0.0 

 

Comparing our analysis with the one performed by [14] it is possible to highlight some 

points of difference. While they do not refuse hypothesis IID, the analysis led with VRA 

induces us to refuse this hypothesis and to emphasize the presence of structure. The data 

of the United Kingdom are non-linear and this nonlinearity can be interpreted as chaos. 

The MAXL and DET value, in fact, confirm that. Also for the United Kingdom as for 

Japan, [14] emphasized that the analysis carried out on longer series could have obtained 

different results from the ones we reached. A different conclusion also concerns the fact 

that, while for Frank et al. the Japanese economy seems more stable than that of the 

European countries, our analysis (also if limited just to the United Kingdom) is performed 

from a different point of view. While in Frank M., et al. the comparison was made 

between stable economies, our analysis is based on unstable economies. The economy of 

Japan in these years (60-88) is less unstable than that of UK. Testing data sets with Visual 
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Recurrence Analysis have provided different conclusions from the original work. Our 

analysis, although performed using a short time series indicates the presence of chaotic 

behaviour in Japan and United Kingdom time series. 

 

 

5  Conclusions 

The main purpose of this paper has been to illustrate how recurrence analysis can be 

applied to an important macroeconomic issue, in order to shed light on the chaotic 

dynamics present in an economic system. 

From our analysis compared with the more conventional one by [14] it is possible to 

conclude that the topological approach can be useful for economic analysis performed on 

short time series, typical of complex economy, to show the presence of chaotic dynamics. 

Considering the features of economic time series Recurrence Analysis offers a unique 

non-linear approach to analysing them.  

There are few existing studies of macroeconomic dynamics which utilize this 

methodology, and so the application in this contribution serves to illustrate the potential 

of this tool in the study of economic data, but more important to support the conclusion 

reached by [14] that the data analysed could be chaotic. The conclusion of authors was 

that none of the countries’ income appeared to be well interpreted as being chaotic 

ascribing their result to shortness of time series and highlighting that with longer time 

series it could be possible to reach a contrary result. The application of Recurrence 

Analysis seems to support this contrary result.  

Sometimes the conclusions both for and against chaos are reached by applying only one 

type of chaos test. To produce convincing results, we have to employ all tests for chaos to 

exploit their different potentials and limits. Few published papers have jointly applied the 

BDS test, the correlation dimension test, and the test for a positive Lyapunov exponent. 

Our work is a further example in this direction showing how chaotic behaviour could be 

detected with a topological tool in the data analysed by [14] only using metric tests. 

There are important reasons to understand the impact of nonlinearities and chaos in social 

systems. First of all it is possible to have a more realistic description of economic 

phenomena. Most economic variables, whether micro-level, such as prices and quantities, 

or macro-level, such as consumption, investment and employment, oscillate and it is 

difficult to find a specific pattern in these oscillations at the level of micro and macro 

variables because they are not cyclic [80] and not due to external shocks. It is very 

interesting to use chaos theory for modelling because in this we have a non-explosive 

system (no trend), an aperiodic system (no seasonality), and a stationary system (invariant 

distribution ergodicity) [81]. 

In particular chaotic nonlinear systems can endogenise shocks. Chaotic dynamic models 

allow for the explanation of persistent and irregular fluctuations without stochastic 

exogenous shocks introduced ad hoc.  

Nevertheless serious limit for a wide application of this approach in Economics is 

represented by inherent unpredictability of chaotic systems. Concerning this point in 

Economics we “distinguish between the pessimistic and apathetic approaches, that only 

pay attention to identify chaos with unpredictability, and those that tries to deep and find 

the way through which nonlinear dynamic and chaos can help the economy as an evolving 

complex system. As we say, the first group, that is, the frigid one, principally the 

econometricians, argues that is not possible the predictability, and because of it chaos 
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theory doesn´t work, but the fact that we cannot make exact predictions of the long-term 

behaviour of chaotic systems does not exclude the possibility of making, more or less 

accurate, short-run forecasts” [82]. 

Even if the future is unknowable, nonetheless Chaos Theory allows for the possibility of a 

range of future states represented by attractor on which orbits chaotic trajectories evolve. 

In the long run, a chaotic system moves into, and remains in it, though in principle 

determinate, resembles a random walk, repeatedly visiting each point in the attractor. The 

global behaviour of chaotic systems is bounded on the attractor: is not explosive. We can 

see the attractor as the season trend and the daily data "attracted" to the trend values. This 

is one way of saying that the daily data are permitted to vary, but are more likely to be 

close to the trend and the size of these fluctuations from one period to the next have a 

characteristic probability distribution [83].  

While economic fluctuations are unpredictable they will always lie within certain bounds. 

Thus, if we are able to know in which space the attractor lies, by determining the phase 

space using the embedding dimension for instance, and if we are able to re-build the 

orbits, then we can make predictions [81]. 

Although we cannot forecast the precise state of a chaotic system in the longer term, 

chaotic systems trace repetitive patterns which often provide useful information [84] 

because they are the same at different scale of time. What is observed at a more global 

level is reproduced at a smaller scale because the chaotic attractor is a fractal. So, having 

knowledge of such patterns would make it possible to, on the average, make better 

micropredictions
32

.  

Moreover, exploring economic system by chaotic means is likely to be a new approach 

helpful for the government to formulate relevant policies to macro-control economy. In 

the real world where complex dynamics occur ‘‘....linear models are fundamentally wrong 

or misleading, skewing our understanding of the economy and perhaps corrupting the 

associated policy advice. It is possible to hold belief in a ‘wrong’ theory that generates 

‘incorrect’ policy advice, in the sense that if the advice is executed, the actual net effects 

will be fundamentally different from those predicted by the theory” [85, p. 849].  

The policies focusing only on one economic variable are condemned to fail. On the 

contrary, policies that take into account a set of economic variables can be more flexible 

and consequently efficient, in the sense that they will have higher probabilities of 

minimizing deviations from their final policy objective” [13]. 

Nevertheless, chaotic models can be used to suggest ways that people might intervene to 

achieve certain goals. Chaotic systems could be controlled, that is, made non-chaotic, by 

manipulating certain variables relating to the particular system.  

 

 

 

 

 

 

                                                 

32
One computer analysis of stock market data suggests that there are self-similar patterns at 14, 5 

and 2 yr. periods and in 5 month periods and that the same patterns may be present within each day. 

F. D. Peat http://www.fdavidpeat.com/bibliography/essays/chaos.htm 
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Controlling chaotic systems
33

 can be more efficient than controlling linear ones, because 

only a small push could be needed to engender a big change in the system [86, 87, 88]. In 

1990, Ott, Grebogi and York pointed out that chaos could be advantageous in achieving 

control objectives. Their method involves stabilizing one of the unstable periodic orbits 

embedded in the chaotic attractor using small time dependent perturbations of a system 

parameter. Chaotic motion allows this method to work since all of the unstable periodic 

orbits will eventually be visited. One simply waits until the chaotic motion brings the 

system near a neighbourhood of the proper unstable periodic orbit, at which time the 

small control is applied exploiting the sensitivity to initial conditions. 

This feature of chaotic systems in economics could have an important insight. Using 

sensitivity for initial conditions to move from given orbits to other orbits of attractor 

means choosing different behaviours of systems, that is, a different trade-off of economic 

policy. Moreover, the employment of an instrument of control in terms of resources to 

achieve a specific goal of economic policy will be smaller compared to the use of 

traditional techniques of control. In other words, small, low-cost policy changes could 

have a large impact on overall social welfare. Realistic modelling, resource saving and 

choosing among different trade-offs of economic policies (many orbits) could be 

significant motivations to use chaotic models in economic analysis.  

The results of chaos tests do not prove the existence of chaos in all economic variables 

but are consistent with its existence; in some cases, this could mean only that some 

economic phenomena are less complex than others and that the economy of a country or 

simply a single market of an economy is chaotic, not that an economy is as a whole is 

chaotic. 

Economics is inherently dynamic, evolving system. Change is actually constitutive of all 

sorts of human co-existence/co-operation and social living over the ages. Chaos Theory 

allows to take in to account these features and to speak about determinism in this context 

means to say that changes move following a rule and in a well specified range (attractor). 

Given these considerations, studies in this area should grow both in size and importance 

as a field of their own within economics, although the empirical task of extracting 

evidence of chaotic dynamics from economic time series is objectively more difficult than 

in the natural sciences. It is very important to realize that despite the probabilistic 

behavior of a system that naturally limits its predictability, this must not prevented the 

development of this research area. In this direction the work in progress by [89, 90] that 

conjecture that to predict at a medium-term horizon or the work by [91] that demonstrated 

as a reduction of large forecasting errors is produced by making use of system knowledge 

form the effective Lyapunov exponent. Just to name few. 

Moreover, if the best we can do is make short and approximate predictions, then we 

should be trying to make "parallel" predictions of similar or "surrounding" events.  

                                                 

33
“If the governing equations of such systems are exactly known, then one can easily use the OGY 

or the Pyragas method to design stabilizing controllers for them. However due to uncertainties, 

determining an exact governing equation for a system is not possible, and the parameters of a 

system always have some uncertainties. So introducing a robust control strategy for chaos control 

in such systems seems to be vital. One of the famous nonlinear methods used as a robust control is 

the sliding mode. Sliding mode control initially developed for continuous time systems. Due to 

some technical difficulties it cannot be used directly for discrete dynamical systems generated by 

nonlinear maps” [92] 
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Instead of looking for ever more accurate models we should be applying the models we 

have to a range of conditions similar to those we want to predict. The policy makers have 

to learn to work with models that behave in this way and use them to discover which 

kinds of conditions seem generally to develop in the same way and which do not. In 

economic systems it is often not possible to determine the exact time when something will 

happen. In many cases it is still feasible to say what events are likely to happen and in 

what sequence. We have to be able to explore possible futures and to detect warning signs 

of certain kinds of systemic instabilities or systemic shifts (such as critical fluctuations). 

As said Henri Poincaré is much better to look farther without having certainty, that don’t 

look anything at all [82]. 
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