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Abstract 

In this study, we treat the seasonal variation in monthly time series in the context of the 

Western-European tourism demand for Tunisia, by presenting different techniques of 

detection of seasonality and the parametric and non-parametric approaches of seasonal 

adjustment. Then, we compare the forecasting performance of these methods. The 

empirical results militate in favour of the TRAMO-SEATS method. In fact, this approach 

provides the best forecast. In terms of forecasting efficiency, we note in addition, that the 

modelling of the seasonal variation using seasonal ARIMA model (SARIMA) may lead to 

better predictive results compared with other techniques of seasonal adjustment used in 

this research, namely: the X-12-ARIMA, regression on seasonal dummies and the ratio-

to-moving average methods. 

 

JEL Classification numbers: C22, C52, C53, L83. 

Keywords: seasonality, tourism demand, forecasting performance, seasonal adjustment, 

seasonal modelling. 

 

 

1    Introduction 

Seasonality is a major characteristic of the tourism activity. It reveals the influence of the 

seasons on the tourism demand.  

This phenomenon is related to weather changes as well as institutional factors (school 

holidays, professional vacation, public (Christmas or Easter), religious and 

commemorative festivals). The calendar can also generate a seasonal movement in 

monthly time series since the number of working days varies from one month to another. 

It is also related to certain socio-cultural characteristics (sport practices; social or religious 

habits). 
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Taking that into account, the phenomenon of high and low seasons constitutes a problem 

of size which worries the actors of the tourism field.  

Time series analysis aims to separate the short-term behaviour from that of long-term of 

an economic data series and to give reliable forecasts for these separate components and 

for the totality of the series.  

The seasonal variations explain most of the variation in the growth rates of the majority of 

the economic time series. In order to draw conclusions on the nature of the business 

cycles and the long-term growth, the traditional approach is to remove the seasonal 

component of a series through the use of deterministic seasonal dummies, seasonal 

differentiation, or using the seasonal adjustment techniques such as the X-12-ARIMA 

method. 

However, sometimes we show that it can be more appropriate to study the seasonal 

models themselves (Lee and Siklos (1993), Reimers (1997)) since they could give 

information on the behaviour of the economic agents which are exposed to changes of 

tendencies at the moment of planning and the formation of waitings. Thus, although 

seasonal variations-corrected data can be useful, it is typically recommended to use not 

adjusted data. Moreover, several recent empirical studies showed that many methods of 

seasonal adjustment lead to seriously denatured data, in the sense that the key properties 

such as the tendencies, the business cycles, the non-linearities are affected by the seasonal 

adjustment (Ghysels and Perron (1993), Ghysels, Granger and Siklos (1995), Hylleberg 

(1994), Miron (1996), Maravall (1995)). 

In contrast, King and Kulendran (1997) evaluate several models, including the seasonal 

unit roots model, in the forecast of quarterly tourist arrivals in Australia coming from 

many countries. Their principal conclusion is that compared to time series models, the 

forecasting performance of the seasonal unit roots models is weak. This may be due to the 

lack of power of some unit roots tests. On the other hand, Paap, Franses and Hoek (1997) 

use empirical and simulation examples to demonstrate that the neglected seasonal average 

changes can destroy considerably the forecasting performance of the univariate 

autoregressive processes. Thus, appropriate treatment of seasonality is important to make 

reliable forecasts. 

In this article, we propose firstly, to study the seasonal aspect strongly characterizing the 

tourism time series, by presenting different tests of seasonality detection and various 

methods of treatment of seasonality, in particular seasonal adjustment methods versus 

seasonality modelling. Then, secondly, we will compare the forecasting performance of 

these methods.  

 

 

2    Analysis of Seasonality 

2.1  Detection of Seasonality  

During the analysis of a time series, it is necessary to identify the seasonal variation 

which can be probably observed. Various types of tests are set up to detect the presence of 

this component.  
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2.1.1  Autocorrelations  

Seasonality can be detected graphically by examining autocorrelation (ACF) and partial 

autocorrelation functions (PACF) necessary for the identification of suitable ARIMA 

models. Indeed, the correlogram of a seasonal series often takes a sinusoidal form (see 

table 1). 

 

2.1.2   Traditional tests of presence of seasonality 

To test the presence of seasonal variation, a multiplicity of tests were suggested, namely: 

the stable seasonality and moving seasonality tests which are Fisher types tests based on 

models of analysis of the variance to one (the month or the quarter) and two factors (the 

month or the quarter and the year), respectively. Indeed, stable seasonality is a type of 

seasonality which is repeated at the same time each year, and this stable aspect facilitates 

the forecasts. While the moving seasonality is represented by a movement effect from one 

month to another.  

This lack of stability makes its forecast difficult. Lastly, we distinguish the identifiable 

seasonality test completing the tests evoked above. It is built starting from the values of 

Fisher statistics of stable and moving seasonality tests (Lothian and Morry, 1978). 

The test statistic, noted T, is expressed as follows:  

1/ 21 2
1 2

37
( ) with and

2

M

S S

T T F
T T T

F F


   . 

If statistic T is lower than 1 so we concludes the presence of identifiable seasonal 

component and the seasonal adjustment of the series is then necessary.  

 

Table 1: Correlogram of Western-European tourist arrivals series 
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2.1.3  Seasonal unit roots tests 

The detection of seasonal variation can be done using seasonal unit roots tests. For this 

purpose, a certain number of tests were implemented in the eighties and nineties, in 

particular to test the seasonal variation at order 4 and order 12.  

Test DHF (Dickey, Hasza and Fuller, 1984): it allows to test the null assumption 1 

 in the model t t s tx x   . Under H0 true, the series is seasonal and the filter 

(1 )s

s L   suggested by Box & Jenkins (1970) is appropriate to adjust it (S being the 

period of seasonality). 

Test HEGY (Hylleberg, Engle, Granger and Yoo, 1990): the literature on the concept of 

“units roots” (e.g., Dickey, Bell and Miller (1986)) shows that the assumption of 

existence of certain filters of differentiation amounts to emit the assumption of presence 

of a certain number of seasonal and non-seasonal units roots in a time series. This can be 

easily seen by writing: (1 )s

s L   , and by solving the equation: (1 ) 0sz  . 

The general solution to this equation is: 1,cos(2 / ) sin(2 / )k S i k S  ; with the term 

(2 / )k s for k = 1,2,…, represents the corresponding seasonal frequency, giving S 

different solutions which all of them are on the circle unit. The HEGY method, mainly 

conceived for the quarterly series, was adapted to the monthly case thanks to Franses 

(1990) and of Beaulieu and Miron (1993) works. In fact, if S = 12, solutions of the 

equation 
12(1 ) 0z   are: “1” for the non-seasonal unit root corresponding to frequency 

0; and 11 seasonal unit roots 

1 1 1 1
1, , (1 3 ), (1 3 ), ( 3 ), ( 3 )

2 2 2 2
i i i i i

 
        
 

 corresponding respectively 

to the following frequencies: 
2 5

, , , , ,
2 3 3 6 6

    

 

     
 

 and to the operators of 

differentiation: (1+ L), (1+ L
2
), (1+ L+ L

2
), (1 – L+ L

2
), (1+ 3 L+ L

2
)  and  (1 - 3 L+ 

L
2
). 

Thus, a filter of differentiation ( )s  can be written as: 
1(1 )(1 )S

s L L L       , 

and can thus be decomposed into a part with non-seasonal unit root and a part with (S - 1) 

seasonal unit roots.  

In this test, we resort to the decomposition of the polynomial (1-L
12

), with 12 roots units 

and we consider the following form: 

8 1 1, 1 2 2, 1 3 3, 1 4 3, 2 5 4, 1 6 4, 2 7 5, 1 8 5, 2

9 6, 1 10 6, 2 11 7, 1 12 7, 2

( ) t t t t t t t t t t

t t t t t

L z z z z z z z z z

z z z z

        

    

       

   

         

    
     (1) 

 

The variables zit are in such a way that: ( )it i tz P L y , where polynomials Pi are defined 

as follows
2
 :  

                                                 
2
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12) (1 )L L 

 

 

With also: ( )L is an autoregressive polynomial in L, and t may contain a constant,              

11 seasonal dummies and/or a trend. 

The variables zit are then associated to the different roots of the polynomial. The equation 

(1) is estimated using least squares ordinary method. 

We may carry out “t” tests for the parameters 1  and 2 , and “F” tests associated to the 

couples ( 3 4 5 6 7 8 9 10, ), ( , ), ( , ), ( , )        and 11 12( , )  : it is a question of testing the 

joined significance of the coefficients. This amounts to test the assumption of existence of 

unit roots at the different frequencies. For this purpose, we must compare the test statistics 

related to the estimated parameters with the critical values provided by Franses (1990) 

and Beaulieu and Miron (1993). 

To check the existence of the roots “1” and “-1” corresponding to frequencies 0 and   

respectively, we carry out two individual tests on parameters 1  and 2 . As for the other 

seasonal unit roots, we can perform either joined tests whose null assumption takes the 

form 1 0k k     and this for the even values of k, from 4 to 12; or quite simply, 

individual tests, suggested in Franses (1990), allowing to verify the non-stationarity of the 

time series at all the seasonal frequencies and this by testing the null assumption 

according to which there is a seasonal unit root ( 0k  ,  3,12k ). However, it should 

be noted that the application of the OLS to the regression (1) is made where the order of 

( )L  is given in such a way that the errors are roughly white noises, or at least, non-

autocorrelated residuals. For this purpose, Hylleberg and al. (1990) and Engle and al. 

(1993) propose to introduce additional lags of the variable until we obtain non-

autocorrelated residuals. 

       

2.2  Seasonal Adjustment Methods 

Seasonal adjustment methods can be classified in two categories, namely: parametric 

approach and nonparametric approach
3
. 

                                                 
3
Bourbonnais and Terraza (2008) propose another classification according to the nature of the 

seasonal variation which can be is flexible (stochastic: random in amplitude and/or period), that is 

to say rigid (determinist: marked well and repetitive). 
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2.2.1  Non-parametric approaches 

The X-12-ARIMA method: when the seasonal variation is very apparent in the time 

series, a first approach consists in removing such seasonal fluctuations by using a 

seasonal adjustment programs. They are techniques allowing the identification of the 

different components of the initial series (trend-cycle, seasonality, irregular) by applying 

linear filters, which cancels or preserves a well defined component (tendency-cycle or 

seasonal variation). The irregular one is represented thereafter by the residual of the 

decomposition. 

These linear filters are moving averages which constitute the principal tool of Census X-

11 method built from successive iterations of moving averages of different natures for 

better estimating the series components.  

However, this technique leads to a loss of information in the final end of the series. This 

gap is filled by the forecast of future values of the time series before its seasonal 

adjustment, and this using ARIMA models. It is what made it possible to extend the X-11 

technique (Census Bureau, 1967) to X-11-ARIMA (Dagum, 1988) and then to X-12-

ARIMA (Findlay and Al, 1998). The latter contains the RegARIMA module which allows 

to detect and to remove any undesirable effect of the series (outliers, calendar effects…). 

 

The ratio to moving average method: Monthly values of the studied series (Xt) are 

divided by the moving average figure corresponding for each month (MAt), and expressed 

in % to generate the ratio-to-moving average:  

 

 

 

The moving average is calculated as follows: 

 

 

 

 

 

A. Carpenter (2003) reveals that this moving average eliminates seasonal variations from 

monthly series, preserves linear trends and reduces of more than 90% the variance of a 

white noise. 

These ratios are weighted by the month and thereafter will separate the seasonal and 

cyclic components. 

 

2.2.2  Parametric approaches 

The regression method: this approach is based on the Buys-Ballot model (1847) which 

consists in carrying out the regression below, using seasonal dummies ( ,t iS ) in such a 

way that ,t iS takes value 1 if T corresponds to the seasonal period, and 0 if not. The model 

is written as follows: 
1

0 1 ,

1

T

t i t i t

i

X t S   




    . 

With: T being the period of seasonality (T = 4 for a quarterly series, T = 12 for monthly 

data). The use of only (T - 1) dummies makes it possible to avoid the problem of 

100t
ratio

t

X
M

MA

 
  
 

1 1 1 1

1
2 ... 2 2 2 ... 2 , 2

2
m t p t p t t t t p t pM X X X X X X X m p

m
       

            

 12 6 5 4 5 6

1
( ) 2 2 ... 2

24
t t t t t t tMA M X X X X X X          
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colinearity which could exist with the vector unit relating to the constant
4
. We estimate 

thus (T - 1) seasonal coefficients and we check the T
th
 using the principle of conservation 

of the surfaces
5
: 

1

0
T

i

i




 .  

Seasonal adjustment by method TRAMO-SEATS: TRAMO-SEATS program (Gomez 

& Maravall, 1996) belongs to the parametric seasonal adjustment methods based on the 

signal extraction. It is composed of two independent subroutines but which are 

complementary since they are generally used together: 

- TRAMO program (Time series Regression with ARIMA noise, Missing observations 

and Outliers) falls under the same optic as ARIMA modelling, or more exactly, it is about 

an extension to these models. Its principle is in fact to model the initial series using the 

univariate approach of Box & Jenkins via ARIMA or seasonal ARIMA (SARIMA) 

models, while detecting, estimating and correcting as a preliminary the outliers, the 

missing values, the calendar effects (holidays, public holidays…) as well as structural 

changes, likely to disturb the estimation of the model coefficients. 

- SEATS program (Signal Extraction ARIMA Time Series) comes to complete TRAMO 

procedure by decomposing the initial series thus modelled in its components (trend, cycle, 

irregular and seasonality) by signal extraction, using the spectral analysis of the initial 

series. 

 

2.3  Seasonal Differentiation and Seasonality Modelling 

The verification of the existence of seasonal unit roots using specific tests such 

as DHF (1984) and HEGY (1990) requires special treatment of seasonality. 

The use of the filter (1 – L
s
), suggested by Box and Jenkins (1970), to differentiate the 

seasonal series, depends on the fact that the variable is non-stationary at frequency 0 and 

at all the seasonal frequencies (Pichery and Ouerfelli, 1998). 

The existence of seasonal unit roots leads to model the seasonal variation instead of 

correcting or removing it using seasonal adjustment methods. The most largely used 

seasonal model is the multiplicative seasonal ARIMA model or SARIMA(p,d,q)(P,D,Q)S 

proposed by Box & Jenkins (1970) as a generalization of ARIMA(p,d,q) models 

containing a seasonal part and which is written in this form: 

( ) ( ) ( ) ( )s d D s

p P s t q Q tL L y L L                                                                                (2) 

Where: S is the period of seasonality (S = 12 for monthly data, S = 4 for quarterly data); 

1 L   , 1 s

s L   , , , ,p P q Q     are polynomials of degrees: p, P, q, Q and the 

roots are of module higher than 1; (εt) is a white noise ; d and D are respectively the 

orders of non seasonal and seasonal differentiation. 

 

 

 

 

 

                                                 
4
We can also consider T dichotomist variables in the model and remove the constant. 

5
R. Bourbonnais & Mr. Terraza (2008). 
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3    The Data 

The Western-European market being the principal market transmitting tourists towards 

Tunisia, the empirical application is carried out based on the series of the Western-

European tourist arrivals in Tunisia transformed to logarithm and subsequently noted 

LTOEU. The sample covers the period from January 1997 to December 2009. For the 

estimation, we use the data between January 1997 and June 2009, the six remaining 

observations are used for the ex-post forecast and for the predictive performance 

evaluation of the various methods.  

Data are provided by the National office of Tunisian Tourism relating to the ministry of 

tourism and trade. 

 

Table 2 : Results of Seasonality tests 

 FS FM T 

Value 304,959 9,797 0,2439 

Decision Presence of stable 

seasonality 

Absence of moving 

seasonality 

Presence of identifiable 

seasonality 

 

Table 3 : Result of test DHF (1984) 

Western-European tourist arrivals in Tunisia 

Test statistic Level 5% Decision Filter 

1,166 -5,84 Accepte H
0
 (1- L

12
) 

 

Table 4 : Result of test HEGY (1990) 

Western-European tourist arrivals in Tunisia 

Frequency Test statistic Level 5% Decision Filter 

0 -0,795 -2,76 Accepte H0 (1- L) 

Π / 6 3,187 -1,85 Accepte H0 2(1- 3L + L )  

Π / 3 3,21 -3,25 Accepte H0 (1- L + L
2

) 

Π / 2 6,080 -3,25 Accepte H0 (1+ L
2

) 
2Π / 3 -1,783 -1,85 Accepte H0 (1+ L + L

2

) 

5Π / 6 1,61 -1,85 Accepte H0 2(1+ 3L + L )  

Π -4,027 -2,76 Rejet de H0 - 

 

 

4    Empirical Results 

Detection of the seasonality: The presence of seasonal variation noted graphically in 

table 1 is confirmed thanks to the results of the combined test which indicates the 

presence of an identifiable seasonal variation, since the test statistic provides a value 

lower than 1 (see table 2). This is marked thanks to the results of test HEGY presented in 

table 4. 

In fact, by using the comparison of the T-statistic calculated in the table with the critical 

values provided in Beaulieu and Miron (1993), this test reveals the presence of the non-

seasonal unit root “1” corresponding to the zero frequency. This allows us to conclude of 
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the non-stationarity of the variable. Hence, its differentiation with the filter (1 - L) is 

required. 

Furthermore, the test leads to the acceptance of the assumption H0 of presence of unit 

roots at all the seasonal frequencies, except for the frequency . Consequently, the 

product of the filters indicated in table 4 must be applied to eliminate the seasonal and 

non-seasonal unit roots, that is to say: 
2 4 6 8 10(1 )(1 )L L L L L L      . 

Taking that into account, we can conclude that the suitability of the application of the 

filter 
12(1 )L to a seasonal series, as it is recommended by Box & Jenkins (1970), 

depends on the fact that the series is integrated at the seasonal frequency zero and at all 

frequencies. 

This being, these results imply that the automatic application of the filter of seasonal 

differentiation is likely to produce a specification error.   

The proof presented here indicates that the unit roots are sometimes missing at certain 

seasonal frequencies, then their presence have to be checked by using the test HEGY, 

rather than to impose them a priori at all the frequencies.  

However, and by contrariety of simplification, and taking into account the existence of 

only one seasonal frequency where the assumption H0 is rejected, we have preferred the 

application of the filter of seasonal differentiation
12(1 )L suggested by Box & Jenkins 

(1970) and recommended by the test of Dikey, Hasza and Fuller (1984) whose result 

arises in table 3. 

Comparison of the seasonal adjustment methods: Figures 1, 2 and 3 present the series 

of the Western-European tourist arrivals adjusted by the different seasonal adjustment 

methods considered in this study. We propose to compare the forecasting performance. 

For this purpose, we followed the forecast process of Box & Jenkins (1970) and the steps 

of identifications, estimation and validation enabled us to retain the following forecasting 

models: ARIMA (2,1,2), SARMA (1,1) (1,1,1)12, ARMED (1,1), ARIMA (2,1,2), 

ARIMA (2,1,1) and ARMA(1,1) for each one of these methods of treatment of the 

seasonal variation, respectively: the filter of seasonal differentiation (1-L
12

) suggested by 

test DHF (forecasts 1), the X-12-ARIMA method (forecasts 2), the ratio-to-moving 

average technique (forecasts 3), the regression on seasonal dummies (forecasts 4) and the 

TRAMO-SEATS program (forecasts 5). To compare the forecasting efficiency of these 

models, we retained various criteria of evaluation of the predictive precision, namely: the 

MAPE, the RMSE, the RMSPE and the U-Theil inequality coefficient. The reading of 

table 5 makes it possible to conclude that overall (six-months-ahead horizon), the 

TRAMO-SEATS seasonal adjustment method allows to obtain the most precise forecasts 

since they admit the weakest evaluation criteria,  followed by the seasonal model 

“SARIMA” (second rank) and the X-12-ARIMA  method (third rank). 

Therefore, modelling seasonality by the recourse to the SARIMA model (application of 

the filter of seasonal differentiation (1-L
12

)) is more advised in terms of forecasting 

efficiency than the seasonal adjustment by the X-12-ARIMA, the ratio-to-moving average 

and the regression on seasonal dummies methods.  
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Figure 1: Non-parametric seasonal adjustment approaches 
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Figure 2: Seasonal adjustment with seasonal dummies 

 

 
Figure 3: Seasonal adjustment with the TRAMO-SEATS method 
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forecasting performance of the various methods can vary according to the horizon of 

forecast, which corroborates with the results found in preceding studies (Wong and al., 

2007; Shen and al., 2009; Shen and al., 2011).  

By elsewhere, the empirical evidence suggests that the techniques of treatment of the 

seasonal variation affect the forecasting performance of the models, and that differs 

according to stochastic or deterministic nature of the seasonal variation. In effect, the 

results obtained in this empirical exercise reveal that the best forecasts result from the 

TRAMO-SEATS and the X-12-ARIMA  methods and also from the seasonal ARIMA 

model which consider the stochastic seasonal variation (Bourbonnais and Terraza, 2008). 
Table 5: Forecasting performance of seasonal adjustment 

Methods Horizons* MAPE RMSE RMSPE U-Theil 

 

 

1

ˆ
h

t t t

t
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h

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
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2

1

ˆ(( ) / )
h

t t t

t

X X X

h

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2

1

2 2

1 1
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ˆ

h
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t

h h
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X h X h



 







 

 

Forecasts 1 

(filter (1-

L12)) 

one month (2) 0,7226 819,4837 0,7226 0,3626% 

2 months   (2) 2,4325 3772,6082 2,7568 1,5085% 

3 months   (3) 2,7088 5130,5156 2,7411 1,2751% 

6 months   (2) 2,1184 9516,7616 3,0800 1,4653% 

Forecasts 2 

(X-12-

ARIMA) 

one month (3) 0,7527 853,5948 0,7527 0,3749% 

2 months   (3) 2,4037 3797,8214 2,7680 1,5184% 

3 months   (2) 1,6840 3501,5787 2,0260 0,8725% 

6 months   (3) 4,0014 15139,9351 4,5367 2,3034% 

Forecasts 3 

(ratio-to-

moving  

average) 

one month (4) 2,4143 2738 2,4143 1,1928% 

2 months   (4) 3,6977 4593,102 3,7609 1,7802% 

3 months   (4) 8,2109 15714,649 8,2483 3,7769% 

6 months   (5) 12,8957 32761,35 14,8750 4,9032% 

Forecasts 4 

(regression 

on 

seasonal  

dummies 

methods) 

one month (5) 4,6037 5220,842 4,6037 2,2500% 

2 months   (5) 4,2033 5371,418 4,5867 2,0788% 

3 months   (5) 9,2562 18323,210 9,3456 4,3768% 

6 months   (4) 11,6240 28989,436 13,418 4,3701% 

Forecasts 5 

(TRAMO-

SEATS) 

one month (1) 0,05674 64,3498 0,05674 0,0284% 

2 months   (1) 1,6191 2219,9875 1,6724 0,8833% 

3 months   (1) 1,0769 1777,527 1,3353 0,4448% 

6 months   (1) 1,2054 4719,821 1,4008 0,7291% 

MAPE: Mean Absolute Percentage Error; RMSE: Root Mean Square Error; RMSPE: 

Root Mean Square Percentage Error.                                       

(*): Figures in brackets represent the forecasts order by horizon. 

 

 

5    Conclusion 

In this paper, we applied four seasonal adjustment methods: two parametric methods 

(TRAMO-SEATS and regression on seasonal dummies) and two non-parametric ones        

(the X-12-ARIMA and the ratio-to-moving average), to a monthly series representing the 

Western-European tourist arrivals in Tunisia. 

We compared the forecasting performance of these methods in particular, seasonal 

adjustment versus seasonality modelling. 

The obtained results militate in favour of the TRAMO-SEATS method. In fact, this 

approach provides the best forecast at all the forecast horizons. 

Always in terms of forecasting performance, we have been able to note that the 

seasonality modelling using seasonal ARIMA (SARIMA) models may lead to better 

predictive results compared with the other techniques of seasonal adjustment, namely: the 

X-12-ARIMA, the regression on seasonal dummies and the ratio-to-moving average.  
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Consequently, it could be sometimes more appropriate to model the seasonal variation 

rather than to resort to its correction or suppression by the means of seasonal adjustment 

methods. 

Another conclusion that we could draw from the results is that the forecasting 

performance is influenced by the manner with which the seasonal variation is treated in 

the series, i.e. it differs according to stochastic or deterministic nature of seasonality. 

Indeed, the empirical results reveal that the best predictive performance rises from the 

TRAMO-SEATS program, the X-12-ARIMA method and of the SARIMA model which 

consider the stochastic seasonality (Bourbonnais and Terraza, 2008). This is on line with 

other researches which suggest the stochastic treatment of the seasonal variation (for 

example, Shen and Al, 2009).  
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