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Abstract 

The combinatorial nature of integer programming is inevitable even after taking 

specific model structure into consideration. This is the root problem in 

implementing large-scale nonlinear integer programming models regardless of 

which algorithm one chooses to use. Consequently, we suggest that the size of 

origin-destination be moderate. In the case of large origin-destination problems, 

more information on the size of ijx  is needed to drastically reduce the 

dimensionality problem. For instance, if ijx  is to be greater than the threshold 

value to be eligible for the rate break, computation time can be noticeably 

reduced. In the case of large right-hand-side constraints, we suggest scaling these 
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values to the nearest thousands or millions. The approach from Excel proposed in 

this paper is particularly appropriate if one can balance the sizes of origin-

destination and right-hand-side constraints in such a way that computation time is 

not excessive. For a large-scale problem, one must exploit the structure of the 

model and acquire more information on the bounds of discrete variables. Our 

approach certainly provides an alternative way to solve nonlinear integer 

programming models with virtually all kinds of algebraic functions even for 

laymen who do not feel comfortable with mathematic programming jargons. 

 

JEL classification numbers: C61 
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1  Introduction 

Spatial interaction models have received a great deal of attention either in 

theoretical advances or empirical applications. In the early 1940's, spatial 

allocation problems were cast in the form of the linear programming 

transportation models (LPT) developed by Hitchcock [24], Kantorovich [30] and 

Koopmans [33]. The original works by Hitchcock [24] was published in 

mathematical physics as was that by Kantorovich [30]. The Koopmans’ work was 

indeed the first on transportation modeling in economics [33]. And more recently 

Arsham and Khan [1] offered an alternative algorithm to the stepping stone 

method. Enke [11] laid the foundation of the spatial equilibrium model based on 

the Kirchhoff law of electrical circuits. Samuelson's influential work [59] on 

spatial price equilibrium (SPE) has generated a significant amount of interest in 

the spatial economics. In 1964, Takayama and Judge [64] reformulated the Enke-

Samuelson problem into a quadratic programming model with the objective of 
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maximizing "net social payoff." Since then, theoretical advances and refinements 

along the line of the Enke, Samuelson, Takayama and Judge abound.  

There has been a large body of literature that improves on or extends the 

original Takayama-Judge model, including: reformulation and a new algorithm by 

Liew and Shim [44]; inclusion of income by Thore [66]; transshipment and 

location selection problem by Tobin and Friesz [67]; sensitivity analyses by Yang 

and Labys [76], Dafermos and Nagurney [7]; computational comparison by 

Meister, Chen and Heady [47]; iterative methods by Irwin and Yang [27]; a linear 

complementarity formulation by Takayama and Uri [65]; sensitivity analysis of 

complementarity problems by Yang and Labys [77]; applications of the linear 

complementarity model by Kennedy [32]; a solution condition by Smith [61]; the 

spatial equilibrium problem with flow dependent demand and supply by Smith 

and Friesz [62]; nonlinear complementarity models by Irwin and Yang [28] and 

Rutherford [57]; variational inequalities by Harker [19]; a path dependent spatial 

equilibrium model by Harker [20]; and dispersed spatial equilibrium by Harker 

[21]. In addition, the SPE model has become increasingly fused with other types 

of spatial models. For instance, the solutions of a SPE model can be obtained and 

combined with the gravity model (Harker [21]) and the commodity or passenger 

flows can also be estimated using econometric (e.g., the logit model, Levin [38]). 

Furthermore, the spatial modeling of energy commodity markets has often 

involved various extensions beyond the basic SPE approach (e.g., Kennedy [32], 

Yang and Labys [77] and Nagurney [52]). These extensions include linear 

complementarity programming, entropy maximization, or network flow models. 

For the detailed description of the advances in the spatial equilibrium models, 

readers are referred to Labys and Yang [35]. Computational algorithm was 

developed by Nagurney [51]; applications and statistical sensitivity analysis by 

Yang and Labys [76]; mathematical sensitivity analysis by Irwin and Yang ([27], 

[28]); spatial equilibrium model with transshipment by Tobin and Friesz [67]; 

applications of linear complementarity problem by Takayama and Uri [65] and 
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Yang and Labys [77], Beyond that imperfect spatial competitions include works 

by Yang [73]; variational inequality by Dafermos and Nagurney [7], iterative 

approach by Nagurney [51]; dispersed spatial equilibrium model by Harker [21]; 

spatial diffusion model by Yang [74]; spatial pricing in oligopolistic competition 

by Sheppard et al. [60]; and the spatial tax incidence by Yang and Page [78]. The 

advances and applications of the spatial equilibrium model can be found in Labys 

and Yang ([35] and [36]).  

In particular, the spatial price equilibrium (SPE) has much richer policy 

implementations since each region has a price sensitive demand and a supply 

function. The linear programming transportation (LPT) model, on the other hand, 

has fixed demand and capacity constraints and as such lacks policy implications 

(Henderson [23]). The SPE model, in contrast, has been widely implemented both 

in theoretical advances and in empirical applications. Applications of SPE models 

include a wide range of agricultural, energy and mineral commodity markets as 

well as international trade and other spatial problems, readers are referred to the 

works by Labys and Yang [35]. Advances in computer architecture (parallel 

processing) have led to large scale computations in spatial equilibrium commodity 

and network models (Nagurney [51], Nagurney et al. [53]) and in spatial 

oligopolistic market problems (Nagurney [52]), spatial Cournot competition 

model by Yang et al. [75]. Most recent application on SPE can be found in lumber 

trade in North America by Stennes and Wilson [63]. In addition, the SPE model 

has become increasingly fused with other types of spatial models. For instance, the 

solutions of a SPE model can be obtained and combined with the gravity model 

(Harker [21]) and the commodity or passenger flows can also be estimated using 

econometric (e.g., the logit model, Levin [38]). Furthermore, the spatical modeling 

of energy commodity markets has often involved various extensions beyond the 

basic SPE approach (e.g., Kennedy [32], Yang and Labys [76] and Nagurney [52]). 

These extensions include linear complementarity programming, entropy 

maximization, or network flow models. It is interesting to note that the large-scale 
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Leontief-Strout was published one year before Takayama and Judge reformulated 

the Enke-Samuelson problem into a standard quadratic programming or spatial 

equilibrium model. The entropy modeling had not received enough attention until 

1970 when Wilson derived the gravity model from the entropy-maximizing 

paradigm. By the middle of the 1970's Wilson and Senior [72] proved the 

relationship between the linear programming and the entropy-maximizing model5. 

As a matter of fact, Hitchcock-Kantorovich-Koopmans linear programming 

transportation problem was shown to be a special case of the entropy model. The 

detailed descriptions on these models may be found in Batten and Boyce [2] and 

the combinatorial calculus by Lewis and Papadimitriou [39]. However, the 

implementation of such entropy models to the interregional commodity shipment 

problem has been limited despite the recent result by Yang [74]. 

Extensions on the entropy maximization model include the following. 

Sakawa et al. [58] employed a fuzzy programming to minimize production and 

transportation costs when demand estimation and capacities of the factories were 

not precise. The application of fuzzy set theory started with Zadeh [80]. Facility-

location problem was solved using decomposition algorithm by Beasley [3]. 

Based on the Shannon entropy, Islam and Roy [29] reduced a multi-objective 

entropy transportation model with the trapezoidal costs to a geometric 

programming problem. Liu and Kao [45] applied and solved a fuzzy transportation 

problem with linear membership function. Verma et al. [69] solved a multiple 

objective transportation problem with nonlinear function. Li [40] adopted a 

Markov chain model to improve on the estimates on the origin-destination trip 

matrix derived from the entropy model by Van Zuylen and Willumsen [68]. 

According to Li [40], large-scale direct sampling using statistical inference for 

origin-destination table (Li and Cassidy [43]) may not be efficient. Another 

approach -balancing method- by Lamond and Stewart [37] may fail to converge if 

the original estimated trip matrix contains too many zeros and if an entry in a 

                                                 
5 An alternative formulation was established by Erlander ([12], [13]). 
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reference matrix is zero, this entry retain a zero in every iteration (Ben-Akiva et al. 

[4]). In addition, Hazelton [22] utilized a Bayesian analysis to integrate prior 

information with current observations on traffic flow. Li and Moor [41] tackled 

the estimation problem in a dynamic setting and in the presence of incomplete 

information. Most recently, Giallombardo et al. [16] integrate the berth allocation 

of incoming ships with quay crane assignment problem: number of quay cranes 

per working shift. To realize economies of scale, shippers build larger containers 

and demand ports to have enough facility to handle them. The service allocation 

problem was formulated as generalized quadratic assignment problem (Hahn et al. 

[18]), which might well require integer solution. Other approaches include column 

generation heuristic for a dynamic generalized assignment problem (Moccia et al. 

[48]), a Lagrange multiplier approach (Monaco and Sammarra [49]), a genetic 

algorithms (Nishimura et al. [54]) and a stochastic beam search approach (Wang 

and Lim [70]). 

The linear programming transportation model is a special case of the entropy 

maximization model. To a large extent, the entropy model was developed by 

Wilson [71]. The linear programming transportation model is limited in producing 

numbers of positive-valued solution depending on the number of independent 

constraints. As such if one requires the solution value to be integer, this weakness 

may disappear. From another perspective, the entropy model produces many 

positive-valued variable solutions, which fits the concept of market diffusion or 

maximum market penetration. 

The classical transportation model dates back to Hitchcock [24], 

Kantorovich [30] and Koopmans [33] with a variety of efficient algorithms 

developed by Dantzig [9] and Russell [56]. Applications of the model are 

primarily on agricultural, mineral and energy markets including works by 

Henderson [23], Devanney III and Kennedy [10], the Project Independence 

Evaluation System by Hogan and Weyant [25], and lead and zinc markets by 

Dammert and Chhabra [8].   
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The linear programming transportation (LPT) problem evolved into the 

quadratic programming transportation (QPT) models by Samuelson [59], and 

Takayama and Judge [64], which relaxed the assumption on fixed demand and 

supply requirements to quadratic programming models. Applications and 

extensions of the QPT model proliferated starting from the late 1970’s: see Labys 

and Yang [34], and Hwang et al. [26]. The QPT models become a special case of 

the linear complementarity programming (LCP) model by Karamardin [31]. The 

transportation models in terms of LCP include works by Glassey [17], Irwin and 

Yang ([27], [28]) among others. Floran and Los [14] formulate the LCP version of 

the transportation problem into a variational inequality problem which leads to 

various papers in the field including Harker [19] and Nagurney [52]. A survey on 

the transportation problem can be found in Labys and Yang ([35] and [36]). 

Despite the advances in the classical transportation model, a nonlinear 

integer programming transportation (NIPT) model has not advanced much in the 

literature. The purpose of this paper is to propose possible solutions to NIPT 

problems with a variety of formulations.  The next section presents different 

transportation models. Section 3 proposes straightforward solutions via a Visual 

Basic program with an Excel based user interface. For the remainder of this paper, 

Excel denotes a Microsoft Excel spreadsheet which is the user interface to a 

Visual Basic program. Section 4 presents a discussion of the combinatorial aspects 

of the problem.  Finally, Section 5 provides suggestions and conclusions. 

 

 

2  Model Formulation 

Well known in the literature, a typical linear programming transportation 

(LPT) problem takes the following form: 

                                                    Minimize: 

                                                       
Rijx  
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                                      



Jj

ijij
Ii

xcTC                                                             (1) 

subject to: 

                                      JjDx j
Ii

ij 


                                                       (2) 

                                      IiKx j
Ii

ij 


                                                        (3) 

                                     JIijxij  0                                                           (4) 

where 

ijx  = volume of shipment from supply source i to demand sink j 

ijc  = unit transportation cost from supply source i to demand region j 

jD  = fixed level of consumption in demand sink  j 

iK  = fixed level of production capacity in supply source i 

I, J are positive integer sets of (1,…, m) and (1,…, n) 

JI   is the Cartesian product of I and J 

R  represents a set of all the nonnegative real numbers. 

The solution and model formulation are well known (e.g., Gass [15]) and 

applications are abundant. The application of linear integer programming (LIP) 

models became popular with the advent of the branch and bound algorithm 

coupled with software like LINDO (Yang and Pineno [79] and Brusco and Johns 

[5]). However, the LIP formulations are restricted to linear objective functions, 

which are less general than nonlinear versions.   

Since the seminal paper by Murtagh and Saunders [50], solutions to large-

scale, nonlinear programming (NLP) problems (linear constraints) became 

plausible with software such as MINOS producing efficient solutions to well-

conditioned problems. On the other hand, nonlinear integer programming (NLIP) 

problems have just begun to receive attention (Bussieck and Pruessner [6], Li and 

Sun [42]). In late 1980s, Mawengkang and Murtagh [46] solved a quadratic 

assignment problem using Murtagh’s direct search procedure while Ravindran et 
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al. [55] solved a 3-variable and 3-constraint quadratic integer problem. Despite the 

emerging applications in finance, engineering, management science and 

operations research, NLIP has not advanced as much as LP due to the 

combinatorial nature of the integer requirements and nonlinearity of the objective 

function. Thus, it is not surprising that solving NLI problems remains challenging 

and that solution methodologies for large-scale NLI problem are in the 

experimental stage.   

According to Bussieck and Pruessner [6], the four major methods-Outer 

Approximations, Branch and Bound, Extended Cutting Plane and Generalized 

Bender’s Decomposition-guarantee global optimality under the assumption of 

generalized convexity.  In general, convexity in the original problem coupled with 

a branch-and-bound technique is required for obtaining solutions. Other methods 

such as open algorithm allow for choice of methods to solve a particular problem 

only for a skilled user. In addition, experimental results indicate that a problem of 

several hundred integer variables can be solved using the concept of the filled 

function (Li and Sun [42]). 

As NLIP starts to make important progress, two problems remain. First, if 

the original NLP has a convex objective function, good NLP software with the 

branch-and-bound technique is generally sufficient to produce a global minimum. 

If, however, the objective function is not convex in a minimization problem, the 

solution may well be only locally optimal as is the case for a nonlinear 

transportation problem. Second, many users in business management are not 

mathematically skilled enough to grasp concepts such as outer approximation, 

generalized reduce gradient, convex relation, convexification and filled function. 

As such, we propose an alternative approach to solving the NLIP model for a 

small or medium sized problem using only EXCEL. Our approach can produce 

global optimality even for a non-convex objective function for a small or medium-

sized problem. Furthermore, the result is easy to comprehend without heavy 

mathematics. 
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3  Excel-based Solutions 

The LPT problem (equations 1 through 4) can easily be converted into an 

NLIP if the ijx ’s are integer-valued and the unit transportation cost function ijc  is 

no longer a constant. To illustrate our approach, we construct a transportation 

problem of 5 supply sources (i = 1,…,5) and 3 demand sinks (i = 1, 2, 3) with a 

total of 15 possible shipments. The solution to the linear integer transportation 

problem (three by five) using LINDO is reported in Table 1. 

 

Table 1:  Optimum solution of the linear integer programming transportation  

               model 

Demand Sink 

Supply Source 
1 2 3 

 
Total 

 
1   10 10 
2  2 10 12 
3  15  15 
4 9 9  18 
5 16   16 

Total 25 26 20 71 
         a: Objective function value = 609.7 
         b: Solution time = 15.93 minutes with EXCEL 
         c: Unit transportation cost from source i to sink j for

 11x , 12x ,…, 53x  are  

             9.5, 11, 8, 12, 10.4, 10, 12, 7.5, 14, 10, 9.6, 11.2, 7.5, 8, 9.1 respectively. 
  

 

Notice that assumed parameters bear no empirical relevance. Consistent 

with the result from LP, the number of positive-valued variables (7) cannot exceed 

the number of independent constraints (5 + 3 - 1 = 7). In the case where one has 

less than 7 positive-valued shipments, the transportation system is known as 

“degenerate,” in which the transportation network can be decomposed into two or 

more independent systems (Gass [15]). 



Chin-Wei Yang, Tony R. Johns, Hui Wen Cheng and Ken Hung                                     41 
 

The next case involves declining unit transportation cost as the volume of 

units shipped between a source and a destination increases. This rate break model 

is common in business practices where the cost of a shipment between a source 

and a destination is insensitive to the quantity shipped.  Thus in this type of 

situation, the larger the number of units shipped, the lower the cost per unit 

shipped. As such for each pair of i and j, we have following separable unit 

transportation cost: 

                                           ijijijij xabc                                               (5) 

where: 0ijb , 0ija  and ijijij xab   to ensure positive ijc .  Note that the unit cost 

function need not be separable: ijc  can be a function of ijx  and rsx  for sr   and 

js  .  The separability of the cost function is assumed for simplicity and thus can 

be easily expanded. Therefore, for a given set of ija  and ijb  (Table 2A), the LPT 

model becomes a concave quadratic integer programming transportation (QIPT) 

problem for which the solution is presented in Table 2. 

An examination of Table 2 reveals immediately that there exist 6 positive 

shipments in the solution set. The lack of shipments is not unexpected as least cost 

routes within the constraints must be heavily used to minimize the total 

transportation cost. It is interesting to note that the least-cost solution with the 

objective function value 799.6 (Z = 799.6) is far superior to the second best 

solution produced by Excel, which has 8 positive shipments (Z = 831.8) or the 

third best solution with 7 shipments (Z = 832.7). Excel can easily record and 

display a large number of solutions which is a strong point of our methodology as 

users may be interested in comparing non-optimal solutions to the optimal 

solution. 

As Excel obtains each feasible solution, it calculates the objective function 

value of that solution and then stores that solution and its objective function value 

in a file with previously found solutions sorted on solution value. In this study we 

recorded the best three solutions found which entailed comparing the current 
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solution found to the best three already found. If the current solution is better than 

any of the three best solutions found so far, the worst of the three was dropped and 

the current solution was saved. 

 

Table 2: Optimum solution of the quadratic integer programming transportation  

              model - declining unit transportation cost (linear) 

Demand Sink 

Supply Source 
1 2 3 

 
Total 

 
1  10  10 
2 12   12 
3 13  2 15 
4   18 18 
5  16  16 

Total 25 26 20 71 
         a: Objective function value = 799.6 
         b: Solution time = 23.77 minutes with EXCEL 
         c: Unit transportation cost function takes the form of ijijij xab   for     

            every ith source and jth sink (see Table 2A). 
 

 

Table 2A: Unit transportation cost ( ijt ) - coefficients ijijijij xabc   

Demand Sink 

Supply Source 
   

ija  1 2 3 

1 1 1.5 1.6 
2 2 1.1 1.2 
3 0.6 0.7 1 
4 0.5 0.9 1.1 
5 1 1.6 1 

ijb  1 2 3 

1 30 27 28.5 
2 36 28.8 39 
3 24 27 25.5 
4 23.4 33 30 
5 36 31.5 33 
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Because of our solution methodology we are not hampered in getting global 

optimality because of the wrong curvature of the objective function. As long as the 

function is real-valued, be it concave or convex, separable or nonseparable, 

smooth or discrete, Excel can produce a set of optimum solutions. 

We now proceed to another case in which unit transportation cost declines 

exponentially in the form of 

                                                     ( )ij ij ijf x g

ijc e                                                      (6) 

where 0ijf  is a parameter and 0ijg  represents a threshold shipment level 

beyond which rate discount starts to apply. Unit costs decline at decreasing rates 

as compared with the previous case in which unit cost decreases linearly (constant 

rate).   

 

Table 3: Optimum solution of the exponential integer programming transportation     

              model - declining unit transportation cost (exponential) without minimum       

              threshold shipments 

Demand Sink 

Supply Source 
1 2 3 

 
Total 

 
1 10   10 
2   12 12 
3 15   15 
4  10 8 18 
5  16  16 

Total 25 26 20 71 

          a: Objective function value =  0.1478 
          b: Solution time = 34.18 minutes with EXCEL 

 

Applying the same procedure via Excel, the optimum solution is reported in 

Table 3 with the assumed values of the parameters in Table 3A. Notice that, like 

in the previous case, the optimum solution consists of only 6 positive shipments 

indicating heavy usage of the least cost routes to minimize the total transportation 
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cost. This lack of positive shipments leaves some routes little used or unused and 

other routes overused an often undesirable phenomenon for resource usage.  To 

ensure enough commodity shipment for each route, we force all shipments to be 

greater than or equal to the threshold level, i.e., ijij gx  .   

The results are shown in Table 4 using the cost parameters and as is readily 

evident, shows a radically different set of optimum solutions. All of the shipments 

are positive signifying the spatially diffusing transportation network. The best 

three solutions from Excel have similar objective function values ranging from 

19.67 to 19.80. It should also be noted that as more requirements are introduced 

into the model, and thus the number of feasible solutions are reduced, the solution 

time6 for Excel is greatly reduced, i.e. from 34.18 minutes in Table 3 to ≈ 1 second 

in Table 4. 

When the unit transportation cost increases linearly reflecting a tight supply 

condition for some routes, the unit cost takes the form of the following: 

                                                      ijijijij xqpc                                                   (7) 

where 0ijp  and 0ijq . For simplicity, we employ the same cost coefficient in 

the case of linear rate break: ijij bp   and ijij aq  .  Since the unit costs get more 

expensive as the size of a particular shipment increases, shippers tend to diversify 

their cargo among different routes as much as possible.   

The results shown in Table 5 indicate that all of the 15 shipment routes are 

used. The solution is vastly different when compared with the solution of the ILP 

in which there are only 7 positive shipments. The convex objective function in this 

case is mathematically “appropriate” for a minimization problem and the integer 

requirement does not alter the solution property. The solution to the convex 

quadratic transportation problem generated by Excel can also be derived by a NLP 

                                                 
6 All computations for this paper were done a PC with a 3.0 GHz Pentium 4 processor 
with 512 MB of memory. 
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software on continuous variables (e.g., MINOS or LINGO) as the original 

problem.   

 

Table 3A: Unit transportation cost ( ijt ) - coefficients  ][ ijijij gxf
ij eC   

Demand Sink 

Supply Source 
   

ijf  1 2 3 

1 1 0.15 1.6 
2 2 1.1 1.2 
3 0.6 0.7 1 
4 0.5 0.9 1.1 
5 1 1.6 1 

ijg  1 2 3 

1 4 2 3 
2 5 2 2 
3 2 2 3 
4 2 3 2 
5 5 3 4 

         a: ijf = estimated parameter of the exponentially declining unit transportation cost 

         b: ijg = minimum shipment required for the rate break 

 

With the solution 11x  = 2.726, 12x  = 4.187, 13x = 3.087,…, we may perform the 

branch-and-bound technique as follows.  First branch on 11x , with 11x  ≥ 3 versus 

11x  ≤ 2 indicates that 11x  ≥ 3 (or x11 = 3) has lower objective function value (Z1 = 

2433.271 <  Z2 = 2434.224) and hence we have 11x  = 3 (or subproblem #1). 

Branching further, on 12x  based on subproblem #1 with 12x  ≤ 4 versus 12x  

≥ 5 indicates 12x  ≤ 4 (or 12x  = 4) has lower objective function value ( 3Z  = 

2433.279  <  4Z = 2436.573). The similar quadratic branch-and-bound procedures 

can go on until all optimum ijx ’s are integer-valued.   
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Table 4: Optimum solution of the exponential integer programming transportation     
              model  - declining unit transportation cost (exponential) with minimum       
              threshold shipments 

Demand Sink 

Supply Source 
1 2 3 

 
Total 

 
1 6 2 2 10 
2 6 3 3 12 
3 5 7 3 15 
4 2 10 6 18 
5 6 4 6 16 

Total 25 26 20 71 
         a: Objective function value = 19.68 
         b: Solution time  ≈ 1 second with EXCEL 
         c: Unit transportation cost ijc  declines exponentially with increase in   

             shipment:  
 ][ ijijij gxf

ij ec   where ijg  is the minimum shipment  

            required for the rate break.  See Table 3A for parameter values. 
 

 

Obviously, the process can be tedious, but it converges to global optimality 

if the objective function is convex as is the case of increasing unit transportation 

cost. If, however, the problem is ill-conditioned with a great deal of nonlinearity 

as in the case of exponentially declining unit cost, the convergence may be 

lethargic. As a result, the approach from using Excel may actually be preferred for 

small or medium-sized problems. 

The computation times are quite reasonable: 23.77 minutes for the ill-

conditioned or concave programming problem (Table 2), 34.18 minutes for the ill-

conditioned exponentially declining unit cost problem (Table 3), approximately 

one second for the exponentially declining unit cost problem with threshold 

shipments for rate break (Table 4), and 23.72 minutes for the convex quadratic 

(increasing unit cost) problem (Table 5). 
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Table 5: Optimum solution of the quadratic integer programming transportation   
              model - linearly increasing unit transportation cost 

Demand Sink 

Supply Source 
1 2 3 

 
Total 

 
1 3 4 3 10 
2 2 8 2 12 
3 5 6 4 15 
4 11 3 4 18 
5 4 5 7 16 

Total 25 26 20 71 

         a: As those in Table 2A with ijij bp   and ijij aq   

         b: Objective function value = 2434.8 
         c: Solution time = 23.72 minutes with EXCEL 
         d: Unit transportation cost ijt  increase with the shipment ijx :        

              ijijijij xqpc    reflecting a tight supply condition. We use the   

              same coefficients as those in Table 2A with ijij bp   and ijij aq  . 

 

 

It comes as no surprise that both quadratic integer programming problems 

take about the same amount of computation time (Tables 2 and 5). Although Excel 

does not distinguish convexity from concavity of objective functions, additional 

information on ijx ’s, be it upper bound or lower bound, can reduce computation 

time precipitously even in the case of the very nonlinear exponential cost curve. 

 

 

4  Combinatorial Analysis of the Transportation Problems 

The Excel-based approach is easy to implement for virtually all kinds of 

objective functions. No advanced mathematical training in optimization is 

required, nor is software knowledge on NLP. For the balanced transportation 

problems, the special feature in the constraint sets can be exploited to reduce the 
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number of possible integer values.  For instance, the constraint that 131211 xxx  = 

10 gives rise to no more than 11 = 10 + 1 by 11 = 10 + 1 or 121 possible integer 

combinations, since the last position is automatically implied by the constraint.  

However, not all of the 121 integer combinations are feasible. That is, if 11x = 10, 

12x  cannot assume any other values except 0.  Thus, 10 integer combinations are 

eliminated from the total of 121.  If 11x = 9, 9 integer combinations are eliminated 

for 12x  can assume the value of either 0 or 1.  If 11x = 8, 8 integer combinations 

are eliminated and so on. The number of feasible possible integer solutions 

reduces to 121 - (1 + 2 + … + 10) = 66. The answer is exactly consistent with the 

well-known combinatorial formula (Lewis and Papadimitriou, 1981) in calculating 

ways in assigning b  number of balls (right-hand-side constraint) into u  number 

of urns (number of variables). 

                                         6613131011   CCuub                                                (8) 

By the same token, there exist 214 C = 91 for the second constraints: 

232221 xxx  = 12.    

On the demand side, there exist 151225  C = 14950 integer combinations for 

the first constraint 512111 xxx   = 25. The intersection of demand and supply 

constraints reduces the feasible integer solutions to a reasonable number before 

substituting them into the objective function. It is to be pointed out that increasing 

the number of regions carries larger computation cost than increasing the right-

hand-side constraints. For instance, doubling the right-hand-side constraint 1K = 

10 to 1K  = 20 increases possible integer combinations from 66 to 222 C = 232. 

However, doubling the supply region (j = 3 to j = 6) with 1K  = 10 unchanged 

leads to 161610  C = 3003 possible integer combinations, quite a bit greater increase 

than that from doubling 1K .   
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5  Concluding 

The combinatorial nature of integer programming is inevitable even after 

taking specific model structure into consideration. This is the root problem in 

implementing large-scale nonlinear integer programming models regardless of 

which algorithm one chooses to use. Consequently, we suggest that the size of 

origin-destination be moderate. In the case of large origin-destination problems, 

more information on the size of ijx  is needed to drastically reduce the 

dimensionality problem. For instance, if ijx  is to be greater than the threshold 

value to be eligible for the rate break (Table 4), computation time can be 

noticeably reduced. 

In the case of huge right-hand-side constraints, we suggest scaling these 

values to the nearest thousands or millions. The approach from Excel proposed in 

this paper is particularly appropriate if one can balance the sizes of origin-

destination and right-hand-side constraints in such a way that computation time is 

not excessive. For a large-scale problem, one must exploit the structure of the 

model and acquire more information on the bounds of discrete variables. Our 

approach certainly provides an alternative way to solve nonlinear integer 

programming models with virtually all kinds of algebraic functions even for 

laymen who do not feel comfortable with mathematic programming jargons. 
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