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Abstract 
 

Forestry is the largest carrier of the green economy. Its strong ecological and 

economic effect makes it the object of green investment. To explore whether 

Chinese forestry investment is effectively utilized, we measured the input-output 

efficiency of forestry investment in 31 provinces in China through the 

super-slack-based measure model and the Malmquist index in the data 

envelopment analysis model. Based on this, we further analyze the redundant 

(insufficient) situation of input (output) in inefficient regions and changes in the 

efficiency of China’s forestry investment. The results show that the 

comprehensive efficiency of forestry investment in most provinces of China is low, 

among which the developed provinces are limited by input factors, while the less 

developed provinces are affected by low-scale efficiency. Second, the 

environmental benefit of forestry investment in the sample area is not obvious, 

and the output of forest carbon sequestration is low. Third, the efficiency of 

forestry investment in most provinces of China is improving, but the application 

technology of forestry investment has become the main factor hindering the 

improvement of forestry investment efficiency. 
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1. Introduction  
At present, global climate change has become the focus of attention of all 

countries in the world. Vigorously developing a green economy and increasing 

green investment are considered by many scholars to be one of the most effective 

ways to mitigate climate change and achieve ecological balance (Sobrinho et al., 

2020; Dmuchowski et al., 2021; Baniya et al., 2021). Many scholars have 

conducted research on green investment. They found that green investment can 

not only reduce the emission of greenhouse gases and air pollutants (Khovanskaia 

and Ivanyi，2007) but also create new employment opportunities (Banacloche et 

al., 2020), effectively reduce the environmental burden in the process of economic 

growth (Ottelin et al., 2018), and beautify the city (Mell et al., 2016). 

Generally, green investment will flow to two channels in terms of reducing air 

pollution and greenhouse gas emissions: one is to control air pollution and 

greenhouse gas emissions from the source, and the other is to control the air 

pollution and greenhouse gases that have been generated. In the first aspect, 

energy consumption is one of the main causes of air pollution and greenhouse gas 

emissions (Moriarty and Honnery, 2019). Hence, many studies have been carried 

out on green energy investment (Bostian et al., 2016; Lundgren, et al., 2018; Ng 

and Zheng, 2018). However, some scholars have considered environmental 

governance because the current environment has been under great pressure, and 

reducing the environmental load is urgent. Therefore, some scholars have begun to 

consider the second aspect. That is, how to control the air pollution and 

greenhouse gases that have been generated through environmental governance. 

Some scholars found that forestry investment may be an effective means to reduce 

air pollution and greenhouse gas emissions, so they began to study forestry and 

achieved certain research results (e.g., Kangas et al., 2011; Alix-Garcia et al., 

2015; Li et al., 2017; Lin et al., 2019; Nery et al., 2019; Rode et al., 2019; Zhang 

et al., 2019). For example, Alix-Garcia et al. (2015) used several new datasets to 

assess the impact of ecological compensation schemes on the environment and 

wealth and found that forest maintenance compensation payments reduce land 

cover loss and have a small positive effect on poverty alleviation. Nery et al. 

(2019) studied the spatial pattern of forestry investment in Western Australia and 

assessed the determinants of land change in plantations. They found that the 

factors influencing the changes in plantations include soil depth, proximity to 

urban centers, and use of surrounding soil. The study shows that there are many 

factors that affect the distribution of forestry investment and that forestry 

investment can indeed bring significant environmental and social benefits in many 

countries. 

According to data released by the National Bureau of Statistics of China 

(http://www.stats.gov.cn/), China's forestry investment reached 474.3 billion yuan 

in 2018, 12.3 times the 2004 forestry investment (38.3 billion yuan), with an 

average annual compound growth rate of 19.69%. At the same time, China 

contributed 25% of the world's net increase in leaf area, of which 42% came from 
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forest resources (Chen et al., 2019). China’s planted forest area accounts for 

approximately 27% of the world’s planted forest area, which makes China’s forest 

resources store a large amount of carbon (Schulze et al., 2000) and contributes 

significantly to the world’s carbon storage (Zhang et al., 2020). Therefore, these 

forest resources in China play a vital role in mitigating climate warming, 

especially in reducing the concentration of carbon dioxide in the atmosphere 

(Fang et al., 2014; Griscom et al., 2017). 

Therefore, is such a large-scale forestry investment worthwhile compared with the 

benefits generated? In other words, we are interested in assessing whether the 

efficiency of forestry green investment is efficient. Investment efficiency refers to 

the input-output problem of the forestry industry at the macro level. However, 

under the background of air pollution and greenhouse gas emissions, what role 

does the function of the forest absorbing carbon dioxide and sulfur dioxide play in 

the evaluation of forestry green investment projects at the micro level? The 

detailed study of forestry investment in this paper answers these questions and is 

of practical significance and value. 

Total factor productivity (TFP) is an indicator of economic efficiency (Lin and Ge, 

2019; Xiao et al., 2021). The essence of TFP reflects the utilization efficiency of 

all types of resources (Cai et al., 2018). Therefore, we believe that TFP is a good 

indicator of the efficiency of China's forestry investment. In fact, many scholars 

have already applied TFP to green investment (Allevi et al., 2019), forestry 

resources (Li et al., 2017), environmental efficiency (Wen et al., 2018), and 

renewable energy (Sohag et al., 2021). Their research methods can provide us 

with a certain theoretical basis. In addition, we are also concerned that some 

scholars have carried out research on China's forestry. Li et al. (2017) studied the 

utilization efficiency of forestry resources in China and found that technical 

factors are the key factors restricting the utilization efficiency of forestry resources. 

Zhang et al. (2019) analyzed the investment return rate of China's plantation 

forests and found that the return rates of different regions and different tree 

species were different. Lin and Ge (2019) studied the output relationship of 

China's forestry sector and found that environmental factors are the main factors 

affecting forestry output. Wu and Zhang (2020) found that there is a nonlinear 

relationship between Internet technology upgrades and forest TFP. Their research 

on China's forestry also provides a theoretical basis for our research. 

In summary, green investment has attracted increasing attention, but most scholars 

are more inclined to choose energy as the research object, and there is very little 

research on forestry investment. This may be due to difficulties in data collection. 

In recent years, a few scholars have begun to pay attention to the important role of 

forestry in mitigating global climate change and have carried out research on 

forestry investment. Our research aims to explore the true level of China's forestry 

investment efficiency from the perspective of input and output through the total 

factor productivity index and to analyze the reasons for the formation of forestry 

investment efficiency and its temporal and spatial characteristics. 

This research differs from previous scholars' research on China's forestry 
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investment in the following aspects and may contribute as follows: (1) Our 

research not only considers economic performance (forestry output value) but also 

considers environmental performance, which includes forest carbon sinks (the 

ability of forests to reduce carbon emissions) and sulfur dioxide emissions (the 

ability of forests to purify air). (2) Our research attempts to use the 

Super-Slack-Based Measure (Super-SBM) model to statically measure the 

efficiency of forestry investment in various provinces and cities in China, compare 

it among different regions, and use slack variables to interpret the reasons for the 

difference in efficiency. (3) We will further adopt the Malmquist index in the Data 

Envelopment Analysis (DEA-Malmquist) model to dynamically measure the 

changes in China's forestry investment efficiency. 

The rest of this article is arranged as follows: The second part will introduce the 

model used in this article. The third part will conduct an empirical study on the 

efficiency of China's forestry investment. Finally, in the fourth part, we put 

forward our conclusions and suggestions. 
 

2. Methods and Data 

2.1 Model 

Our paper includes three models: the forest biomass conversion factor model, the 

Super-SBM model and the DEA-Malmquist model. We use the forest biomass 

conversion factor model to measure the forest carbon sinks at the provincial level 

in China, and we use the Super-SBM model and the DEA-Malmquist model to 

measure the static production efficiency and dynamic production efficiency of 

forest investment at the provincial level in China, respectively. 

 

2.1.1 Forest biomass conversion factor model 

Forest carbon sinks mean that forest plants absorb carbon dioxide in the 

atmosphere and fix it in vegetation or soil, thereby reducing the concentration of 

gas in the atmosphere. Forest carbon sinks are one of the most important carbon 

dioxide sequestration methods and can effectively alleviate global warming (Qiu 

et al., 2020; Lin and Ge, 2019). Therefore, we will calculate the forest carbon sink 

and use it as one of the output indicators of forestry investment. 

Current research shows that there is uncertainty in the measurement of forest 

carbon sinks, and no one method is absolute good. Thus, relatively appropriate 

measurement methods can be selected only according to the forest characteristics. 

Generally, the methods commonly used to study the carbon sequestration of 

forests include the biomass method, volumetric method and atmospheric flow 

method (e.g., Winjum et al., 1998; Wang et al., 2001; Chhabra, 2002; Jalkanen et 

al., 2005; Fang et al., 2007; Somogyi et al., 2007; Deng et al., 2014). Considering 

the limitation of forestry data at the provincial level in China, this paper uses the 

forest biomass conversion factor model to calculate forest carbon sinks. The 

carbon sink value measured in this paper is used only for economic measurement 

and does not need to reach the accuracy of natural science. Therefore, to reduce 
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the computational complexity, this method is more appropriate. 

The calculation process of the forest biomass conversion factor model is as 

follows: first, forest growth volume is converted into growth volume density, and 

then the growth volume density and biomass expansion factor are used to calculate 

the aboveground biomass; finally, the carbon sink is calculated based on the 

conversion coefficient of carbon fixation. 

This paper defines the forest carbon sequestration equation (Equation 1) as 

follows: 

                                                                                       

The specific calculation equation of carbon sequestration using the forest biomass 

conversion factor method is as follows (Fang et al., 2007): 

                                                                                                                           

where     refers to the amount of carbon sequestration in a forest.  ,    , 

        and   represent the total standing forest stock, biomass expansion 

factor, bulk density and carbon content rate, respectively.   and   refer to 

province   and year  , respectively. The coefficients in different regions and 

periods are uncertain. Combined with the current situation of China's forests and 

the requirements of the Intergovernmental Panel on Climate Change (IPCC) 2000, 

this paper uniformly adopted a biomass expansion factor of 1.90, a bulk density of 

0.50 and a carbon content rate of 0.5. 

 

2.1.2 Super-SBM model 

The data envelopment analysis (DEA) model is an analytical method that uses 

linear programming to evaluate the relative nonparametric technical efficiency of 

decision objects with multi-index outputs and multi-index inputs. If the 

improvement of decision-making units (DMUs) is that all inputs (outputs) are 

reduced (increased) in the same proportion, this kind of DEA model is called a 

radial model. Otherwise, it is a nonradial model. 

The slack-based measure (SBM) model adopted in this paper is a nonradial model 

with the longest distance to the front. The SBM model is based on the traditional 

DEA model proposed by Tone (2001). The SBM model mainly solves the radial 

problem in the traditional DEA model. When there is a gap between the DMU and 

the strongly effective target value, the DMU is invalid. What makes the SBM 

model superior to the radial model is that it considers both the geometric ratio 

improvement of the input (output) and the improvements of the slack variables. In 

addition, to solve the problem of multiple DMU efficiency values being 1 in DEA 

model analysis, the Super-SBM model is adopted in this paper. The Super-SBM 

model was proposed by Tone (2002), who combined superefficiency with the 

SBM model. Its advantage is that effective DMU groups can be compared, and the 

efficiency value can exceed 1. The nonradial Super-SBM model used in this paper 

is shown in Equation 3: 
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where     represents the efficiency value of the evaluated DMU in Equation (3). 

At the same time, because this model is also nonoriented, the measurement of 

   is considered from both input and output. 

 

2.1.3 DEA-Malmquist model 

Because the TFP calculated by the Super-SBM model is static, in other words, the 

efficiency calculated by it is only the efficiency value of the year at that time. 

Therefore, the Super-SBM model cannot dynamically measure the changes in TFP 

from the time dimension. Therefore, we will use the DEA-Malmquist model to 

dynamically analyze forestry investment efficiency. The Malmquist index was 

originally proposed by Swedish economist Malmquist (1953) and used for two 

sets of consumption indexes in different periods. Caves et al. (1982) improved it 

to a Malmquist index that can measure productivity. Based on the DEA method, 

Färe (1994) changes the Malmquist index from a theoretical index to an empirical 

index and decomposes it into technical efficiency and technological progress rate. 

Ray and Desli (1997) made further amendments to this so that the technical 

efficiency of the Malmquist index can be further decomposed into pure technical 

efficiency and scale efficiency under scale changes. The specific calculation 

formula is shown in Equation 4: 
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In Equation 4, the distance functions           and                  represent 

the distance between the observation point and the frontal surface in periods   

and    , and                and              represent the maximum value 

of the possible reduction of              and          input under the feasible 

conditions under the technical conditions of periods   and    .   represents 

the Malmquist index. When    , the efficiency is improved; when    , the 

efficiency is unchanged; and when    , the efficiency is reduced. 

It can be seen from the above that the Malmquist index is further decomposed into 

technical efficiency change (TEC) and technological progress (TP). At the same 

time, the TEC can be decomposed into pure technical efficiency (PTE) and scale 

efficiency (SE). Among them, TEC is the relative efficiency change, which 

represents the degree of catch-up from the DMU to the production frontier from 

period   to period    . TP is the change in production technology in two 

adjacent periods, which represents the movement of the production frontier. PTE 

and SE are also changes in relative efficiency, which refer to the changes in the 

ability to obtain the maximum output under a given input and the changes in the 

distance from the optimal investment scale from period   to period    , 

respectively. 

 

2.2 Data 

2.2.1 Input and output variables 

Before we use the Super-SBM model and the DEA-Malmquist model to evaluate 

the efficiency of China's forestry investment, we need to select appropriate input 

variables and output variables. We first determine that the production endowments 

are mainly land, capital and labor according to classical economic theory. We map 

the theoretical production relationship to forestry production, and then the three 

production factors become the forestry investment, number of forestry system 

employees, and forestry land area. This input variable setting method is also 

consistent with the choices made by researchers such as Li et al. (2017), Lin and 

Ge (2019), and Wu and Zhang (2020) in related research. 

Our output variables consider two aspects: one is the economic benefits brought 

about by forestry investment, and the other is the environmental benefits brought 

about by forestry investment. The economic benefit is measured by the value of 

forestry output, which is the same as the choice of most researchers (e.g., Li et al., 

2017; Lin and Ge, 2019; Wu and Zhang, 2020). However, in terms of 

environmental benefits, we also consider two aspects: one is the benefit of carbon 

emission reduction, and the other is the benefit of environmental purification. We 
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use forest carbon sinks to measure the benefits of carbon emission reduction. 

Environmental purification benefits are limited by the availability of data and will 

be measured by the reduction of sulfur dioxide emissions. China is the country 

with the largest sulfur dioxide emissions in the world, which has severely affected 

China’s environment (Zeng et al., 2018). The forest can absorb sulfur dioxide to a 

certain extent, thereby purifying the air (Parsa et al., 2019). 

 

2.2.2 Data Sources 

We study forestry investment efficiency using provincial panel data from China 

(excluding Hong Kong, Taiwan and Macao) from 2004 to 2018. The sources of 

datasets are mainly as follows: China Statistical Yearbook, China Forestry 

Statistical Yearbook, and National Bureau of Statistics of China. Among them, the 

amount of forestry investment, forestry area, forestry output value, and sulfur 

dioxide emissions data come from the National Bureau of Statistics of China. Data 

on forestry practitioners come from the China Forestry Statistical Yearbook. The 

forest carbon sink is calculated by Equation 2 from the total standing forest stock 

from the China Statistical Yearbook. 

China's forest resource inventory is conducted every five years. The sample period 

in this paper was from 2004 to 2018, during which three national forest inventory 

periods were conducted: from 2004 to 2008, from 2009 to 2013, and from 2014 to 

2018. Furthermore, the national statistical report shows that the annual data of 

forest resources are all the same during the 5-year inventory period, which is not 

consistent with reality. Therefore, this paper assumes that the forest between the 

two inventory periods grows at a uniform rate and supplements the data according 

to this assumption. Sulfur dioxide emission reductions are measured by the 

reduction in sulfur dioxide emissions relative to the previous year. 

 

2.2.3 Descriptive statistics 

To understand the distribution of input and output, descriptive statistical analysis 

of the data was carried out. The results are shown in Table 1, which shows the 

descriptive statistical results of the input variables and output variables. 

 
Table 1 : Summary statistics of the input variables and output variables 

variable unit obs Mean Std. Min Max 

I_fp thousand people 465 40.95 56.39 0.16 370.07 

I_fa thousand hectares 465 184.53 166.87 0.71 861.90 

I_fi billion yuan 465 8.09 13.12 0.03 108.61 

O_fcs million tons 465 263.06 308.70 1.43 1100.96 

O_fov billion yuan 465 10.17 9.23 0.17 39.69 

O_SO2 million tons 465 0.41 0.12 0.00 1.10 

 

In Table 1, I_fp represents the total number of employees in the forestry system, 
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I_fa represents the afforestation area, I_fi represents the forest investments, O_fcs 

represents the forest carbon sinks, O_fov represents the forestry output value, and 

O_SO2 represents the sulfur dioxide emission reduction. As seen from Table 1, 

there is a clear gap between the maximum and minimum values of the input 

variables and output variables. This means that during the sample period, the 

forestry system inputs and outputs of different provinces in China vary greatly. 

Fig. 1 shows the trend of forestry investment in 31 provinces of China from 2004 

to 2018. In Fig. 1, we find that forestry investment in most provinces in China is 

increasing year by year, and the increase is rapid. This shows that China has paid 

increasing attention to forest resources in recent years. We have also found that in 

recent years, forestry investment in some provinces, such as Shanxi, Liaoning, 

Jiangsu, Fujian, Jiangxi, and Henan, has begun to show a downward trend. At the 

same time, we found that the area with the largest average forestry investment is 

Guangxi, with a staggering RMB 53 billion. This may be related to its own 

regional characteristics and industrial positioning. The area with the smallest 

average forestry investment is Hainan, with only 0.86 billion yuan. Followed by 

Tianjin, approximately 0.96 billion yuan. In addition, we found that the fluctuation 

of forestry investment in China's more economically developed provinces, such as 

Chongqing, Shanghai, and Tianjin, are relatively small and stable at a relatively 

low level. In those economically developed provinces, there may be two reasons 

for the relatively low investment in forestry: one is restricted by natural 

endowments such as land area; the other is that the development of service 

industries and manufacturing takes place at the core of these fields, and capital and 

labor are more inclined to flow into the production activities of these leading 

industries. 

 

3. Results  
The Super-SBM model can calculate the total factor productivity of forestry 

investment in each year. Therefore, it can be used to measure the static efficiency 

of forestry investment in different provinces in China. The DEA-Malmquist model 

is a dynamic measurement that can analyze the changes in China's forestry 

investment efficiency. This article measures the efficiency level of China's 

forestry investment from both static and dynamic aspects. 

 

3.1 Forestry investment efficiency of Super-SBM model 

Table 2 shows the overview of China's forestry investment efficiency values from 

2004 to 2018 and calculated by the Super-SBM model. In Table 2, C_ET 

represents the result of calculating the Super-SBM model based on constant 

returns to scale (Super-SBM-CRS), which is the value of technical efficiency, 

including scale efficiency. V_ET represents the result of calculating the 

Super-SBM model based on variable returns to scale (Super-SBM-VRS), which is 

a pure technical efficiency value excluding scale efficiency. Therefore, we can use 

the relationship between C_ET and V_ET (as shown in Equation 5) to further 
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calculate the scale efficiency value (we use ScaleE to represent). Among them, the 

technical efficiency value, pure technical efficiency value, and scale efficiency 

value here are different from those in the DEA-Malmquist model, and they are 

static. 

 

 
Figure 1: Trends in forestry investment 

in various provinces during 2004-2018 
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Technical efficiency represents the comprehensive efficiency of forestry 

investment and includes comprehensive measurement indicators of various 

capabilities, such as resource allocation capabilities and resource utilization 

efficiency. The pure technical efficiency value reflects the ability to obtain 

maximum output under a given input, and scale efficiency reflects whether to 

operate under the most suitable investment scale. In addition, equation 5 shows: 

       
    

     
                                                                                                                 

From Table 2, we find that only Tianjin, Shanghai, Zhejiang, Hainan, and Tibet 

have comprehensive forestry efficiency values (i.e., C_TE, including pure 

technical efficiency and scale efficiency) that are greater than 1. This shows that 

they are at the forefront of production, have a reasonable input-output ratio and are 

the most efficient. They are also the objects that other provinces should imitate 

and learn from. The comprehensive forestry efficiency values of the remaining 

provinces are all less than 1, indicating that the ratio between input and output in 

these provinces is not balanced, and forestry investment is in a low-efficiency 

state. Overall, the current comprehensive forestry investment efficiency of China's 

provinces is not ideal, and the comprehensive forestry investment efficiency of 

most provinces is below 0.5, showing a long tail situation. In addition, the pure 

technical efficiency and scale efficiency of China's forestry investment also show 

a similar situation. Figure 2 more intuitively reflects the changes in the efficiency 

of forestry investment in various provinces in China over the years. 

 
Table 2: China's forestry investment efficiency in 2004, 2011, and 2018 

Province 
C_TE V_PTE ScaleE 

mean std. min max mean std. min max mean std. min max 

Beijing 0.05 0.04 0.01 0.16 0.19 0.33 0.02 1.01 0.79 0.33 0.01 1.00 

Tianjin 1.22 0.08 1.09 1.35 1.69 0.65 1.10 3.38 0.78 0.17 0.40 0.98 

Hebei 0.04 0.02 0.00 0.07 0.45 0.44 0.03 1.05 0.21 0.21 0.02 0.83 

Shanxi 0.03 0.02 0.00 0.06 0.26 0.32 0.01 1.01 0.27 0.23 0.04 0.74 

Inner Mongolia 0.07 0.04 0.01 0.15 0.40 0.41 0.02 1.13 0.29 0.16 0.05 0.60 

Liaoning 0.11 0.09 0.00 0.29 0.47 0.40 0.00 1.11 0.32 0.17 0.08 0.70 

Jilin 0.27 0.33 0.10 1.15 0.38 0.31 0.13 1.16 0.64 0.21 0.33 1.00 

Heilongjiang 0.12 0.07 0.04 0.24 0.92 0.33 0.31 1.24 0.14 0.06 0.04 0.20 

Shanghai 1.40 0.08 1.28 1.55 2.47 1.01 1.35 4.59 0.66 0.24 0.32 1.00 

Jiangsu 0.09 0.08 0.01 0.23 0.61 0.48 0.03 1.11 0.24 0.20 0.02 0.80 

Zhejiang 1.01 0.40 0.22 1.75 1.14 0.29 0.38 1.78 0.87 0.22 0.35 1.00 

Anhui 0.50 0.46 0.07 1.44 0.78 0.42 0.26 1.47 0.60 0.33 0.15 1.00 

Fujian 0.63 0.42 0.11 1.19 1.12 0.06 1.05 1.23 0.55 0.35 0.10 1.00 

Jiangxi 0.14 0.04 0.08 0.22 0.57 0.27 0.23 1.06 0.28 0.12 0.11 0.60 
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Province 
C_TE V_PTE ScaleE 

mean std. min max mean std. min max mean std. min max 

Shandong 0.04 0.02 0.01 0.08 0.61 0.46 0.03 1.17 0.13 0.16 0.02 0.67 

Henan 0.07 0.05 0.00 0.15 0.55 0.43 0.00 1.09 0.20 0.15 0.04 0.53 

Hubei 0.09 0.04 0.02 0.14 0.22 0.15 0.04 0.46 0.50 0.20 0.30 0.87 

Hunan 0.08 0.03 0.02 0.15 0.72 0.35 0.27 1.04 0.14 0.08 0.02 0.30 

Guangdong 0.59 0.43 0.15 1.44 1.02 0.30 0.30 1.53 0.59 0.34 0.13 0.99 

Guangxi 0.07 0.02 0.03 0.09 0.59 0.41 0.11 1.11 0.18 0.12 0.06 0.42 

Hainan 1.30 0.16 1.10 1.56 1.33 0.17 1.11 1.63 0.98 0.02 0.93 1.00 

Chongqing 0.19 0.25 0.02 1.02 0.37 0.32 0.03 1.07 0.51 0.23 0.16 0.97 

Sichuan 0.10 0.04 0.03 0.15 0.82 0.32 0.36 1.14 0.12 0.05 0.06 0.26 

Guizhou 0.12 0.08 0.02 0.27 0.50 0.41 0.03 1.04 0.39 0.25 0.05 0.88 

Yunnan 0.16 0.09 0.05 0.33 1.29 0.05 1.19 1.38 0.12 0.06 0.04 0.24 

Tibet 1.77 0.90 1.42 4.97 1.83 1.14 1.42 5.90 0.99 0.04 0.84 1.00 

Shaanxi 0.08 0.04 0.01 0.13 0.21 0.16 0.03 0.53 0.49 0.22 0.18 0.97 

Gansu 0.05 0.03 0.01 0.08 0.08 0.05 0.01 0.19 0.71 0.24 0.25 0.98 

Qinghai 0.04 0.02 0.01 0.09 0.04 0.02 0.01 0.09 0.94 0.13 0.62 1.00 

Ningxia 0.01 0.01 0.00 0.05 0.10 0.26 0.00 1.00 0.72 0.33 0.03 1.00 

Xinjiang 0.10 0.05 0.02 0.16 0.19 0.24 0.03 1.00 0.76 0.24 0.13 0.99 

Note: C_TE, V_PTE and ScaleE represent the results calculated by the super-SBM-CRS model, the 

super-SBM-VRS model and equation 5, respectively. 

 

Figure 2 shows that the efficiency of comprehensive forestry investment in most 

provinces in China is constantly improving. However, the comprehensive forestry 

investment efficiency of Jilin, Zhejiang, Anhui, Fujian, Guangdong, and Hainan 

has fluctuated greatly, and the fluctuation range is relatively obvious. This shows 

that the relationship between forestry production input and output in these 

provinces is in an unstable state. 

In addition, we found that the scale efficiency values of Beijing, Tianjin, Shanghai, 

Zhejiang, Guangdong, Hainan, Tibet, and Qinghai remain at approximately 1. 

Among these provinces, only Beijing, Guangdong and Qinghai are the provinces 

with low comprehensive forestry investment efficiency, which means that pure 

technical efficiency is a key factor directly affecting their low comprehensive 

forestry investment efficiency. For example, we found that after 2006, the value of 

pure technical efficiency in Beijing dropped sharply, the scale efficiency was 

basically stable, and there may be an unreasonable input-output structure. Beijing 

is one of the cities with the highest level of economic development and 

urbanization in China. As we all know, its land resources are extremely limited, 

which greatly restricts the development of its forestry investment activities so that 

no amount of forestry investment can produce good benefits. In contrast, we found 
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that in the provinces of Fujian, Shandong, Guangxi, Sichuan and Yunnan, pure 

technical efficiency was always maintained at approximately 1. Therefore, the 

inefficiency of scale efficiency is a key factor directly leading to the inefficiency 

of comprehensive forestry investment in these provinces. This shows that the 

input-output structure of the forestry industry in these provinces is reasonable, but 

the scale needs to be increased. 

 

 
Figure 2: Line chart of China's forestry 

investment efficiency from 2004 to 2018 
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At the same time, we have also noticed that in Hebei, Shanxi, Inner Mongolia, 

Liaoning, Jiangsu, Jiangxi, Henan, Guizhou, and Shaanxi provinces, pure 

technical efficiency does not match scale efficiency. Because pure technical 

efficiency and scale efficiency always show the opposite direction of change, the 

comprehensive forestry investment efficiency of these provinces has shown a 

lower level. This shows that forestry investment and production activities in these 

provinces are not stable, the industrial structure is not mature enough, and the 

economy is underdeveloped. Therefore, it cannot provide an effective 

environment for forestry production activities. 

The output variables we selected not only reflect economic benefits but also cover 

environmental benefits. Therefore, when evaluating the effect of forestry 

investment, the results of the model also reflect the effect of improving the 

environment. Combining the analysis of forestry investment intensity in Figure 1 

and the forestry investment efficiency value calculated in this section, we find that 

provinces with high forestry investment intensity do not necessarily have good 

investment effects. For example, provinces such as Guangxi and Sichuan have 

more reasonable resource allocation, but their economies of scale are low. Even if 

the investment is very sufficient but cannot match the development needs, the 

effect of forestry investment is still not satisfactory. However, the amount of 

forestry investment in some developed provinces is relatively low. However, their 

investment has reached the best results at the forefront of production, such as 

Shanghai and Tianjin. This result shows that although their input elements are 

very limited, if the input-output structure is reasonable and the state of scale effect 

is reached, the greatest forestry investment benefits can be obtained. 

 

3.2 Slack variable results of Super-SBM model 

As the efficiency of comprehensive forestry investment in China's provinces is 

generally low, we will further analyze the specific reasons for the unreasonable 

efficiency of comprehensive forestry investment in various provinces. One of the 

main reasons for choosing the Super-SBM model is that it considers slack 

variables. The value of the slack variable reflects the irrationality of input and 

output and the direction of improvement to a certain extent. Fig. 3 and Fig. 4 show 

the analysis results of the slack variable values of input variables and output 

variables in the comprehensive forestry investment efficiency of various provinces 

in China. 

Through the slack variables shown in Fig. 3, among them, the value of the slack 

variable greater than 0 represents the distance between the DMU and the optimal 

input or output. Therefore, we can analyze the redundancy of forestry investment 

in various provinces in China. We can clearly see that Hebei, Shanxi, Inner 

Mongolia, Liaoning, Anhui, Fujian, Jiangxi, Shandong, Hubei, Guangdong, 

Guangxi, Chongqing, Sichuan, Yunnan, Shaanxi, Gansu, Ningxia and Xinjiang 

have a certain overinvestment in forestry areas. However, forestry practitioners in 

Beijing, Jilin, Heilongjiang and Jiangsu provinces have overinvestment. In 
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addition, forestry investment in Beijing, Jiangsu, Shandong, and Guangxi has 

overinvestment. 

 

 
Figure 3: Slack values of input variables 

in China's provinces from 2004 to 2018 
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Figure 4: Slack values of output variables 

in China's provinces from 2004 to 2018 
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From this, we find that the reasons for the low efficiency of forestry investment in 

various provinces in China are different. For most provinces, their forestry 

practitioners and funds are insufficient, resulting in the inability to make full use 

of forestry land. In contrast, Beijing's forestry investment and forestry 

practitioners clearly surplus, which confirms previous speculations about the "low 

efficiency" of Beijing's forestry investment. Beijing’s land resources are very 

limited, and blindly increasing forestry funds and employees cannot effectively 

improve economic and environmental benefits. Jiangsu is also facing a similar 

situation to Beijing. Shandong and Guangxi also have surpluses in forestry 

investment, but their forestry land resources are relatively sufficient. Their 

"inefficiency" is different from that of Beijing. This may be because they lack 

labor to make full use of these resources and limit their ability to utilize and 

absorb investment. 

From Fig. 4, we can see the forestry output of each province in China. Among 

them, Beijing, Hebei, Shanxi, Liaoning, Jiangsu, Jiangxi, Shandong, Henan, Hubei, 

Hunan, Chongqing, Guizhou and Tibet have relatively insufficient forest carbon 

sinks. The forestry output values of Inner Mongolia, Jilin and Hainan are 

insufficient. The air purification capacity of forests in Tianjin, Shanghai, Jiangxi, 

Guangxi and Yunnan is relatively weak. 

We found that the forest carbon sinks are insufficient in forestry investment output 

in most provinces, and there may be two reasons for this. One is that in forestry 

investment projects, cultivated tree species have weak carbon sequestration 

capacity. The other is that if the rotation cycle of the planted trees is too short or 

too long, the trees will be immature or have been aging, and they will not be able 

to fully exert their carbon sequestration capacity. This will not only reduce the 

absorption of carbon dioxide and sulfur dioxide but also occupy land resources 

and affect production. 

 

3.3 Results of the DEA-Malmquist model 

Table 3 shows the overall results of the decomposition of China's forestry 

investment efficiency using the DEA-Malmquist model. The DEA-Malmquist 

model helps us understand the changes in China's forestry investment efficiency 

from a dynamic perspective. In Table 3, ML-effch represents the TEC, ML-techch 

represents the TP, ML-pech represents the PTE, ML-sech represents the SE, and 

ML-tfpch represents the Malmquist index of the total factor productivity of 

forestry investment. Their value greater than 1 indicates a certain improvement 

relative to the efficiency value of the previous year, equal to 1 indicates no change 

in the efficiency value relative to the previous year, and less than 1 indicates a 

decrease in the efficiency value relative to the previous year. TEC represents 

whether the DMU's forestry investment management methods and 

decision-making have been improved. PTE represents whether the DMU's ability 

to obtain maximum output under a given input situation has been improved. SE 

represents the change in the distance between DMU and the optimal forestry 
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investment scale. TP represents whether the DMU's forestry investment 

application technology has improved. The Malmquist index represents whether the 

DMU's forestry investment efficiency has improved. 

From Table 3, we find that China's forestry investment efficiency did not fluctuate 

much from 2004 to 2018, and the Malmquist index of China's forestry investment 

was between 0.72 and 1.18. The Malmquist index was less than 1 in 2004-2006, 

indicating that China's forestry investment efficiency was declining at this stage. 

Through further analysis, we find that it is mainly caused by the lower TP, which 

implies that China's use of technology for forestry investment at this time is 

relatively low. During the 2006-2009 period, the Malmquist index was always 

greater than 1, indicating that China's forestry investment efficiency was gradually 

improving at this stage. Through further decomposition, we find that it is also 

mainly caused by the increase in TP, from 0.67 to 1.03, then to 1.07, and then to 

1.17. Hereafter, the Malmquist index fluctuated approximately 1 from 2009 to 

2018, and TP is still the main reason why the Malmquist index is lower than 1. In 

addition, when we decomposed TEC, we also noticed that SE was lower than 1 for 

most of the period, indicating that China's forestry investment was not carried out 

on an appropriate scale, and there was a waste of capital. 

 
Table 3: Changes in China's overall forestry investment efficiency 

year ML-effch ML-techch ML-pech ML-sech ML-tfpch 

2004-2005 0.95 0.95 0.98 0.97 0.90 

2005-2006 1.06 0.67 1.16 0.92 0.72 

2006-2007 1.02 1.03 1.03 0.99 1.04 

2007-2008 1.04 1.07 1.01 1.03 1.12 

2008-2009 1.01 1.17 1.01 0.99 1.18 

2009-2010 1.01 0.98 0.97 1.04 0.99 

2010-2011 0.97 1.21 0.84 1.16 1.18 

2011-2012 1.04 0.86 1.21 0.85 0.89 

2012-2013 1.05 0.99 1.02 1.03 1.04 

2013-2014 0.99 0.97 1.00 0.99 0.96 

2014-2015 1.06 1.03 1.00 1.05 1.09 

2015-2016 0.92 0.89 0.89 1.04 0.82 

2016-2017 1.03 1.11 1.06 0.97 1.14 

2017-2018 0.91 1.01 0.97 0.93 0.92 

 

Fig. 5 shows the specific situation of the Malmquist index of forestry investment 

efficiency in various provinces in China. From Fig. 5, we find that the Malmquist 

index of approximately half of China's provinces is greater than 1 in most periods. 

This shows that the efficiency of forestry investment in most provinces in China is 

gradually improving, which is consistent with the static analysis results of 
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super-SBM. In addition, we noticed that the Malmquist index of Inner Mongolia, 

Liaoning, Heilongjiang, Shanghai, Shandong, Henan, and Shaanxi was less than 1 

in many periods. This shows that the efficiency of forestry investment in these 

provinces has declined, and these provinces deserve more attention from the 

Chinese government. In addition, we found that TP is the main factor affecting the 

Malmquist index through the decomposition of the Malmquist index of various 

provinces in China, which is consistent with the previous analysis results. In the 

process of decomposing TEC in various provinces in China, we also found that 

most provinces did not invest in forestry at the appropriate scale of investment. 

 

 
Figure 5: Changes in China's 

forestry investment efficiency from 2005 to 2018 
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4. Conclusions  
The sustainable and effective development of the forestry industry requires the 

rational allocation of resources when into production; on the other hand, it 

requires that both the economy and the atmospheric environment can benefit from 

it to maximize the efficiency of forestry investment. This paper uses the 

Super-SBM model and the DEA-Malmquist model to study the forestry 

investment efficiency of 31 provinces and cities in China from 2004 to 2017 from 

both static and dynamic aspects. Our conclusions are as follows: 

(1) The comprehensive efficiency of forestry investment in most cities in China is 

low, including in some economically developed cities. After decomposing the 

comprehensive efficiency into pure technical efficiency and scale efficiency, it is 

found that the pure technical efficiency of forestry investment in most provinces is 

effective, while the scale efficiency is low, which reflects that the input-output 

structure of most provinces is reasonable, but the output rate of investment is low. 

There are also a few provinces, such as Beijing, which are economically 

developed, but the comprehensive efficiency of forestry investment is not high. 

These provinces are mainly limited by the resources invested, which affects the 

effect of forestry investment. 

(2) In view of the inefficient provinces of forestry investment, we analyzed the 

slack of their inputs and outputs and found that the forestry investment in the 

economically developed provinces was obviously redundant, while almost all the 

inefficient provinces were deficient in forest carbon sink output. This result 

indicates that the economic benefits of China's overall forestry investment were 

basically qualified, but there were still obvious deficiencies in the environmental 

benefits. The ability of planted trees to improve the atmospheric environment is 

limited. 

(3) The Malmquist index of China's forestry investment efficiency shows that 

forestry investment efficiency in most provinces has improved in recent years. 

Through the decomposition of the Malmquist index, we find that the key to the 

growth of China's forestry investment efficiency is the rate of technological 

progress. This shows that China's application technology for forestry investment 

has not improved in recent years. In addition, the results also show a certain 

degree of decline in scale efficiency, which means that the low rate of forestry 

investment and output is deepening. 

According to the empirical results of this paper, we have some suggestions for 

investors. First, the efficiency of forestry investment has certain requirements for 

resource allocation, and investors must rationally determine the amount of forestry 

investment according to the current situation of the resource endowment supply in 

different regions. Second, the experimental results show that the greatest problem 

in forestry investment is the low environmental benefits because the carbon 

sequestration capacity of the forest is weak. Therefore, before investment, 

investors should consult with relevant forest planting experts to select trees with a 

strong carbon sequestration capacity for cultivation. They should scientifically 
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manage the rotation period of the forest to achieve the optimal sum of economic 

and environmental output of the forest. Third, to improve the application 

technology of forestry investment, computer technology can be introduced to 

build a forestry investment system and real-time adjustment of inputs in different 

regions to obtain maximum output. 
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